

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 70 MIPs                                                                          |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                            |
| Number of I/O              | 21                                                                               |
| Program Memory Size        | 32KB (32K x 8)                                                                   |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 2K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 12x12b; D/A 2x12b                                                            |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 28-UQFN Exposed Pad                                                              |
| Supplier Device Package    | 28-UQFN (6x6)                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs202t-i-mx |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 4.3 Data Address Space

The dsPIC33EPXXGS202 family CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory map is shown in Figure 4-4.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes or 32K words.

The lower half of the data memory space (i.e., when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV).

dsPIC33EPXXGS202 family devices implement up to 12 Kbytes of data memory. If an EA points to a location outside of this area, an all-zero word or byte is returned.

### 4.3.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

#### 4.3.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC<sup>®</sup> MCU devices and improve Data Space memory usage efficiency, the dsPIC33EPXXGS202 family instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through wordaligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

### 4.3.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, are primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXGS202 family core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

**Note:** The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

### 4.3.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

### TABLE 7-1: INTERRUPT VECTOR DETAILS

|                                      | Vector  | IRQ       |                     | Inte     | errupt Bit Lo | ocation      |
|--------------------------------------|---------|-----------|---------------------|----------|---------------|--------------|
|                                      | #       | #         | IVI Address         | Flag     | Enable        | Priority     |
|                                      | Hi      | ghest Nat | ural Order Priority |          |               |              |
| INT0 – External Interrupt 0          | 8       | 0         | 0x000014            | IFS0<0>  | IEC0<0>       | IPC0<2:0>    |
| IC1 – Input Capture 1                | 9       | 1         | 0x000016            | IFS0<1>  | IEC0<1>       | IPC0<6:4>    |
| OC1 – Output Compare 1               | 10      | 2         | 0x000018            | IFS0<2>  | IEC0<2>       | IPC0<10:8>   |
| T1 – Timer1                          | 11      | 3         | 0x00001A            | IFS0<3>  | IEC0<3>       | IPC0<14:12>  |
| Reserved                             | 12–14   | 4–6       | 0x00001C-0x000020   | _        | _             |              |
| T2 – Timer2                          | 15      | 7         | 0x000022            | IFS0<7>  | IEC0<7>       | IPC1<14:12>  |
| T3 – Timer3                          | 16      | 8         | 0x000024            | IFS0<8>  | IEC0<8>       | IPC2<2:0>    |
| SPI1E – SPI1 Error                   | 17      | 9         | 0x000026            | IFS0<9>  | IEC0<9>       | IPC2<6:4>    |
| SPI1 – SPI1 Transfer Done            | 18      | 10        | 0x000028            | IFS0<10> | IEC0<10>      | IPC2<10:8>   |
| U1RX – UART1 Receiver                | 19      | 11        | 0x00002A            | IFS0<11> | IEC0<11>      | IPC2<14:12>  |
| U1TX – UART1 Transmitter             | 20      | 12        | 0x00002C            | IFS0<12> | IEC0<12>      | IPC3<2:0>    |
| ADC – ADC Global Convert Done        | 21      | 13        | 0x00002E            | IFS0<13> | IEC0<13>      | IPC3<6:4>    |
| Reserved                             | 22      | 14        | 0x000030            | _        | _             | —            |
| NVM – NVM Write Complete             | 23      | 15        | 0x000032            | IFS0<15> | IEC0<15>      | IPC3<14:12>  |
| SI2C1 - I2C1 Slave Event             | 24      | 16        | 0x000034            | IFS1<0>  | IEC1<0>       | IPC4<2:0>    |
| MI2C1 – I2C1 Master Event            | 25      | 17        | 0x000036            | IFS1<1>  | IEC1<1>       | IPC4<6:4>    |
| CMP1 – Analog Comparator 1 Interrupt | 26      | 18        | 0x000038            | IFS1<2>  | IEC1<2>       | IPC4<10:8>   |
| CN – Input Change Interrupt          | 27      | 19        | 0x00003A            | IFS1<3>  | IEC1<3>       | IPC4<14:12>  |
| INT1 – External Interrupt 1          | 28      | 20        | 0x00003C            | IFS1<4>  | IEC1<4>       | IPC5<2:0>    |
| Reserved                             | 29-36   | 21-28     | 0x00003E-0x00004C   | _        | _             | _            |
| INT2 – External Interrupt 2          | 37      | 29        | 0x00004E            | IFS1<13> | IEC1<13>      | IPC7<6:4>    |
| Reserved                             | 38-64   | 30-56     | 0x000050-0x000084   | _        | _             | —            |
| PSEM – PWM Special Event Match       | 65      | 57        | 0x000086            | IFS3<9>  | IEC3<9>       | IPC14<6:4>   |
| Reserved                             | 63-72   | 55-64     | 0x000088-0x000094   | _        | _             | —            |
| U1E – UART1 Error Interrupt          | 73      | 65        | 0x000096            | IFS4<1>  | IEC4<1>       | IPC16<6:4>   |
| Reserved                             | 74-80   | 66-72     | 0x000098-0x0000A4   | _        | _             | —            |
| PWM Secondary Special Event Match    | 81      | 73        | 0x0000A6            | IFS4<9>  | IEC4<9>       | IPC18<6:4>   |
| Reserved                             | 82-101  | 74-93     | 0x0000A8-0x0000CE   | _        | _             | —            |
| PWM1 – PWM1 Interrupt                | 102     | 94        | 0x0000D0            | IFS5<14> | IEC5<14>      | IPC23<10:8>  |
| PWM2 – PWM2 Interrupt                | 103     | 95        | 0x0000D2            | IFS5<15> | IEC5<15>      | IPC23<14:12> |
| PWM3 – PWM3 Interrupt                | 104     | 96        | 0x0000D4            | IFS6<0>  | IEC6<0>       | IPC24<2:0>   |
| Reserved                             | 105-110 | 97-102    | 0x0000D6-0x0000E0   | _        | _             | —            |
| CMP2 – Analog Comparator 2 Interrupt | 111     | 103       | 0x0000E2            | IFS6<7>  | IEC6<7>       | IPC25<14:12> |
| Reserved                             | 112-117 | 104-109   | 0x0000E4-0x0000EE   | _        | _             | —            |
| AN0 Conversion Done                  | 118     | 110       | 0x0000F0            | IFS6<14> | IEC6<14>      | IPC27<10:8>  |
| AN1 Conversion Done                  | 119     | 111       | 0x0000F2            | IFS6<15> | IEC6<15>      | IPC27<14:12> |
| AN2 Conversion Done                  | 120     | 112       | 0x0000F4            | IFS7<0>  | IEC7<0>       | IPC28<2:0>   |
| AN3 Conversion Done                  | 121     | 113       | 0x0000F6            | IFS7<1>  | IEC7<1>       | IPC28<6:4>   |
| AN4 Conversion Done                  | 122     | 114       | 0x0000F8            | IFS7<2>  | IEC7<2>       | IPC28<10:8>  |
| AN5 Conversion Done                  | 123     | 115       | 0x0000FA            | IFS7<3>  | IEC7<3>       | IPC28<14:12> |
| AN6 Conversion Done                  | 124     | 116       | 0x0000FC            | IFS7<4>  | IEC7<4>       | IPC29<2:0>   |
| AN7 Conversion Done                  | 125     | 117       | 0x0000FE            | IFS7<5>  | IEC7<5>       | IPC29<6:4>   |

| R/W-1            | R/W-0                                                    | R/W-0              | U-0               | U-0              | U-0              | U-0                | R/W-0  |  |  |  |
|------------------|----------------------------------------------------------|--------------------|-------------------|------------------|------------------|--------------------|--------|--|--|--|
| GIE              | DISI                                                     | SWTRAP             | _                 | —                | —                | —                  | AIVTEN |  |  |  |
| bit 15           | -                                                        |                    |                   |                  |                  | •                  | bit 8  |  |  |  |
|                  |                                                          |                    |                   |                  |                  |                    |        |  |  |  |
| U-0              | U-0                                                      | U-0                | U-0               | U-0              | R/W-0            | R/W-0              | R/W-0  |  |  |  |
| _                | —                                                        |                    | —                 | —                | INT2EP           | INT1EP             | INT0EP |  |  |  |
| bit 7            |                                                          |                    |                   |                  |                  |                    | bit 0  |  |  |  |
|                  |                                                          |                    |                   |                  |                  |                    |        |  |  |  |
| Legend:          |                                                          |                    |                   |                  |                  |                    |        |  |  |  |
| R = Readable     | bit                                                      | W = Writable I     | oit               | U = Unimple      | mented bit, read | as '0'             |        |  |  |  |
| -n = Value at F  | POR                                                      | '1' = Bit is set   |                   | '0' = Bit is cle | eared            | x = Bit is unknown |        |  |  |  |
|                  |                                                          |                    |                   |                  |                  |                    |        |  |  |  |
| bit 15           | GIE: Global                                              | Interrupt Enable   | bit               |                  |                  |                    |        |  |  |  |
|                  | 1 = Interrupts and associated IE bits are enabled        |                    |                   |                  |                  |                    |        |  |  |  |
| hit 11           | U = Interrupts are disabled, but traps are still enabled |                    |                   |                  |                  |                    |        |  |  |  |
| DIL 14           |                                                          | truction is active |                   |                  |                  |                    |        |  |  |  |
|                  | 0 = DISI ins                                             | struction is not a | ctive             |                  |                  |                    |        |  |  |  |
| bit 13           | SWTRAP: S                                                | oftware Trap Sta   | atus bit          |                  |                  |                    |        |  |  |  |
|                  | 1 = Software                                             | trap is enabled    |                   |                  |                  |                    |        |  |  |  |
|                  | 0 = Software                                             | trap is disabled   | 1                 |                  |                  |                    |        |  |  |  |
| bit 12-9         | Unimpleme                                                | nted: Read as '    | 0'                |                  |                  |                    |        |  |  |  |
| bit 8            | AIVTEN: Alte                                             | ernate Interrupt   | Vector Table I    | Enable           |                  |                    |        |  |  |  |
|                  | 1 = Uses Alte                                            | ernate Interrupt   | Vector Table      |                  |                  |                    |        |  |  |  |
| hit 7.2          |                                                          | nuaru menupi       |                   |                  |                  |                    |        |  |  |  |
| Dil 7-3<br>bit 2 |                                                          | ornal Interrupt 2  | J<br>Edge Detect  | Delarity Selec   | at hit           |                    |        |  |  |  |
| DIL 2            | 1 = Interrupt                                            | on negative edu    | ne ne never never | Folding Selec    |                  |                    |        |  |  |  |
|                  | 0 = Interrupt                                            | on positive edg    | e                 |                  |                  |                    |        |  |  |  |
| bit 1            | INT1EP: Ext                                              | ernal Interrupt 1  | Edge Detect       | Polarity Selec   | ct bit           |                    |        |  |  |  |
|                  | 1 = Interrupt on negative edge                           |                    |                   |                  |                  |                    |        |  |  |  |
|                  | 0 = Interrupt                                            | on positive edg    | e                 |                  |                  |                    |        |  |  |  |
| bit 0            | INTOEP: Ext                                              | ernal Interrupt 0  | Edge Detect       | Polarity Selec   | ct bit           |                    |        |  |  |  |
|                  | 1 = Interrupt on negative edge                           |                    |                   |                  |                  |                    |        |  |  |  |
|                  | 0 = menupt                                               | on positive edg    | e                 |                  |                  |                    |        |  |  |  |
|                  |                                                          |                    |                   |                  |                  |                    |        |  |  |  |

#### REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

NOTES:

## 8.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator Module" (DS70005131) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS202 family oscillator system provides:

- On-Chip Phase-Locked Loop (PLL) to Boost Internal Operating Frequency on Select Internal and External Oscillator Sources
- On-the-Fly Clock Switching between Various Clock Sources
- Doze mode for System Power Savings
- Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown
- Configuration bits for Clock Source Selection
- Auxiliary PLL for ADC and PWM

A simplified diagram of the oscillator system is shown in Figure 8-1.

