

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs202t-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

in SSC	ic, DP		Pins are up to 5V tolerant
	MCLR 1 RA0 2 RA1 3 RA2 4 RB0 5 RB9 6 RB10 7 Vss 8 RB1 9 RB2 10 RB2 10 RB3 11 RB4 12 VDD 13 RD2 11	dsPIC33EPXXGS202	28 AVDD 27 AVSS 26 RA3 25 RA4 24 RB14 23 RB13 22 RB12 21 RB11 20 VCAP 19 VSS 18 RB7 17 RB6 16 RB5
PIN FI	RB8		15 RB15
PIN FU Pin		Pin	15 RB15
	JNCTION DESCRIPTIONS		F
Pin	JNCTION DESCRIPTIONS Pin Function	Pin	Pin Function
Pin 1	JNCTION DESCRIPTIONS Pin Function MCLR	Pin 15	Pin Function PGEC3/ RP47 /RB15
Pin 1 2	JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0	Pin 15 16	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5
Pin 1 2 3	JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1	Pin 15 16 17	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6
Pin 1 2 3 4	JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2	Pin 15 16 17 18	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7
Pin 1 2 3 4 5	Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0	Pin 15 16 17 18 19	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss
Pin 1 2 3 4 5 6	JUNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9	Pin 15 16 17 18 19 20	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss VcAP
Pin 1 2 3 4 5 6 7	JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10	Pin 15 16 17 18 19 20 21	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss Vcap TMS/PWM3H/RP43/RB11
Pin 1 2 3 4 5 6 7 8	Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10 Vss	Pin 15 16 17 18 19 20 21 22	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss VCAP TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12
Pin 1 2 3 4 5 6 7 8 9	JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10 Vss OSC1/CLKI/AN6/RP33/RB1	Pin 15 16 17 18 19 20 21 22 23	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss VcAP TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2H/RP45/RB13
Pin 1 2 3 4 5 6 7 8 9 10	Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10 Vss OSC1/CLKI/AN6/RP33/RB1 OSC2/CLKO/AN7/PGA1N2/RP34/RB2	Pin 15 16 17 18 19 20 21 22 23 24	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss Vcap TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2H/RP45/RB13 PWM2L/RP46/RB14
Pin 1 2 3 4 5 6 7 8 9 10 11	Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10 Vss OSC1/CLKI/AN6/RP33/RB1 OSC2/CLKO/AN7/PGA1N2/RP34/RB2 PGED2/AN8/INT0/RP35/RB3	Pin 15 16 17 18 19 20 21 22 23 24 25	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss VCAP TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2H/RP45/RB13 PWM2L/RP46/RB14 PWM1H/RA4

Legend: Shaded pins are up to 5 VDC tolerant.

Note: RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

When a PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses the PSV page
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSRPAG register is incremented and the EA<15> bit is set to keep the base address within the PSV window. When an underflow is detected, the DSRPAG register is decremented and the EA<15> bit is set to keep the

base address within the PSV window. This creates a linear PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0 and PSV spaces. Table 4-24 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSRPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- Bit-Reversed Addressing

TABLE 4-24:OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0 AND
PSV SPACE BOUNDARIES^(2,3,4)

O/U,			Before		After			
0/0, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description	
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page	
O, Read	Or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1	
U, Read	5 m l	DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1	
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1	
U, Read		DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page	

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x7FFF).

2: An EDS access, when DSRPAG = 0x000, will generate an address error trap.

3: Only reads from PS are supported using DSRPAG.

4: Pseudolinear Addressing is not supported for large offsets.

4.9 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXGS202 family architecture uses a 24-bit wide Program Space (PS) and a 16-bit wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33EPXXGS202 family devices provides two methods by which Program Space can be accessed during operation:

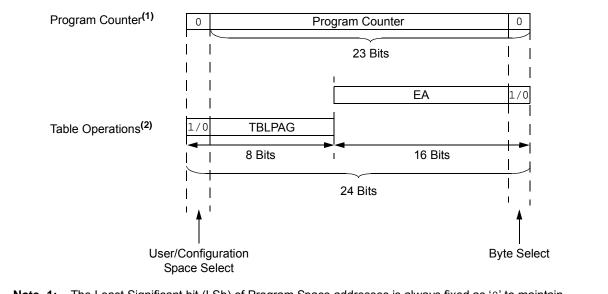

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-27: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address					
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>	
Instruction Access	User	0	PC<22:1> 0			0	
(Code Execution)		0xxx xxxx xxxx xxxx xxxx xxx0					
TBLRD/TBLWT	User	TB	LPAG<7:0>	7:0> Data EA<15:0>			
(Byte/Word Read/Write)		0	xxx xxxx	xxxx	xxxx xxxx xx	xx	
	Configuration	TB	TBLPAG<7:0> Data EA<15:0>				
		1	xxx xxxx	xxxx	. xxxx xxxx xx	xx	

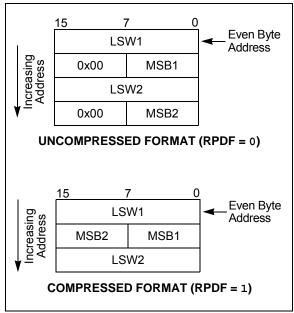
FIGURE 4-10: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

- **Note 1:** The Least Significant bit (LSb) of Program Space addresses is always fixed as '0' to maintain word alignment of data in the Program and Data Spaces.
 - **2:** Table operations are not required to be word-aligned. Table Read operations are permitted in the configuration memory space.

NOTES:

5.2 RTSP Operation

The dsPIC33EPXXGS202 family Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a single page (8 rows or 512 instructions) of memory at a time and to program one row at a time. It is possible to program two instructions at a time as well.


The page erase and single row write blocks are edge-aligned, from the beginning of program memory on boundaries of 1536 bytes and 192 bytes, respectively. Figure 25-14 in **Section 25.0 "Electrical Characteristics**" lists the typical erase and programming times.

Row programming is performed by loading 192 bytes into data memory and then loading the address of the first byte in that row into the NVMSRCADR register. Once the write has been initiated, the device will automatically load the write latches and increment the NVMSRCADR and the NVMADR(U) registers until all bytes have been programmed. The RPDF bit (NVMCON<9>) selects the format of the stored data in RAM to be either compressed or uncompressed. See Figure 5-2 for data formatting. Compressed data helps to reduce the amount of required RAM by using the upper byte of the second word for the MSB of the second instruction.

The basic sequence for RTSP word programming is to use the TBLWTL and TBLWTH instructions to load two of the 24-bit instructions into the write latches found in configuration memory space. Refer to Figure 4-1 through Figure 4-3 for write latch addresses. Programming is performed by unlocking and setting the control bits in the NVMCON register.

All erase and program operations may optionally use the NVM interrupt to signal the successful completion of the operation.

FIGURE 5-2: UNCOMPRESSED/ COMPRESSED FORMAT

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of Program Flash Memory (PFM) at a time on every other word address boundary (0x000000, 0x000004, 0x000008, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change. For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
		_	—	—	—	—	NAE				
bit 15							bit 8				
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0				
			DOOVR				APLL				
bit 7							bit 0				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'					
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cleared x = Bit is unknown							
bit 15-9	Unimplemen	ted: Read as	'0'								
bit 8	NAE: NVM A	ddress Error S	Soft Trap Statu	s bit							
	1 = NVM add	ress error sof	t trap has occu	rred							
	0 = NVM add	ress error sof	t trap has not o	ccurred							
bit 7-5	Unimplemen	ted: Read as	'0'								
bit 4	DOOVR: DO	Stack Overflov	v Soft Trap Sta	itus bit							
	1 = DO stack	overflow soft t	rap has occurr	ed							
			rap has not oc								
bit 3-1	Unimplemen	ted: Read as	'0'								
bit 0	APLL: Auxilia	ary PLL Loss o	of Lock Soft Tra	ap Status bit							
	1 = APLL loc	1 = APLL lock soft trap has occurred									
		k coft tran hac	- A PL Lock off trap has not occurred								

0 = APLL lock soft trap has not occurred

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
—	—	—	—	—	—	—	SGHT		
bit 7				•		•	bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-1	Unimplemen	ted: Read as '	0'						
bit 0	SGHT: Softwa	SGHT: Software Generated Hard Trap Status bit							
	1 = Software generated hard trap has occurred								
	0 = Software	generated har	d trap has not	occurred					

REGISTER 8-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

-								
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_		—		—	—		
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
0-0	0-0	R/W-0	R/W-0	-	N<5:0>	R/W-U	R/W-0	
				101	N<5.0>		1.11.0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-6	Unimplemen	ted: Read as '	כי					
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits					
		aximum frequer nter frequency			77 MHz)			
	000000 = Ce	nter frequency nter frequency nter frequency	(7.37 MHz no	minal)				
		nter frequency nimum frequen	•	,) MHz)			

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 10-24: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP177R<5:0>: Peripheral Output Function is Assigned to RP177 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP176R<5:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-25: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0
bit 7						bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP179R<5:0>:** Peripheral Output Function is Assigned to RP179 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0' bit 5-0 RP178R<5:0>: Peripheral Output Function is

bit 5-0 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits (see Table 10-2 for peripheral function numbers)

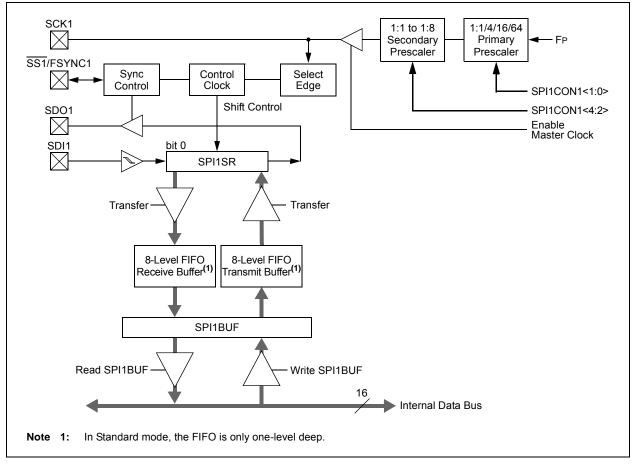
REGISTER 14-2: OC1CON2: OUTPUT COMPARE CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = OC1RS compare event is used for synchronization
 - 11110 = INT2 pin synchronizes or triggers OC1
 - 11101 = INT1 pin synchronizes or triggers OC1
 - 11100 = Reserved
 - 11011 = Reserved
 - 11010 = Reserved
 - $11001 = CMP2 \text{ module triggers OC1}^{(1)}$ $11000 = CMP1 \text{ module triggers OC1}^{(1)}$
 - 10111 = Reserved
 - 10111 = Reserved
 - 101101 = Reserved
 - 10100 = Reserved
 - 10011 = Reserved
 - 10010 = Reserved
 - 10001 = Reserved
 - 10000 = IC1 input capture interrupt event synchronizes or triggers OC1
 - 01111 = Reserved
 - 01110 = Reserved
 - 01101 = Timer3 synchronizes or triggers OC1
 - 01100 = Timer2 synchronizes or triggers OC1 (default)
 - 01011 = Timer1 synchronizes or triggers OC1
 - 01010 = Reserved
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Reserved
 - 00101 = IC1 input capture event synchronizes or triggers OC1
 - 00100 = Reserved
 - 00011 = Reserved
 - 00010 = Reserved
 - 00001 = Reserved
 - 00000 = No sync or trigger source for OC1
- **Note 1:** This option should only be selected as a trigger source and not as a synchronization source.

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS7005185) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface, useful for communicating with other peripherals or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP interfaces. The dsPIC33EPXXGS202 device family offers one SPI module on a single device.


The SPI1 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration.

The SPI1 serial interface consists of four pins, as follows:

- · SDI1: Serial Data Input
- SDO1: Serial Data Output
- SCK1: Shift Clock Input or Output
- SS1/FSYNC1: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI1 module can be configured to operate with two, three or four pins. In 3-Pin mode, SS1 is not used. In 2-Pin mode, neither SDO1 nor SS1 is used.

Figure 16-1 illustrates the block diagram of the SPI1 module in Standard and Enhanced modes.

FIGURE 16-1: SPI1 MODULE BLOCK DIAGRAM

REGISTER 19-16: ADMODOL: ADC INPUT MODE CONTROL REGISTER 0 LOW

-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
Legend:							
bit 7				1		•	bit
	SIGN3		SIGN2	DIFF1	SIGN1	DIFF0	SIGN0
U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit
—	SIGN7	_	SIGN6	—	SIGN5	—	SIGN4
U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0

bit (odd)15-5 Unimplemented: Read as '0'

bit (3,1) **DIFF<x>:** Pseudo-Differential Mode for Corresponding Analog Inputs bits 1 = Channel is pseudo-differential 0 = Channel is single-ended

bit (even) **SIGNx:** Output Data Sign for Corresponding Analog Inputs bits

1 = Channel output data is signed

0 = Channel output data is unsigned

REGISTER 19-17: ADMOD0H: ADC INPUT MODE CONTROL REGISTER 0 HIGH

U-0	U-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0
_	—	—	SIGN14	—	SIGN13	—	SIGN12
bit 15					·	·	bit 8
U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0
_	SIGN11	—	SIGN10	—	SIGN9	—	SIGN8
bit 7			•	•		•	bit 0
Logondi							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit (odd) Unimplemented: Read as '0'

bit (even) SIGN<x>: Output Data Sign for Corresponding Analog Inputs bits

1 = Channel output data is signed

0 = Channel output data is unsigned

REGISTER 19-25: ADCMPxENL: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER LOW (x = 0,1)

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	CMPEN14	_	—	CMPEN<11:8>						
bit 15							bit 8			
R/W/0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			CN	/IPEN<7:0>						
bit 7							bit 0			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14 **CMPEN14:** Comparator Enable for Corresponding Input Channel bit 1 = Conversion result for corresponding channel is used by the comparator

0 = Conversion result for corresponding channel is not used by the comparator

- bit 13-12 Unimplemented: Read as '0'
- bit 11-0 **CMPEN<11:0>:** Comparator Enable for Corresponding Input Channels bits

1 = Conversion result for corresponding channel is used by the comparator

 $\ensuremath{\scriptscriptstyle 0}$ = Conversion result for corresponding channel is not used by the comparator

24.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

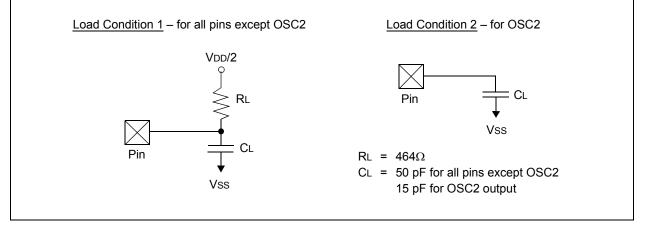
Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

24.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]


25.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EPXXGS202 family AC characteristics and timing parameters.

TABLE 25-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	$\begin{array}{ll} Operating \ temperature & -40^\circ C \leq TA \leq +85^\circ C \ for \ Industrial \\ -40^\circ C \leq TA \leq +125^\circ C \ for \ Extended \end{array}$
	Operating voltage VDD range as described in Section 25.1 "DC Characteristics".

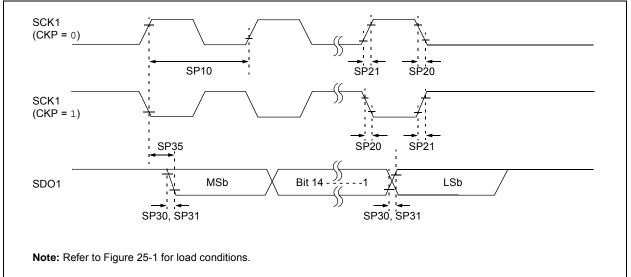
FIGURE 25-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 25-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15		In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCL1, SDA1	_	—	400	pF	In I ² C mode

TABLE 25-23:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
SY00	Τρυ	Power-up Period	_	400	600	μS			
SY10	Tost	Oscillator Start-up Time		1024 Tosc	_	_	Tosc = OSC1 Period		
SY12	Twdt	Watchdog Timer Time-out Period	0.81	_	1.22	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 25-21) at +85°C		
			3.25	_	4.88	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 25-21) at +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS			
SY20	TMCLR	MCLR Pulse Width (low)	2	_	_	μS			
SY30	TBOR	BOR Pulse Width (low)	1	_	_	μS			
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μS	-40°C to +85°C		
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	_	_	30	μS			
SY37	Toscdfrc	FRC Oscillator Start-up Delay		_	29	μS			
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay		—	70	μS			


Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

TABLE 25-31: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Data Rato		Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP			
15 MHz	Table 25-31	_	—	0,1	0,1	0,1		
9 MHz	—	Table 25-32	—	1	0,1	1		
9 MHz	—	Table 25-33	—	0	0,1	1		
15 MHz	—	—	Table 25-34	1	0	0		
11 MHz	—	—	Table 25-35	1	1	0		
15 MHz		_	Table 25-36	0	1	0		
11 MHz	_		Table 25-37	0	0	0		

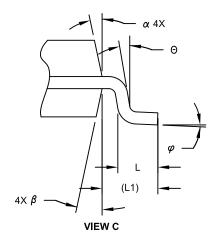
FIGURE 25-11: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

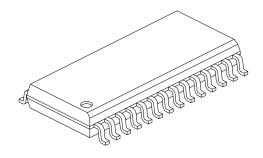
TABLE 25-37:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industr $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max.			Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	_	15	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—	—		ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid After SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	_		ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—		ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1 ↑ After SCK1 Edge	1.5 Tcy + 40	—		ns	(Note 4)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.


3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.


4: Assumes 50 pF load on all SPI1 pins.

NOTES:

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	1.27 BSC		
Overall Height	Α	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

NOTES: