

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

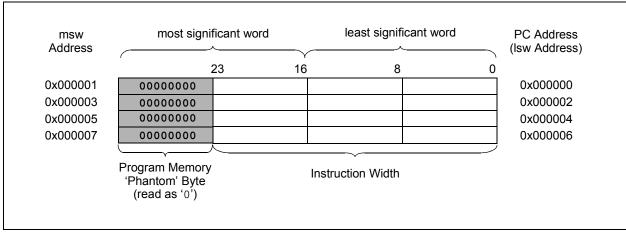
·XF

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs202t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.1 PROGRAM MEMORY ORGANIZATION

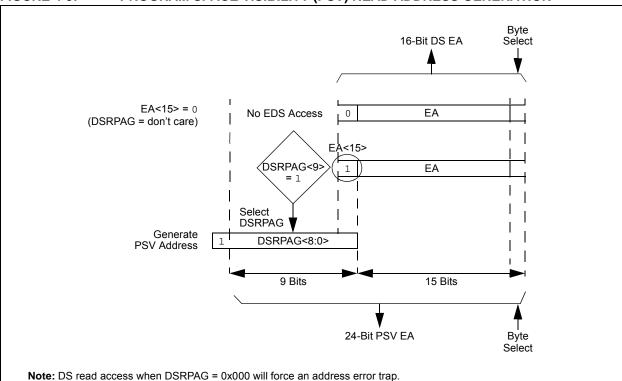

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-3).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented, or decremented, by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.2.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXGS202 family devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.1** "Interrupt Vector Table".


FIGURE 4-3: PROGRAM MEMORY ORGANIZATION

4.5.1 PAGED MEMORY SCHEME

The dsPIC33EPXXGS202 architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EAs). The upper half of the base Data Space address is used in conjunction with the Data Space Read Page (DSRPAG) register to form the Program Space Visibility (PSV) address.

The Data Space Read Page (DSRPAG) register is located in the SFR space. Construction of the PSV address is shown in Figure 4-5. When DSRPAG<9> = 1 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit PSV read address. The paged memory scheme provides access to multiple 32-Kbyte windows in the PSV memory. The Data Space Read Page register (DSRPAG), in combination with the upper half of the Data Space address, can provide up to 8 Mbytes of PSV address space. The paged data memory space is shown in Figure 4-6.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG.

FIGURE 4-5: PROGRAM SPACE VISIBILITY (PSV) READ ADDRESS GENERATION

NOTES:

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15		•					bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7	•	•		•			bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 2 (10)

- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	0.0	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	XX	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

8.2 Auxiliary Clock Generation

The auxiliary clock generation is used for peripherals that need to operate at a frequency unrelated to the system clock, such as PWM or ADC.

The primary oscillator and internal FRC oscillator sources can be used with an Auxiliary PLL (APLL) to obtain the auxiliary clock. The Auxiliary PLL has a fixed 16x multiplication factor.

The auxiliary clock has the following configuration restrictions:

- For proper PWM operation, auxiliary clock generation must be configured for 120 MHz (see Parameter OS56 in Section 25.0 "Electrical Characteristics"). If a slower frequency is desired, the PWM Input Clock Prescaler (Divider) Select bits (PCLKDIV<2:0>) should be used.
- To achieve 1.04 ns PWM resolution, the auxiliary clock must use the 16x Auxiliary PLL (APLL). All other clock sources will have a minimum PWM resolution of 8 ns.
- If the primary PLL is used as a source for the auxiliary clock, the primary PLL should be configured up to a maximum operation of 30 MIPS or less.

8.3 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

8.3.1 KEY RESOURCES

- "Oscillator Module" (DS70005131) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected a clock failure
 - 0 = FSCM has not detected a clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT4R7	FLT4R6	FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT3R7	FLT3R6	FLT3R5	FLT3R4	FLT3R3	FLT3R2	FLT3R1	FLT3R0
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 7-0	10110100 = • • 00000000 = FLT3R<7:0>	Input tied to RI Input tied to RI Input tied to RI Input tied to Vs : Assign PWM Input tied to RI	⊃180 ⊃1 SS Fault 3 (FLT3)	to the Corresp	ponding RPn Pi	in bits	
	10110100 = • • • 00000001 =	Input tied to RI Input tied to RI Input tied to RI	⊃180 ⊃1				

REGISTER 10-8: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

REGISTER 10-13: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			SYNCI	2R<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W		W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-8	Unimplemen	ted: Read as '	כ'					
bit 7-0	SYNCI2R<7:	0>: Assign PW	M Synchroniz	ation Input 2 to	the Correspon	ding RPn Pin b	oits	
	10110101 = Input tied to RP181							
	10110100 = Input tied to RP180							
	•							
	•							
	•							
	0000001=	Input tied to RF	P1					
	00000000 =	Input tied to Vs	S					

REGISTER 15-5: STCON: PWM SECONDARY MASTER TIME BASE CONTROL REGISTER

U-0	U-0	U-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
		_	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL	SYNCOEN
bit 15	-		-				bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0
bit 7							bit
Legend:		HS = Hardwa	re Settable bit	HC = Hardwa	are Clearable bi	t	
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15-13	Unimplemen	ted: Read as	ʻ0'				
bit 12	•		rrupt Status bit				
			nt interrupt is pe nt interrupt is no				
bit 11		ial Event Interr	•	n penuing			
bit II	•		t interrupt is en	abled			
			it interrupt is dis				
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾						
		•	d register is up		•		
		-			PWM cycle bour	ndaries	
bit 9			put and Output	•			
			ity is inverted (a ity is active-hig				
bit 8		•	ster Time Base		on Enable bit		
		output is enab		Gyneinonizau			
		output is disal					
bit 7	SYNCEN: Ex	ternal Second	ary Master Tim	e Base Synch	ronization Enab	le bit	
		•	n of secondary				
		-	n of secondary				
bit 6-4			ry Time Base S	sync Source S	election bits		
	111 = Reserv 101 = Reserv						
	100 = Reserv						
	011 = Reserv						
	010 = Reserv						
	001 = SYNCI 000 = SYNCI						
bit 3-0			ndarv Special F	Event Triager (Output Postscal	er Select bits	
	1111 = 1:16						
	0001 = 1:2 P	ostscale					
	•						
	•						

Note 1: This bit only applies to the secondary master time base period.

REGISTER 15-16: SPHASEx: PWMx SECONDARY PHASE-SHIFT REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPHAS	SEx<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPHA	SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit,				ented bit, read	d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

bit 15-0 **SPHASEx<15:0>:** Secondary Phase Offset for PWMxL Output Pin bits (used in Independent PWM mode only)

- **Note 1:** If PWMCONx<9> = 0, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); SPHASEx<15:0> = Not used
 - True Independent Output mode (IOCONx<11:10> = 11), SPHASEx<15:0> = Phase-shift value for PWMxL only
 - 2: If PWMCONx<9> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); SPHASEx<15:0> = Not used
 - True Independent Output mode (IOCONx<11:10> = 11); SPHASEx<15:0> = Independent time base period value for PWMxL only
 - When the PHASEx/SPHASEx registers provide the local period, the valid range of values is 0x0010-0xFFF8

REGISTER 19-13: ADLVLTRGL: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER LOW

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	LVLEN14	—	—		LVLE	EN<11:8>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			LVL	EN<7:0>				
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	wn	
bit 15	Unimpleme	nted: Read as	'0'					
bit 14	LVLEN14: L	evel Trigger 14	Enable bit					
	1 = Input Channel 14 trigger is level-sensitive							
0 = Input Channel 14 trigger is edge-sensitive								
bit 13-12	bit 13-12 Unimplemented: Read as '0'							
bit 11-0	LVLEN<11:0	>: Level Trigg	er x Enable bits	;				
	1 = Input Ch	annel x trigger	is level-sensitiv	/e				
	0 = Input Ch	annel x trigger	is edge-sensiti	ve				

REGISTER 19-16: ADMODOL: ADC INPUT MODE CONTROL REGISTER 0 LOW

-n = Value at POR (1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
Legend:							
bit 7				1		•	bit
	SIGN3		SIGN2	DIFF1	SIGN1	DIFF0	SIGN0
U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit
—	SIGN7	_	SIGN6	—	SIGN5	—	SIGN4
U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0

bit (odd)15-5 Unimplemented: Read as '0'

bit (3,1) **DIFF<x>:** Pseudo-Differential Mode for Corresponding Analog Inputs bits 1 = Channel is pseudo-differential 0 = Channel is single-ended

bit (even) **SIGNx:** Output Data Sign for Corresponding Analog Inputs bits

1 = Channel output data is signed

0 = Channel output data is unsigned

REGISTER 19-17: ADMOD0H: ADC INPUT MODE CONTROL REGISTER 0 HIGH

U-0	U-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0
_	—	—	SIGN14	—	SIGN13	—	SIGN12
bit 15					·	·	bit 8
U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0
_	SIGN11	—	SIGN10	—	SIGN9	—	SIGN8
bit 7			•	•		•	bit 0
Logondi							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit (odd) Unimplemented: Read as '0'

bit (even) SIGN<x>: Output Data Sign for Corresponding Analog Inputs bits

1 = Channel output data is signed

0 = Channel output data is unsigned

REGISTER 19-23: ADCAL1H: ADC CALIBRATION REGISTER 1 HIGH

R/W-0, HS	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CSHRRDY	—	—	—	CSHRSKIP	CSHRDIFF	CSHREN	CSHRRUN
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CSHRRDY: Shared ADC Core Calibration Status Flag bit
	1 = Shared ADC core calibration is finished
	0 = Shared ADC core calibration is in progress
bit 14-12	Unimplemented: Read as '0'
bit 11	CSHRSKIP: Shared ADC Core Calibration Bypass bit
	1 = After power-up, the shared ADC core will not be calibrated
	0 = After power-up, the shared ADC core will be calibrated
bit 10	CSHRDIFF: Shared ADC Core Pseudo-Differential Input Mode Calibration bit
	1 = Shared ADC core will be calibrated in Pseudo-Differential Input mode
	0 = Shared ADC core will be calibrated in Single-Ended Input mode
bit 9	CSHREN: Shared ADC Core Calibration Enable bit
	1 = Shared ADC core calibration bits (CSHRRDY, CSHRSKIP, CSHRDIFF and CSHRRUN) can be accessed by software
	0 = Shared ADC core calibration bits are disabled
bit 8	CSHRRUN: Shared ADC Core Calibration Start bit
	1 = If this bit is set by software, the shared ADC core calibration cycle is started; this bit is cleared auto- matically by hardware
	0 = Software can start the next calibration cycle
bit 7-0	Unimplemented: Read as '0'

TABLE 22-1: CONFIGURATION REGISTER MAP

Name	Address	Device Memory Size (Kbytes)	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
FSEC	002B80	16		AIVTDIS	_			C	SS <2:0>		CWRP	GSS <1	.0>	GWRP	_	BSEN	BSS <1:	05	BWRP			
FSEC	005780	32	_	AIVIDIS			_	ن ا	55 ~2.0-	-	CWRF	655 ~1	.0	GWRF	_	DOEN	600 1.	0-	DWKF			
FBSLIM	002B90	16											DOLIM	<12:0>								
FDOLIN	005790	32											DOLIN	1<12.02								
FSIGN	002B94	16		Reserved ⁽²⁾																		
FSIGN	GN 005794 32 - Re	Reserved	_	_	_	—	_	—	_	_	—	_	_	_	_	_	_					
FOSCSEL	002B98	16																				
FUSUSEL	005798	32	_	_	_	_	_	_	IESO	_	_	—	FNOSC<2:0>									
FOSC	002B9C	16										FOKOM	4.05					DOO				
FUSC	00579C	32	_	_	_	_	_	_	_	_	_	_	-	PLLKEN	FCKSM<1:0>		IOL1WAY		_	OSCIOFNC POSCMD<1:0		CMD<1:0>
FWDT	002BA0	16											WDT		WDTDDE			T -0.05				
FWDI	0057A0	32	—	_	_	_	_	_	—	VVDIV	VIN<1:0>	WINDIS	VVDTE	EN<1:0>	WDTPRE WDTPOST <3:0>			>				
FPOR	002BA4	16																	D			
FPUR	0057A4	32	—	_	_	_	_	_	_	-	_	—		_	_	_	_	-	Reserved ⁽¹⁾			
FICD	002BA8	16										Reserved ⁽¹⁾							S <1:0>			
FICD	0057A8	32		_	_		_		_	_		Reserved	—	JTAGEN —	_	—		S <1:0>				
FDEVOPT	002BAC	16															Reserved ⁽¹⁾		PWMLOCK			
FDEVOPT	0057AC	32	_	_	_		_		_	_	—	_	_	_	_	_	reserved.,	—	FVVIVILUUK			
FALTREG	002BB0	16					CTXT2 <2:0> CTXT1 <2:0>															
FALIKEG	0057B0	32	—	_	_	_	_	—	_	—	_	—		CTXT2 <2:0	<ر	_		×11<2	.0>			

Note 1: These bits are reserved and must be programmed as '1'.

2: This bit is reserved and must be programmed as '0'.

24.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

24.7 MPLAB REAL ICE In-Circuit Emulator System

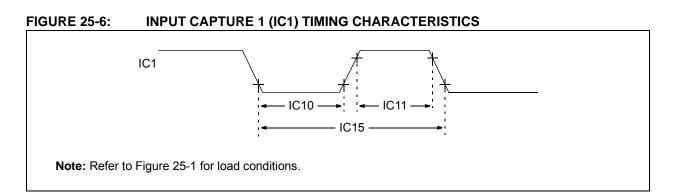
The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

24.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.


The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

24.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a full-speed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

24.10 MPLAB PM3 Device Programmer

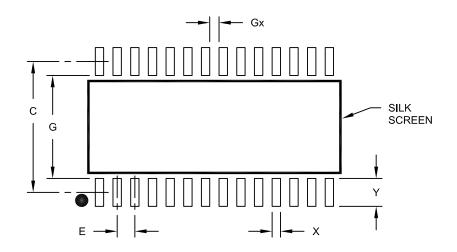
The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

TABLE 25-27: INPUT CAPTURE 1 MODULE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Max.	Units	Conditions				
IC10	TccL	IC1 Input Low Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15				
IC11	ТссН	IC1 Input High Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15	N = Prescale Value (1, 4, 16)			
IC15	TCCP	IC1 Input Period	Greater of: 25 + 50 or (1 Tcy/N) + 50	_	ns					

Note 1: These parameters are characterized but not tested in manufacturing.

АС СНА	RACTERI	STICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
				operating terri	p o atai o	\leq TA \leq +125°C for Extended				
Param No.	Symbol	Characte	Min.	Max.	Units	Conditions				
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS				
			400 kHz mode	1.3	_	μS				
			1 MHz mode ⁽¹⁾	0.5		μS				
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz			
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz			
			1 MHz mode ⁽¹⁾	0.5	_	μS				
IS20	TF:SCL	SDA1 and SCL1	100 kHz mode	—	300	ns	CB is specified to be from			
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF			
			1 MHz mode ⁽¹⁾	—	100	ns				
IS21	TR:SCL	SDA1 and SCL1	100 kHz mode	—	1000	ns	CB is specified to be from			
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF			
		1 MHz mode ⁽¹⁾	—	300	ns					
IS25 TSU:DAT	TSU:DAT	Data Input	100 kHz mode	250	_	ns				
		Setup Time	400 kHz mode	100		ns				
		1 MHz mode ⁽¹⁾	100	_	ns					
IS26 THD:DA	THD:DAT	Data Input	100 kHz mode	0	_	μS				
		Hold Time	400 kHz mode	0	0.9	μS				
			1 MHz mode ⁽¹⁾	0	0.3	μS				
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	—	μS	Only relevant for Repeated			
		Setup Time	400 kHz mode	0.6	—	μS	Start condition			
			1 MHz mode ⁽¹⁾	0.25	—	μS				
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first			
		Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated			
			1 MHz mode ⁽¹⁾	0.25	—	μS				
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μS				
		Setup Time	400 kHz mode	0.6	—	μS				
			1 MHz mode ⁽¹⁾	0.6	_	μS				
IS34	THD:STO	Stop Condition	100 kHz mode	4	_	μS				
		Hold Time	400 kHz mode	0.6	—	μS				
			1 MHz mode ⁽¹⁾	0.25		μS				
IS40	TAA:SCL	Output Valid from	100 kHz mode	0	3500	ns				
		Clock	400 kHz mode	0	1000	ns				
			1 MHz mode ⁽¹⁾	0	350	ns				
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free			
			400 kHz mode	1.3		μS	before a new transmission			
			1 MHz mode ⁽¹⁾	0.5		μS	can start			
IS50	Св	Bus Capacitive Lo	ading	—	400	pF				
IS51	TPGD	Pulse Gobbler Del	ay	65	390	ns	(Note 2)			


TABLE 25-40: I2C1 BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum Pin Capacitance = 10 pF for all I2C1 pins (for 1 MHz mode only).

- **2:** Typical value for this parameter is 130 ns.
- **3:** These parameters are characterized but not tested in manufacturing.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	1	MILLIMETERS			
Dimensio	MIN	NOM	MAX		
Contact Pitch	E		1.27 BSC		
Contact Pad Spacing	С		9.40		
Contact Pad Width (X28)	Х			0.60	
Contact Pad Length (X28)	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15