

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs202t-e-m6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXGS202 Digital Signal Controller (DSC) devices.

The dsPIC33EPXXGS202 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXGS202 FAMILY BLOCK DIAGRAM

TABLE 4-9:PWM GENERATOR 2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	_	_	MTBS	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON2	0C44	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC2	0C46							PWM Gene	rator 2 Duty Cy	cle Registe	r (PDC2<15:	0>)						0000
PHASE2	0C48		PWM Phase-Shift Value or Independent Time Base Period for the PWM Generator 2 Register (PHASE2<15:0>) 0000															
DTR2	0C4A	_	_							DTR2	<13:0>							0000
ALTDTR2	0C4C	_	ALTDTR2<13:0> 0000							0000								
SDC2	0C4E								SDC2	<15:0>								0000
SPHASE2	0C50								SPHAS	E2<15:0>								0000
TRIG2	0C52							TRGCMP<12	:0>						_		_	0000
TRGCON2	0C54	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG2	0C56							STRGCMP<12	2:0>						—	_	_	0000
PWMCAP2	0C58							PWMCAP<12	2:0>						_	_	—	0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	_	_	_	_				L	EB<8:0>					—	_	_	0000
AUXCON2	0C5E	HRPDIS HRDDIS — — BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 — — CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPHEN 0000																

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: NVM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL		—	RPDF	URERR	_			_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMADR	072A								NVMADR<	:15:0>								0000
NVMADRU	072C	_	_	_	_	_	_	_	_				NVMAD)R<23:16>				0000
NVMKEY	072E	_	_	_	_	_	_	_	_				NVMK	(EY<7:0>				0000
NVMSRCADRL	0730							N	VMSRCAD	R<15:0>								0000
NVMSRCADRH	0732	_	_	-	_	_	_	_	_				NVMSRC	ADR<23:16	>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: SYSTEM CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	_	VREGSF	_	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	-	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	_	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	3040
PLLFBD	0746	_	_	-	_	-	_	_				PLL	DIV<8:0>					0030
OSCTUN	0748	_	—	_	_		_	_	_		—			TUN	<5:0>			0000
LFSR	074C	_							LFSR<14:0>							0000		
ACLKCON	0750	ENAPLL	APLLCK	SELACLK	_	_	APSTSCLR2	APSTSCLR1	APSTSCLR0	ASRCSEL	FRCSEL	_	_	_		—	_	2740

dsPIC33EPXXGS202 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration fuses.

TABLE 4-19: PMD REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	—	_	T3MD	T2MD	T1MD		PWMMD	_	I2C1MD	_	U1MD	—	SPI1MD	_	_	ADCMD	0000
PMD2	0762	_	_	_	_		_	_	IC1MD	_	_		_	_	_	_	OC1MD	0000
PMD3	0764	_	_	_	_		CMPMD	_	-	_	_		_	_	_	_	_	0000
PMD6	076A	_	_	_	_		PWM3MD	PWM2MD	PWM1MD	_	_		_	_	_	_	_	0000
PMD7	076C	—	—	—	_	_	_	CMP2MD	CMP1MD	_	_	_	_	_	_	PGA1MD	-	0000
PMD8	076E	_	_	_	_		PGA2MD	_	-	_	_		_	_	_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-5: NVMSRCADRL: NVM SOURCE DATA ADDRESS LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSRC	CADR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSR	CADR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 NVMSRCADR<15:0>: Source Data Address bits

The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming.

REGISTER 5-6: NVMSRCADRH: NVM SOURCE DATA ADDRESS HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSRC.	ADR<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSRC	ADR<23:16>			
bit 7							bit (
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplem	nented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 NVMSRCADR<31:16>: Source Data Address bits The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming. These bits must be always programmed to zero.

TABLE 7-1: INTERRUPT VECTOR DETAILS

Interrupt Source	Vector	IRQ	IVT Address	Inte	errupt Bit Lo	cation
Interrupt Source	#	#	IVI Address	Flag	Enable	Priority
	Hi	ghest Nat	ural Order Priority			
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>
IC1 – Input Capture 1	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>
OC1 – Output Compare 1	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>
T1 – Timer1	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>
Reserved	12–14	4–6	0x00001C-0x000020	_	_	_
T2 – Timer2	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>
T3 – Timer3	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>
SPI1E – SPI1 Error	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 – SPI1 Transfer Done	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>
ADC – ADC Global Convert Done	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>
Reserved	22	14	0x000030	_	_	_
NVM – NVM Write Complete	23	15	0x000032	IFS0<15>	IEC0<15>	IPC3<14:12>
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>
CMP1 – Analog Comparator 1 Interrupt	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>
CN – Input Change Interrupt	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>
INT1 – External Interrupt 1	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>
Reserved	29-36	21-28	0x00003E-0x00004C	_	_	_
INT2 – External Interrupt 2	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>
Reserved	38-64	30-56	0x000050-0x000084	_	_	_
PSEM – PWM Special Event Match	65	57	0x000086	IFS3<9>	IEC3<9>	IPC14<6:4>
Reserved	63-72	55-64	0x000088-0x000094	_	_	_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
Reserved	74-80	66-72	0x000098-0x0000A4	_	_	_
PWM Secondary Special Event Match	81	73	0x0000A6	IFS4<9>	IEC4<9>	IPC18<6:4>
Reserved	82-101	74-93	0x0000A8-0x0000CE	_	_	_
PWM1 – PWM1 Interrupt	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM2 Interrupt	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
PWM3 – PWM3 Interrupt	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
Reserved	105-110	97-102	0x0000D6-0x0000E0	_	_	_
CMP2 – Analog Comparator 2 Interrupt	111	103	0x0000E2	IFS6<7>	IEC6<7>	IPC25<14:12>
Reserved	112-117	104-109	0x0000E4-0x0000EE	_	_	_
AN0 Conversion Done	118	110	0x0000F0	IFS6<14>	IEC6<14>	IPC27<10:8>
AN1 Conversion Done	119	111	0x0000F2	IFS6<15>	IEC6<15>	IPC27<14:12>
AN2 Conversion Done	120	112	0x0000F4	IFS7<0>	IEC7<0>	IPC28<2:0>
AN3 Conversion Done	121	113	0x0000F6	IFS7<1>	IEC7<1>	IPC28<6:4>
AN4 Conversion Done	122	114	0x0000F8	IFS7<2>	IEC7<2>	IPC28<10:8>
AN5 Conversion Done	123	115	0x0000FA	IFS7<3>	IEC7<3>	IPC28<14:12>
AN6 Conversion Done	124	116	0x0000FC	IFS7<4>	IEC7<4>	IPC29<2:0>
AN7 Conversion Done	125	117	0x0000FE	IFS7<5>	IEC7<5>	IPC29<6:4>

10.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See the **"Pin Diagrams"** section for the available 5V tolerant pins and Table 25-11 for the maximum VIH specification for each pin.

10.2 Configuring Analog and Digital Port Pins

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UART, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin, defined as a digital input (including the ANx pins), can cause the input buffer to consume current that exceeds the device specifications.

10.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP, as shown in Example 10-1.

10.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the ICN functionality of each I/O port. The CNENx registers contain the ICN interrupt enable control bits for each of the input pins. Setting any of these bits enables an ICN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pulldowns act as a current source, or sink source, connected to the pin, and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups and pull-downs are enabled separately, using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on Input Change
	Notification pins should always be
	disabled when the port pin is configured
	as a digital output.

	EXAMPLE 10-1:	PORT WRITE/READ
--	---------------	-----------------

MOV	0xFF00, W0	; Configure PORTB<15:8>
		; as inputs
MOV	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

REGISTER 10-3: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			T1CK	R<7:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-8	10110101 = 10110100 = 00000001 =	Assign Timer Input tied to RI Input tied to RI Input tied to RI Input tied to RI Input tied to V	P181 P180 P1	ock (T1CK) to t	he Correspond	ing RPn Pin bits	3
bit 7-0	Unimpleme	nted: Read as '	0'				

dsPIC33EPXXGS202 FAMILY

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT4R7	FLT4R6	FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT3R7	FLT3R6	FLT3R5	FLT3R4	FLT3R3	FLT3R2	FLT3R1	FLT3R0
oit 7							bit (
_egend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 7-0	10110100 = • • 00000001 = 00000000 =	Input tied to RI Input tied to RI Input tied to RI Input tied to Vs	>180 >1 SS	to the Corroor		a hito	
511 7-0	10110101 = 10110100 = 00000001 =	: Assign PWM Input tied to RI Input tied to RI Input tied to RI Input tied to V	⊃181 ⊃180 ⊃1	to the correst			

REGISTER 10-8: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

REGISTER 13-2: IC1CON2: INPUT CAPTURE CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCS	ε	-<4:0>: Input Source Select for Synchronization and Trigger Operation bits ⁽³⁾
	11111	=	No sync or trigger source for IC1
	11110	=	Reserved
	11101	=	Reserved
	11100	=	Reserved
	11011	=	Reserved
	11010	=	Reserved
	11001	=	CMP2 module synchronizes or triggers IC1 ⁽⁴⁾
	11000	=	CMP1 module synchronizes or triggers IC1 ⁽⁴⁾
	10111	=	Reserved
	10110	=	Reserved
	10101	=	Reserved
	10100	=	Reserved
	10011	=	Reserved
	10010	=	Reserved
	10001	=	Reserved
	10000	=	Reserved
	01111	=	Reserved
			Reserved
	01101	=	Timer3 synchronizes or triggers IC1 (default)
			Timer2 synchronizes or triggers IC1
	01011	=	Timer1 synchronizes or triggers IC1
	01010	=	Reserved
	01001	=	Reserved
	01000	=	Reserved
	00111	=	Reserved
	00110	=	Reserved
	00101	=	Reserved
	00100	=	Reserved
			Reserved
			Reserved
			OC1 module synchronizes or triggers IC1
	00000	-	No ovro or trigger course for IC1

- 00000 = No sync or trigger source for IC1
- Note 1: The input source is selected by the SYNCSEL<4:0> bits of the IC1CON2 register.
 - 2: This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - **3:** Do not use the IC1 module as its own sync or trigger source.
 - 4: This option should only be selected as a trigger source and not as a synchronization source.

dsPIC33EPXXGS202 FAMILY

dsPIC33EPXXGS202 FAMILY

REGISTER 15-5: STCON: PWM SECONDARY MASTER TIME BASE CONTROL REGISTER

U-0	U-0	U-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0			
_			SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL	SYNCOEN			
bit 15	-						bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0			
bit 7							bit			
Legend:		HS = Hardwa	re Settable bit	HC = Hardwa	are Clearable bi	t				
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown			
bit 15-13	Unimplemen	ted: Read as	0'							
bit 12	•		rrupt Status bit							
			it interrupt is pe it interrupt is no							
bit 11		ial Event Interr	•	n penuing						
bit II	•		it interrupt is er	abled						
			it interrupt is di							
bit 10	EIPU: Enable	e Immediate Pe	eriod Updates t	oit ⁽¹⁾						
		•	d register is up		•					
		-			PWM cycle bour	ndaries				
bit 9		SYNCPOL: Synchronize Input and Output Polarity bit 1 = SYNCIx/SYNCO2 polarity is inverted (active-low)								
			ity is inverted (a ity is active-hig							
bit 8		•	ster Time Base		on Enable bit					
		output is enab		Gyneinonizau						
		output is disal								
bit 7	SYNCEN: Ex	ternal Second	ary Master Tim	e Base Synch	ronization Enab	le bit				
	1 = External synchronization of secondary time base is enabled									
		-	n of secondary							
bit 6-4			ry Time Base S	ync Source S	election bits					
	111 = Reserv 101 = Reserv									
	100 = Reserv									
	011 = Reserv									
	010 = Reserved									
	001 = SYNCI 000 = SYNCI									
bit 3-0			ndarv Special F	Event Triager (Output Postscal	er Select bits				
	1111 = 1:16									
	0001 = 1:2 P	ostscale								
	•									
	•									

Note 1: This bit only applies to the secondary master time base period.

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS202 family of devices contains one UART module.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXGS202 device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the U1CTS and U1RTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART1 module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the U1TX and U1RX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with U1CTS and U1RTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps in 16x mode at 60 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps in 4x mode at 60 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UART1 Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART1 module is shown in Figure 18-1. The UART1 module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UART1 SIMPLIFIED BLOCK DIAGRAM

18.3 UART Control Registers

REGISTER 18-1: U1MODE: UART1 MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD	_	UEN1	UEN0
bit 15							bit 8
	5444.6				5444.6	5444.6	5444.6
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
pit 7							bit C
Legend:		HC = Hardwar	e Clearable b	it			
R = Readable	e bit	W = Writable b	it	U = Unimplem	ented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkn	own
bit 15	UARTEN: UA	ART1 Enable bit	1)				
		s enabled; all UA		controlled by U	ART1, as defir	ned by UEN<1:0)>
		s disabled; all U					
bit 14	Unimplemen	ted: Read as '0	,				
oit 13	USIDL: UAR	T1 Stop in Idle M	lode bit				
		ues module ope			le mode		
		s module opera					
oit 12		Encoder and De					
		oder and decod					
bit 11		le Selection for					
	1 = U1RTS p	oin is in Simplex oin is in Flow Co	mode				
bit 10	Unimplemen	ted: Read as '0	3				
bit 9-8	UEN<1:0>: U	ART1 Pin Enab	le bits				
	10 = U1TX, U 01 = U1TX, U	J1RX and BCLK J1RX, U1CTS a J1RX and U1RT nd U1RX pins a atches	nd U1RTS pir S pins are en	ns are enabled a abled an <u>d used</u> ;	ind used ; U1CTS pin is	controlled by P	ORT latches
oit 7	WAKE: Wake	-up on Start bit	Detect During	Sleep Mode Er	nable bit		
	1 = UART1 c in hardwa	ontinues to sam are on the follow -up is enabled	ple the U1RX	pin, interrupt is		the falling edge	bit is cleared
bit 6		RT1 Loopback	Mode Select I	hit			
		Loopback mode					
		k mode is disabl					
oit 5	ABAUD: Auto	o-Baud Enable b	bit				
	before ot	baud rate meas her data; cleare e measurement	d in hardware	upon completio		eception of a Sy	nc field (55h
Note 1: Re	efer to "Univers						

2: This feature is only available for the 16x BRG mode (BRGH = 0).

20.6 Hysteresis

An additional feature of the module is hysteresis control. Hysteresis can be enabled or disabled and its amplitude can be controlled by the HYSSEL<1:0> bits in the CMPxCON register. Three different values are available: 5 mV, 10 mV and 20 mV. It is also possible to select the edge (rising or falling) to which hysteresis is to be applied.

Hysteresis control prevents the comparator output from continuously changing state because of small perturbations (noise) at the input (see Figure 20-2).

20.7 Analog Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

20.7.1 KEY RESOURCES

- "High-Speed Analog Comparator Module" (DS70005128) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

21.0 PROGRAMMABLE GAIN AMPLIFIER (PGA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Programmable Gain Amplifier (PGA)" (DS70005146) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS202 family devices have two Programmable Gain Amplifiers (PGA1, PGA2). The PGA is an op amp-based, non-inverting amplifier with user-programmable gains. The output of the PGA can be connected to a number of dedicated Sample-and-Hold inputs of the Analog-to-Digital Converter and/or to the high-speed analog comparator module. The PGA has five selectable gains and may be used as a ground referenced amplifier (single-ended) or used with an independent ground reference point.

Key features of the PGA module include:

- Single-Ended or Independent Ground Reference
- Selectable Gains: 4x, 8x, 16x, 32x and 64x
- High Gain Bandwidth
- Rail-to-Rail Output Voltage
- Wide Input Voltage Range

FIGURE 21-1: PGAx MODULE BLOCK DIAGRAM

Bit Field	Description
WDTWIN<1:0>	Watchdog Timer Window Select bits 11 = WDT window is 25% of the WDT period 10 = WDT window is 37.5% of the WDT period 01 = WDT window is 50% of the WDT period 00 = WDT window is 75% of the WDT period
JTAGEN	JTAG Enable bit 1 = JTAG is enabled 0 = JTAG is disabled
ICS<1:0>	ICD Communication Channel Select bits 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2 01 = Communicates on PGEC3 and PGED3 00 = Reserved, do not use
CTXT1<2:0>	Specifies Interrupt Priority Level (IPL) Associated to Alternate Working Register 1 bits 111 = Reserved 110 = Assigned to IPL of 7 101 = Assigned to IPL of 6 100 = Assigned to IPL of 5 011 = Assigned to IPL of 4 010 = Assigned to IPL of 3 001 = Assigned to IPL of 2 000 = Assigned to IPL of 1
CTXT2<2:0>	Specifies Interrupt Priority Level (IPL) Associated to Alternate Working Register 2 bits 111 = Reserved 110 = Assigned to IPL of 7 101 = Assigned to IPL of 6 100 = Assigned to IPL of 5 011 = Assigned to IPL of 4 010 = Assigned to IPL of 3 001 = Assigned to IPL of 2 000 = Assigned to IPL of 1

TABLE 22-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: The Boot Segment must be present to use the Alternate Interrupt Vector Table.

23.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- Control operations

Table 23-1 lists the general symbols used in describing the instructions.

The dsPIC33EP instruction set summary in Table 23-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Pins 5V Tolerant ⁽⁴⁾	-1	—	+1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	—	+1	μΑ	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ pin \text{ at high-impedance}, \\ -40^\circC \leq TA \leq +85^\circC \end{array}$
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	—	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	—	+1	μA	$Vss \le VPIN \le VDD$, pin at high-impedance, -40°C \le TA \le +125°C
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	—	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$
DI55		MCLR	-5	—	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-5	—	+5	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$

TABLE 25-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 5: VIL Source < (Vss 0.3). Characterized but not tested.
- **6:** VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- 7: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 8: |Injection Currents| > 0 can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

25.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EPXXGS202 family AC characteristics and timing parameters.

TABLE 25-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
AC CHARACTERISTICS	$\begin{array}{ll} Operating \ temperature & -40^\circ C \leq TA \leq +85^\circ C \ for \ Industrial \\ -40^\circ C \leq TA \leq +125^\circ C \ for \ Extended \end{array}$					
	Operating voltage VDD range as described in Section 25.1 "DC Characteristics".					

FIGURE 25-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 25-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15		In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCL1, SDA1	_	—	400	pF	In I ² C mode

dsPIC33EPXXGS202 FAMILY

	22 70
SR (CPU STATUS) SSEVTCMP (PWM Secondary	
Special Event Compare)	160
STCON (PWM Secondary Master	
Time Base Control)	158
STCON2 (PWM Secondary Clock Divider	
Select 2)	159
STPER (PWM Secondary Master	
Time Base Period)	159
STRIGx (PWMx Secondary Trigger	
Compare Value)	172
T1CON (Timer1 Control)	
T2CON (Timer2 Control)	
T3CON (Timer3 Control)	
TRGCONx (PWMx Trigger Control)	
TRIGx (PWMx Primary Trigger	
Compare Value)	170
U1MODE (UART1 Mode)	
U1STA (UART1 Status and Control)	
Resets	
Brown-out Reset (BOR)	
Configuration Mismatch Reset (CM)	
Illegal Condition Reset (IOPUWR)	
Illegal Opcode	
Security	
Uninitialized W Register	
Master Clear (MCLR) Pin Reset	
Power-on Reset (POR)	
RESET Instruction (SWR)	
Resources	
Trap Conflict Reset (TRAPR)	
Watchdog Timer Time-out Reset (WDTO)	
Revision History	
S	
Serial Peripheral Interface (SPI)	177
Serial Peripheral Interface. See SPI.	
Software Simulator (MPLAB X SIM)	
Special Features of the CPU	
SPI	
Control Registers	
Helpful Tips	
Resources	
т	
-	
Thermal Operating Conditions	
Thermal Packaging Characteristics	
Third-Party Development Tools	
Timer1	
Control Register	
Resources	
Timer2/3	
Control Registers	
Resources	

Timing Diagrams	
BOR and Master Clear Reset Characteristics 2	81
External Clock 2	78
High-Speed PWMx Fault Characteristics 2	87
High-Speed PWMx Module Characteristics	87
I/O Characteristics	81
I2C1 Bus Data (Master Mode) 3	00
I2C1 Bus Data (Slave Mode)	02
I2C1 Bus Start/Stop Bits (Master Mode) 3	
I2C1 Bus Start/Stop Bits (Slave Mode) 3	
Input Capture 1 (IC1) Characteristics 2	85
OC1/PWMx Characteristics 2	86
Output Compare 1 (OC1) Characteristics 2	86
SPI1 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)2	91
SPI1 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)2	90
SPI1 Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)2	88
SPI1 Master Mode (Half-Duplex,	
Transmit Only, CKE = 1) 2	89
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	98
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	96
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	92
SPI1 Slave Mode (Full-Duplex, CKE = 1,	~ .
CKP = 1, SMP = 0)	
Timer1-Timer3 External Clock Characteristics	
UART1 I/O Characteristics 3	04
U	

Unique Device Identifier (UDID)	27
Universal Asynchronous Receiver	
Transmitter (UART)	193
Control Registers	195
Helpful Tips	194
Resources	194
Universal Asynchronous Receiver Transmitter. See UAR	Τ.

V

WWW, On-Line Support 6