### REGISTER 10-3: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

| R/W-0           | R/W-0      | R/W-0            | R/W-0          | R/W-0                                   | R/W-0           | R/W-0            | R/W-0 |
|-----------------|------------|------------------|----------------|-----------------------------------------|-----------------|------------------|-------|
|                 |            |                  | T1CK           | R<7:0>                                  |                 |                  |       |
| bit 15          |            |                  |                |                                         |                 |                  | bit 8 |
|                 |            |                  |                |                                         |                 |                  |       |
| U-0             | U-0        | U-0              | U-0            | U-0                                     | U-0             | U-0              | U-0   |
|                 | _          |                  | —              |                                         | _               |                  |       |
| bit 7           |            |                  |                |                                         |                 |                  | bit 0 |
|                 |            |                  |                |                                         |                 |                  |       |
| Legend:         |            |                  |                |                                         |                 |                  |       |
| R = Readable    | bit        | W = Writable     | bit            | U = Unimple                             | mented bit, rea | d as '0'         |       |
| -n = Value at F | POR        | '1' = Bit is set |                | '0' = Bit is cleared x = Bit is unknown |                 |                  | iown  |
|                 |            |                  |                |                                         |                 |                  | ,     |
| bit 15-8        | T1CKR<7:0  | >: Assign Timer  | 1 External Clo | ock (T1CK) to t                         | he Correspond   | ing RPn Pin bits | 6     |
|                 | 10110101 = | Input tied to RF | P181           |                                         | -               | -                |       |
|                 | 10110100 = | Input tied to RF | P180           |                                         |                 |                  |       |
|                 | •          |                  |                |                                         |                 |                  |       |
|                 | •          |                  |                |                                         |                 |                  |       |
|                 | •          |                  |                |                                         |                 |                  |       |
|                 | 00000001 = | Input tied to RF | P1             |                                         |                 |                  |       |
|                 | 00000000 = | Input tied to Vs | S              |                                         |                 |                  |       |
| bit 7-0         | Unimpleme  | nted: Read as '  | )'             |                                         |                 |                  |       |

NOTES:



### REGISTER 15-5: STCON: PWM SECONDARY MASTER TIME BASE CONTROL REGISTER

| U-0             | U-0                                                      | U-0                                | HS/HC-0                                 | R/W-0                            | R/W-0                   | R/W-0          | R/W-0   |  |  |  |
|-----------------|----------------------------------------------------------|------------------------------------|-----------------------------------------|----------------------------------|-------------------------|----------------|---------|--|--|--|
| —               | —                                                        |                                    | SESTAT                                  | SEIEN                            | EIPU                    | SYNCPOL        | SYNCOEN |  |  |  |
| DIT 15          |                                                          |                                    |                                         |                                  |                         |                | DIT 8   |  |  |  |
| R/W-0           | R/W-0                                                    | R/W-0                              | R/W-0                                   | R/W-0                            | R/W-0                   | R/W-0          | R/W-0   |  |  |  |
| SYNCEN          | SYNCSRC2                                                 | SYNCSRC1                           | SYNCSRC0                                | SEVTPS3                          | SEVTPS2                 | SEVTPS1        | SEVTPS0 |  |  |  |
| bit 7           |                                                          |                                    |                                         |                                  |                         |                | bit 0   |  |  |  |
|                 |                                                          |                                    |                                         |                                  |                         |                |         |  |  |  |
| Legend:         |                                                          | HS = Hardwar                       | re Settable bit                         | it HC = Hardware Clearable bit   |                         |                |         |  |  |  |
| R = Readable    | bit                                                      | W = Writable                       | bit                                     | U = Unimplei                     | mented bit, read        | l as '0'       |         |  |  |  |
| -n = Value at F | POR                                                      | '1' = Bit is set                   |                                         | '0' = Bit is cle                 | eared                   | x = Bit is unk | nown    |  |  |  |
|                 |                                                          |                                    |                                         |                                  |                         |                |         |  |  |  |
| bit 15-13       | Unimplemen                                               | ted: Read as '                     | 0'                                      |                                  |                         |                |         |  |  |  |
| bit 12          | SESTAT: Spe                                              | cial Event Inte                    | rrupt Status bit                        |                                  |                         |                |         |  |  |  |
|                 | 1 = Secondar<br>0 = Secondar                             | ry special even<br>rv special even | t interrupt is pe<br>t interrupt is no  | ending<br>ot pendina             |                         |                |         |  |  |  |
| bit 11          | SEIEN: Speci                                             | ial Event Interr                   | upt Enable bit                          | 5                                |                         |                |         |  |  |  |
|                 | 1 = Secondary special event interrupt is enabled         |                                    |                                         |                                  |                         |                |         |  |  |  |
|                 | 0 = Secondary special event interrupt is disabled        |                                    |                                         |                                  |                         |                |         |  |  |  |
| bit 10          | EIPU: Enable Immediate Period Updates bit <sup>(1)</sup> |                                    |                                         |                                  |                         |                |         |  |  |  |
|                 | 1 = Active Se<br>0 = Active Se                           | condary Period                     | d register is up<br>d register upda     | tes occur on F                   | ately<br>PWM cycle bour | Idaries        |         |  |  |  |
| bit 9           | SYNCPOL: S                                               | Synchronize Inp                    | out and Output                          | Polarity bit                     | ,                       |                |         |  |  |  |
|                 | 1 = SYNCIx/S<br>0 = SYNCIx/S                             | SYNCO2 polari<br>SYNCO2 polari     | ity is inverted (a<br>ity is active-hig | active-low)<br>h                 |                         |                |         |  |  |  |
| bit 8           | SYNCOEN: S                                               | Secondary Mas                      | ster Time Base                          | Synchronizati                    | ion Enable bit          |                |         |  |  |  |
|                 | 1 = SYNCO2<br>0 = SYNCO2                                 | output is enab<br>output is disat  | led.<br>bled                            |                                  |                         |                |         |  |  |  |
| bit 7           | SYNCEN: Ex                                               | ternal Seconda                     | ary Master Tim                          | e Base Synch                     | ronization Enab         | le bit         |         |  |  |  |
|                 | 1 = External s<br>0 = External s                         | synchronizatior<br>synchronizatior | n of secondary<br>n of secondary        | time base is e<br>time base is c | enabled<br>lisabled     |                |         |  |  |  |
| bit 6-4         | SYNCSRC<2                                                | :0>: Secondar                      | y Time Base S                           | ync Source S                     | election bits           |                |         |  |  |  |
|                 | 111 = Reserv                                             | /ed                                |                                         |                                  |                         |                |         |  |  |  |
|                 | 101 = Reserv                                             | /ed                                |                                         |                                  |                         |                |         |  |  |  |
|                 | 011 = Reserv                                             | /ed<br>/ed                         |                                         |                                  |                         |                |         |  |  |  |
|                 | 010 = Reserv                                             | /ed                                |                                         |                                  |                         |                |         |  |  |  |
|                 | 001 = SYNCI                                              | 2                                  |                                         |                                  |                         |                |         |  |  |  |
| bit 3-0         | SEVTPS<3:0                                               | >: PWM Seco                        | ndarv Special E                         | Event Triager (                  | Output Postscal         | er Select bits |         |  |  |  |
|                 | 1111 <b>= 1:16  </b>                                     | Postscale                          |                                         | 50-                              |                         |                |         |  |  |  |
|                 | 0001 <b>= 1:2</b> P                                      | ostscale                           |                                         |                                  |                         |                |         |  |  |  |
|                 | •                                                        |                                    |                                         |                                  |                         |                |         |  |  |  |
|                 | •                                                        |                                    |                                         |                                  |                         |                |         |  |  |  |
|                 | 0000 = 1:1 P                                             | ostscale                           |                                         |                                  |                         |                |         |  |  |  |

Note 1: This bit only applies to the secondary master time base period.

## REGISTER 15-24: LEBCONX: PWMx LEADING-EDGE BLANKING (LEB) CONTROL REGISTER

| R/W-0           | R/W-0                                                                                         | R/W-0                              | R/W-0                            | R/W-0                              | R/W-0                      | U-0              | U-0              |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------|------------------------------------|----------------------------------|------------------------------------|----------------------------|------------------|------------------|--|--|--|--|
| PHR             | PHF                                                                                           | PLR                                | PLF                              | FLTLEBEN                           | CLLEBEN                    | —                | —                |  |  |  |  |
| bit 15          | •                                                                                             |                                    |                                  |                                    |                            |                  | bit 8            |  |  |  |  |
|                 |                                                                                               |                                    |                                  |                                    |                            |                  |                  |  |  |  |  |
| U-0             | U-0                                                                                           | R/W-0                              | R/W-0                            | R/W-0                              | R/W-0                      | R/W-0            | R/W-0            |  |  |  |  |
|                 | —                                                                                             | BCH <sup>(1)</sup>                 | BCL <sup>(1)</sup>               | BPHH                               | BPHL                       | BPLH             | BPLL             |  |  |  |  |
| bit 7           |                                                                                               |                                    |                                  |                                    |                            |                  | bit 0            |  |  |  |  |
|                 |                                                                                               |                                    |                                  |                                    |                            |                  |                  |  |  |  |  |
| Legend:         | <b>Egenu.</b><br>D = Deadable bit $W = Writable bit U = Unimplemented bit read as '0'$        |                                    |                                  |                                    |                            |                  |                  |  |  |  |  |
| R = Readable    |                                                                                               | W = Writable                       | Dit                              | U = Unimpler                       | nented bit, read           |                  |                  |  |  |  |  |
| -n = value at P | OR                                                                                            | "1" = Bit is set                   |                                  | $0^{\circ} = Bit is cle$           | ared                       | x = Bit is unkr  | nown             |  |  |  |  |
| bit 15          |                                                                                               | J Dioing Edge 1                    | Frigger Enable                   | , hit                              |                            |                  |                  |  |  |  |  |
| DIL 15          | 1 = Rising ed                                                                                 | ne of PWMxH v                      | vill trigger the                 | l eading-Edge                      | Blanking count             | er               |                  |  |  |  |  |
|                 | 0 = Leading-E                                                                                 | Edge Blanking i                    | gnores the ris                   | ing edge of PV                     | VMxH                       |                  |                  |  |  |  |  |
| bit 14          | bit 14 <b>PHF:</b> PWMxH Falling Edge Trigger Enable bit                                      |                                    |                                  |                                    |                            |                  |                  |  |  |  |  |
|                 | 1 = Falling ed                                                                                | ge of PWMxH                        | will trigger the                 | Leading-Edge                       | e Blanking coun            | ter              |                  |  |  |  |  |
|                 | 0 = Leading-Edge Blanking ignores the falling edge of PWMxH                                   |                                    |                                  |                                    |                            |                  |                  |  |  |  |  |
| bit 13          | PLR: PWWXL Rising Edge Trigger Enable bit                                                     |                                    |                                  |                                    |                            |                  |                  |  |  |  |  |
|                 | 1 = Rising edg                                                                                | dae Blanking i                     | anores the ris                   | ing edge of PV                     | Manking count              | er               |                  |  |  |  |  |
| bit 12          | PLF: PWMxL Falling Edge Trigger Enable bit                                                    |                                    |                                  |                                    |                            |                  |                  |  |  |  |  |
|                 | 1 = Falling ed                                                                                | ge of PWMxL v                      | vill trigger the                 | Leading-Edge                       | Blanking count             | ter              |                  |  |  |  |  |
|                 | 0 = Leading-E                                                                                 | Edge Blanking i                    | gnores the fal                   | ling edge of P                     | WMxL                       |                  |                  |  |  |  |  |
| bit 11          | FLTLEBEN: F                                                                                   | ault Input Lead                    | ding-Edge Bla                    | inking Enable I                    | bit                        |                  |                  |  |  |  |  |
|                 | 1 = Leading-E<br>0 = Leading-E                                                                | Edge Blanking i<br>Edge Blanking i | s applied to th<br>s not applied | ne selected Fai<br>to the selected | ult input<br>I Fault input |                  |                  |  |  |  |  |
| bit 10          | CLLEBEN: C                                                                                    | urrent-Limit Lea                   | ading-Edge B                     | lanking Enable                     | e bit                      |                  |                  |  |  |  |  |
|                 | 1 = Leading-E                                                                                 | Edge Blanking i                    | s applied to th                  | ne selected cur                    | rent-limit input           |                  |                  |  |  |  |  |
|                 | 0 = Leading-E                                                                                 | Edge Blanking i                    | s not applied                    | to the selected                    | l current-limit in         | put              |                  |  |  |  |  |
| bit 9-6         | Unimplement                                                                                   | ted: Read as 'o                    | )'                               |                                    | (4)                        |                  |                  |  |  |  |  |
| bit 5           | BCH: Blankin                                                                                  | g in Selected B                    | lanking Signa                    | al High Enable                     | bit <sup>(1)</sup>         |                  |                  |  |  |  |  |
|                 | 1 = State blan<br>0 = No blankir                                                              | king (of current<br>ng when the se | -limit and/or F lected blankir   | ault input signa                   | als) when the se<br>h      | elected blanking | g signal is high |  |  |  |  |
| bit 4           | BCL: Blanking                                                                                 | g in Selected B                    | lanking Signa                    | I Low Enable b                     | Dit <sup>(1)</sup>         |                  |                  |  |  |  |  |
|                 | 1 = State blan                                                                                | king (of current                   | limit and/or F                   | ault input sign                    | als) when the s            | elected blankin  | g signal is low  |  |  |  |  |
|                 | 0 = No blankir                                                                                | ng when the se                     | lected blankir                   | ng signal is low                   | ,                          |                  |                  |  |  |  |  |
| bit 3           | BPHH: Blanki                                                                                  | ing in PWMxH                       | High Enable b                    | pit                                |                            |                  |                  |  |  |  |  |
|                 | 1 = State blan<br>0 = No blankir                                                              | iking (of curren<br>ng when the P\ | t-limit and/or I<br>VMxH output  | -ault input sigr<br>is high        | ials) when the F           | WMxH output      | is high          |  |  |  |  |
| bit 2           | BPHL: Blanki                                                                                  | ng in PWMxH I                      | ow Enable b                      | it                                 |                            |                  |                  |  |  |  |  |
|                 | 1 = State blanking (of current-limit and/or Fault input signals) when the PWMxH output is low |                                    |                                  |                                    |                            |                  |                  |  |  |  |  |
|                 | 0 = No blankir                                                                                | ng when the PV                     | VMxH output                      | is low                             |                            |                  |                  |  |  |  |  |

Note 1: The blanking signal is selected via the BLANKSEL<3:0> bits in the AUXCONx register.

## 16.3 SPI Control Registers

### REGISTER 16-1: SPI1STAT: SPI1 STATUS AND CONTROL REGISTER

| R/W-0                                                                                                                                                 | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R/W-0                                  | U-0                        | U-0                | R/W-0             | R/W-0             | R/W-0           |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|--------------------|-------------------|-------------------|-----------------|--|--|
| SPIEN                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SPISIDL                                | _                          | —                  | SPIBEC2           | SPIBEC1           | SPIBEC0         |  |  |
| bit 15                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                            |                    |                   |                   | bit 8           |  |  |
|                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                            |                    |                   |                   |                 |  |  |
| R/W-0                                                                                                                                                 | R/C-0, HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R/W-0                                  | R/W-0                      | R/W-0              | R/W-0             | R-0, HS, HC       | R-0, HS, HC     |  |  |
| SRMPT                                                                                                                                                 | SPIROV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRXMPT                                 | SISEL2                     | SISEL1             | SISEL0            | SPITBF            | SPIRBF          |  |  |
| bit 7                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                            |                    |                   |                   | bit 0           |  |  |
|                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                            |                    |                   |                   |                 |  |  |
| Legend:                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C = Clearabl                           | e bit                      | HS = Hardware      | Settable bit      | HC = Hardwar      | e Clearable bit |  |  |
| R = Readable                                                                                                                                          | e bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W = Writable                           | bit                        | U = Unimpleme      | ented bit, read a | as '0'            |                 |  |  |
| -n = Value at                                                                                                                                         | POR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | '1' = Bit is se                        | t                          | '0' = Bit is clear | red               | x = Bit is unkr   | iown            |  |  |
| bit 15 <b>SPIEN:</b> SPI1 Enable bit<br>1 = Enables the module and configures SCK1, SDO1, SDI1 and SS1 as serial port pins<br>0 = Disables the module |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                            |                    |                   |                   |                 |  |  |
| bit 14                                                                                                                                                | Unimpleme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nted: Read as                          | · ' O '                    |                    |                   |                   |                 |  |  |
| bit 13                                                                                                                                                | bit 13 SPISIDL: SPI1 Stop in Idle Mode bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                            |                    |                   |                   |                 |  |  |
| <ul> <li>1 = Discontinues the module operation when device enters Idle mode</li> <li>0 = Continues the module operation in Idle mode</li> </ul>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                            |                    |                   |                   |                 |  |  |
| bit 12-11                                                                                                                                             | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                            |                    |                   |                   |                 |  |  |
| bit 10-8                                                                                                                                              | SPIBEC<2:0>: SPI1 Buffer Element Count bits (valid in Enhanced Buffer mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                            |                    |                   |                   |                 |  |  |
|                                                                                                                                                       | <u>Master mode:</u><br>Number of SPI1 transfers that are pending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                            |                    |                   |                   |                 |  |  |
|                                                                                                                                                       | Slave mode:<br>Number of S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PI1 transfers t                        | hat are unread             | d.                 |                   |                   |                 |  |  |
| bit 7                                                                                                                                                 | SRMPT: SPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 Shift Registe                        | er (SPI1SR) E              | mpty bit (valid in | Enhanced Buff     | fer mode)         |                 |  |  |
|                                                                                                                                                       | 1 = SPI1 Shi<br>0 = SPI1 Shi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ft register is ei<br>ft register is no | mpty and read<br>ot empty  | y to send or rece  | eive the data     |                   |                 |  |  |
| bit 6                                                                                                                                                 | SPIROV: SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | II Receive Ov                          | verflow Flag bi            | t                  |                   |                   |                 |  |  |
|                                                                                                                                                       | 1 = A  new by<br>data in the data is a second | yte/word is con<br>ne SPI1BUF re       | npletely receive<br>gister | ed and discarded;  | the user applic   | ation has not rea | ad the previous |  |  |
| bit 5                                                                                                                                                 | SRXMPT SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PI1 Receive FI                         | IFO Empty hit              | (valid in Enhance  | ed Buffer mode    | )                 |                 |  |  |
|                                                                                                                                                       | 1 = RX FIFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is empty                               |                            |                    |                   | •)                |                 |  |  |
| hit 4-2                                                                                                                                               | SISEI <2:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • SPI1 Buffer I                        | nterrunt Mode              | bits (valid in Enl | nanced Buffer r   | node)             |                 |  |  |
| UII 7-2                                                                                                                                               | SISEL<2:0>: SPI1 Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)<br>111 = Interrupt when the SPI1 transmit buffer is full (SPITBF bit is set)<br>110 = Interrupt when last bit is shifted into SPI1SR, and as a result, the TX FIFO is empty<br>101 = Interrupt when the last bit is shifted out of SPI1SR and the transmit is complete<br>100 = Interrupt when one data is shifted into the SPI1SR, and as a result, the TX FIFO has one open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                            |                    |                   |                   |                 |  |  |
|                                                                                                                                                       | <ul> <li>memory location</li> <li>011 = Interrupt when the SPI1 receive buffer is full (SPIRBF bit is set)</li> <li>010 = Interrupt when the SPI1 receive buffer is 3/4 or more full</li> <li>001 = Interrupt when data is available in the receive buffer (SRMPT bit is set)</li> <li>000 = Interrupt when the last data in the receive buffer is read, and as a result, the buffer is empty (SRXMPT bit is set)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                            |                    |                   |                   |                 |  |  |

## 17.0 INTER-INTEGRATED CIRCUIT (I<sup>2</sup>C)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit™ (I<sup>2</sup>C™)" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS202 family of devices contains one Inter-Integrated Circuit ( $I^2C$ ) module.

The  $I^2C$  module provides complete hardware support for both Slave and Multi-Master modes of the  $I^2C$  serial communication standard, with a 16-bit interface.

The I<sup>2</sup>C module has a 2-pin interface:

- The SCL1 pin is clock
- The SDA1 pin is data

The I<sup>2</sup>C module offers the following key features:

- I<sup>2</sup>C Interface Supporting Both Master and Slave modes of Operation
- I<sup>2</sup>C Slave mode Supports 7 and 10-Bit Addressing
- I<sup>2</sup>C Master mode Supports 7 and 10-Bit Addressing
- I<sup>2</sup>C Port allows Bidirectional Transfers between Master and Slaves
- Serial Clock Synchronization for I<sup>2</sup>C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control)
- I<sup>2</sup>C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates Accordingly
- System Management Bus (SMBus) Support

## 17.1 I<sup>2</sup>C Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

### 17.1.1 KEY RESOURCES

- "Inter-Integrated Circuit™ (I<sup>2</sup>C™)" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

## FIGURE 17-1: I2C1 BLOCK DIAGRAM



### REGISTER 17-3: I2C1STAT: I2C1 STATUS REGISTER

| R-0, HSC | R-0, HSC | R-0, HSC | U-0 | U-0 | R/C-0, HS | R-0, HSC | R-0, HSC |
|----------|----------|----------|-----|-----|-----------|----------|----------|
| ACKSTAT  | TRSTAT   | ACKTIM   | —   | —   | BCL       | GCSTAT   | ADD10    |
| bit 15   |          |          |     |     |           |          | bit 8    |
|          |          |          |     |     |           |          |          |

| R/C-0, HS | R/C-0, HS | R-0, HSC | R/C-0, HSC | R/C-0, HSC | R-0, HSC | R-0, HSC | R-0, HSC |
|-----------|-----------|----------|------------|------------|----------|----------|----------|
| IWCOL     | I2COV     | D_A      | Р          | S          | R_W      | RBF      | TBF      |
| bit 7     |           |          |            |            |          |          | bit 0    |

| Legend:      |                                                    | C = Clearable bit                                                                                              | HS = Hardware Settable bit                                                             | HSC = Hardware Settable/Clearable bit                         |
|--------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------|
| R = Readab   | ole bit                                            | W = Writable bit                                                                                               | U = Unimplemented bit, read                                                            | l as '0'                                                      |
| -n = Value a | t POR                                              | '1' = Bit is set                                                                                               | '0' = Bit is cleared                                                                   | x = Bit is unknown                                            |
| bit 15       | <b>ACKSTA</b><br>1 = NAC<br>0 = ACK<br>It is set o | T: Acknowledge Status bit<br>K was received from slav<br>was received from slave<br>or cleared by the hardware | (when operating as I <sup>2</sup> C master, a<br>e<br>e at the end of a slave Acknowle | applicable to master transmit operation)                      |
| bit 14       | TRSTAT                                             | Transmit Status bit (whe                                                                                       | n operating as I <sup>2</sup> C master, appli                                          | icable to master transmit operation)                          |
|              | 1 = Mas<br>0 = Mas<br>It is set<br>Acknowl         | ter transmit is in progress<br>ter transmit is not in progr<br>by the hardware at the be<br>edge.              | (8 bits + ACK)<br>ess<br>eginning of master transmission                               | . Hardware is clear at the end of slave                       |
| bit 13       | ACKTIN                                             | : Acknowledge Time State                                                                                       | us bit (I <sup>2</sup> C Slave mode only)                                              |                                                               |
|              | 1 = I <sup>2</sup> C k<br>0 = Not a                | ous is an Acknowledge se<br>an Acknowledge sequenc                                                             | quence, set on the 8th falling ec<br>e, cleared on the 9th rising edge                 | dge of SCL1<br>e of SCL1                                      |
| bit 12-11    | Unimple                                            | mented: Read as '0'                                                                                            |                                                                                        |                                                               |
| bit 10       | BCL: Ma                                            | aster Bus Collision Detect                                                                                     | bit                                                                                    |                                                               |
|              | 1 = A bu<br>0 = No b<br>It is set b                | s collision has been detec<br>us collision detected<br>y the hardware at detection                             | on of a bus collision.                                                                 |                                                               |
| bit 9        | GCSTAT                                             | : General Call Status bit                                                                                      |                                                                                        |                                                               |
|              | 1 = Gen<br>0 = Gen<br>It is set t<br>detection     | eral call address was rece<br>eral call address was not<br>by the hardware when the<br>n.                      | rived<br>received<br>address matches the general o                                     | call address. Hardware is clear at Stop                       |
| bit 8        | ADD10:                                             | 10-Bit Address Status bit                                                                                      |                                                                                        |                                                               |
|              | 1 = 10-b<br>0 = 10-b<br>Hardwar<br>detectior       | it address was matched<br>it address was not matche<br>e is set at the match of th<br>n.                       | ed<br>ne 2nd byte of the matched 10-                                                   | -bit address. Hardware is clear at Stop                       |
| bit 7        | IWCOL:                                             | I2C1 Write Collision Dete                                                                                      | ct bit                                                                                 |                                                               |
|              | 1 = An a<br>0 = No c<br>Hardwar                    | ttempt to write to the I2C1<br>ollision<br>e is set at the occurrence                                          | TRN register failed because the                                                        | e I <sup>2</sup> C module is busy<br>sy (cleared by software) |
| bit 6        | I2COV:                                             | 2C1 Receive Overflow Fla                                                                                       | ad bit                                                                                 |                                                               |
|              | 1 = A by<br>0 = No c                               | te was received while the<br>verflow                                                                           | I2C1RCV register was still hold                                                        | ing the previous byte                                         |
| bit 5        |                                                    | ta/Address bit (1 <sup>2</sup> C Slava                                                                         | mode only)                                                                             | incov (dealed by soliwale).                                   |
| DILO         | 1 = Indic<br>0 = Indic                             | ates that the last byte rec<br>ates that the last byte rec                                                     | eived was data<br>eived was a device address                                           |                                                               |

It is cleared by the hardware at a device address match. Hardware is set by reception of a slave byte.

### REGISTER 17-4: I2C1MSK: I2C1 SLAVE MODE ADDRESS MASK REGISTER

| U-0                                | U-0   | U-0            | U-0                                     | U-0    | U-0   | R/W-0     | R/W-0 |  |
|------------------------------------|-------|----------------|-----------------------------------------|--------|-------|-----------|-------|--|
| _                                  | _     | —              |                                         | _      | _     | AMSK<9:8> |       |  |
| bit 15                             |       |                |                                         |        |       | -         | bit 8 |  |
|                                    |       |                |                                         |        |       |           |       |  |
| R/W-0                              | R/W-0 | R/W-0          | R/W-0                                   | R/W-0  | R/W-0 | R/W-0     | R/W-0 |  |
|                                    |       |                | AMSł                                    | <<7:0> |       |           |       |  |
| bit 7                              |       |                |                                         |        |       |           | bit 0 |  |
|                                    |       |                |                                         |        |       |           |       |  |
| Legend:                            |       |                |                                         |        |       |           |       |  |
| R = Readable                       | bit   | W = Writable b | bit U = Unimplemented bit, read as '0'  |        |       |           |       |  |
| -n = Value at POR '1' = Bit is set |       |                | '0' = Bit is cleared x = Bit is unknown |        |       | nown      |       |  |

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Address Mask Select bits

For 10-Bit Address:

1 = Enables masking for bit Ax of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax; bit match is required in this position

For 7-Bit Address (I2C1MSK<6:0> only):

1 = Enables masking for bit Ax + 1 of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax + 1; bit match is required in this position

## REGISTER 19-25: ADCMPxENL: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER LOW (x = 0,1)

| U-0    | R/W-0      | U-0   | U-0   | R/W-0 | R/W-0       | R/W-0 | R/W-0 |  |  |  |
|--------|------------|-------|-------|-------|-------------|-------|-------|--|--|--|
| —      | CMPEN14    | —     | —     |       | CMPEN<11:8> |       |       |  |  |  |
| bit 15 |            |       |       |       |             |       | bit 8 |  |  |  |
|        |            |       |       |       |             |       |       |  |  |  |
| R/W/0  | R/W-0      | R/W-0 | R/W-0 | R/W-0 | R/W-0       | R/W-0 | R/W-0 |  |  |  |
|        | CMPEN<7:0> |       |       |       |             |       |       |  |  |  |
| bit 7  |            |       |       |       |             |       | bit 0 |  |  |  |

| Legend:           |                  |                                    |                    |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |

bit 15 Unimplemented: Read as '0'

bit 14 **CMPEN14:** Comparator Enable for Corresponding Input Channel bit 1 = Conversion result for corresponding channel is used by the comparator

0 = Conversion result for corresponding channel is not used by the comparator

- bit 13-12 Unimplemented: Read as '0'
- bit 11-0 **CMPEN<11:0>:** Comparator Enable for Corresponding Input Channels bits

1 = Conversion result for corresponding channel is used by the comparator

 $\ensuremath{\scriptscriptstyle 0}$  = Conversion result for corresponding channel is not used by the comparator

### TABLE 23-2: INSTRUCTION SET OVERVIEW

| Base<br>Instr<br># | Assembly<br>Mnemonic                 | Assembly Syntax |                | Description                              | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
|--------------------|--------------------------------------|-----------------|----------------|------------------------------------------|---------------|----------------|--------------------------|
| 1                  | 1 ADD ADD ACC<br>ADD f<br>ADD f,WREG |                 | Acc            | Add Accumulators                         | 1             | 1              | OA,OB,SA,SB              |
|                    |                                      |                 | f              | f = f + WREG                             | 1             | 1              | C,DC,N,OV,Z              |
|                    |                                      |                 | f,WREG         | WREG = f + WREG                          | 1             | 1              | C,DC,N,OV,Z              |
|                    |                                      | ADD             | #lit10,Wn      | Wd = lit10 + Wd                          | 1             | 1              | C,DC,N,OV,Z              |
|                    |                                      | ADD             | Wb,Ws,Wd       | Wd = Wb + Ws                             | 1             | 1              | C,DC,N,OV,Z              |
|                    |                                      | ADD             | Wb,#lit5,Wd    | Wd = Wb + lit5                           | 1             | 1              | C,DC,N,OV,Z              |
|                    |                                      | ADD             | Wso,#Slit4,Acc | 16-bit Signed Add to Accumulator         | 1             | 1              | OA,OB,SA,SB              |
| 2                  | ADDC                                 | ADDC            | f              | f = f + WREG + (C)                       | 1             | 1              | C,DC,N,OV,Z              |
|                    |                                      | ADDC            | f,WREG         | WREG = f + WREG + (C)                    | 1             | 1              | C,DC,N,OV,Z              |
|                    |                                      | ADDC            | #lit10,Wn      | Wd = lit10 + Wd + (C)                    | 1             | 1              | C,DC,N,OV,Z              |
|                    |                                      | ADDC            | Wb,Ws,Wd       | Wd = Wb + Ws + (C)                       | 1             | 1              | C,DC,N,OV,Z              |
|                    |                                      | ADDC            | Wb,#lit5,Wd    | Wd = Wb + lit5 + (C)                     | 1             | 1              | C,DC,N,OV,Z              |
| 3                  | AND                                  | AND             | f              | f = f .AND. WREG                         | 1             | 1              | N,Z                      |
|                    |                                      | AND             | f,WREG         | WREG = f .AND. WREG                      | 1             | 1              | N,Z                      |
|                    |                                      | AND             | #lit10,Wn      | Wd = lit10 .AND. Wd                      | 1             | 1              | N,Z                      |
|                    |                                      | AND             | Wb,Ws,Wd       | Wd = Wb .AND. Ws                         | 1             | 1              | N,Z                      |
|                    |                                      | AND             | Wb,#lit5,Wd    | Wd = Wb .AND. lit5                       | 1             | 1              | N,Z                      |
| 4                  | ASR                                  | ASR             | f              | f = Arithmetic Right Shift f             | 1             | 1              | C,N,OV,Z                 |
|                    |                                      | ASR             | f,WREG         | WREG = Arithmetic Right Shift f          | 1             | 1              | C,N,OV,Z                 |
|                    |                                      | ASR             | Ws,Wd          | Wd = Arithmetic Right Shift Ws           | 1             | 1              | C,N,OV,Z                 |
|                    |                                      | ASR             | Wb,Wns,Wnd     | Wnd = Arithmetic Right Shift Wb by Wns   | 1             | 1              | N,Z                      |
|                    |                                      | ASR             | Wb,#lit5,Wnd   | Wnd = Arithmetic Right Shift Wb by lit5  | 1             | 1              | N,Z                      |
| 5                  | BCLR                                 | BCLR            | f,#bit4        | Bit Clear f                              | 1             | 1              | None                     |
|                    |                                      | BCLR            | Ws,#bit4       | Bit Clear Ws                             | 1             | 1              | None                     |
| 7                  | BRA                                  | BRA             | C,Expr         | Branch if Carry                          | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | GE,Expr        | Branch if greater than or equal          | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | GEU, Expr      | Branch if unsigned greater than or equal | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | GT,Expr        | Branch if greater than                   | 1             | 1 (4)          | None                     |
|                    | BRA GTU, Expr                        |                 | GTU, Expr      | Branch if unsigned greater than          | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | LE, Expr       | Branch if less than or equal             | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | LEU, Expr      | Branch if unsigned less than or equal    | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | LT,Expr        | Branch if less than                      | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | LTU, Expr      | Branch if unsigned less than             | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | N,Expr         | Branch if Negative                       | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | NC, Expr       | Branch if Not Carry                      | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | NN,Expr        | Branch if Not Negative                   | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | NOV, Expr      | Branch if Not Overflow                   | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | NZ,Expr        | Branch if Not Zero                       | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | OA,Expr        | Branch if Accumulator A overflow         | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | OB,Expr        | Branch if Accumulator B overflow         | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | OV,Expr        | Branch if Overflow                       | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | SA, Expr       | Branch if Accumulator A saturated        | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | SB,Expr        | Branch if Accumulator B saturated        | 1             | 1 (4)          | None                     |
|                    | BRA Expr                             |                 | Expr           | Branch Unconditionally                   | 1             | 4              | None                     |
|                    |                                      | BRA             | Z,Expr         | Branch if Zero                           | 1             | 1 (4)          | None                     |
|                    |                                      | BRA             | Wn             | Computed Branch                          | 1             | 4              | None                     |
| 8                  | BSET                                 | BSET            | f,#bit4        | Bit Set f                                | 1             | 1              | None                     |
|                    |                                      | BSET            | Ws,#bit4       | Bit Set Ws                               | 1             | 1              | None                     |

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

### TABLE 25-18: PLL CLOCK TIMING SPECIFICATIONS

| AC CHARACTERISTICS |        |                                                                  | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |     |            |     |                    |
|--------------------|--------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|-----|--------------------|
| Param<br>No.       | Symbol | Characteristic                                                   | Min. Typ. <sup>(1)</sup> Max. Units                                                                                                                                                                                                                                                   |     | Conditions |     |                    |
| OS50               | Fplli  | PLL Voltage Controlled Oscillator<br>(VCO) Input Frequency Range | 0.8                                                                                                                                                                                                                                                                                   | _   | 8.0        | MHz | ECPLL, XTPLL modes |
| OS51               | Fvco   | On-Chip VCO System Frequency                                     | 120                                                                                                                                                                                                                                                                                   | —   | 340        | MHz |                    |
| OS52               | TLOCK  | PLL Start-up Time (Lock Time)                                    | 0.9                                                                                                                                                                                                                                                                                   | 1.5 | 3.1        | ms  |                    |
| OS53               | DCLK   | CLKO Stability (Jitter) <sup>(2)</sup>                           | -3                                                                                                                                                                                                                                                                                    | 0.5 | 3          | %   |                    |

**Note 1:** Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if FOSC = 120 MHz and the SPI1 Bit Rate = 10 MHz, the effective jitter is as follows:

Effective Jitter = 
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

#### TABLE 25-19: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS

| AC CHARACTERISTICS |        |                                                   | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |     |                     |     |       |            |
|--------------------|--------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------|-----|-------|------------|
| Param<br>No.       | Symbol | Characteris                                       | stic                                                                                                                                                                                                 | Min | Тур. <sup>(1)</sup> | Max | Units | Conditions |
| OS56               | Fhpout | On-Chip 16x PLL CCO<br>Frequency                  |                                                                                                                                                                                                      | 112 | 118                 | 120 | MHz   |            |
| OS57               | Fhpin  | On-Chip 16x PLL Phase<br>Detector Input Frequency |                                                                                                                                                                                                      | 7.0 | 7.37                | 7.5 | MHz   |            |
| OS58               | Tsu    | Frequency Generator Lock<br>Time                  |                                                                                                                                                                                                      | —   | —                   | 10  | μs    |            |

**Note 1:** Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

NOTES:

NOTES: