

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

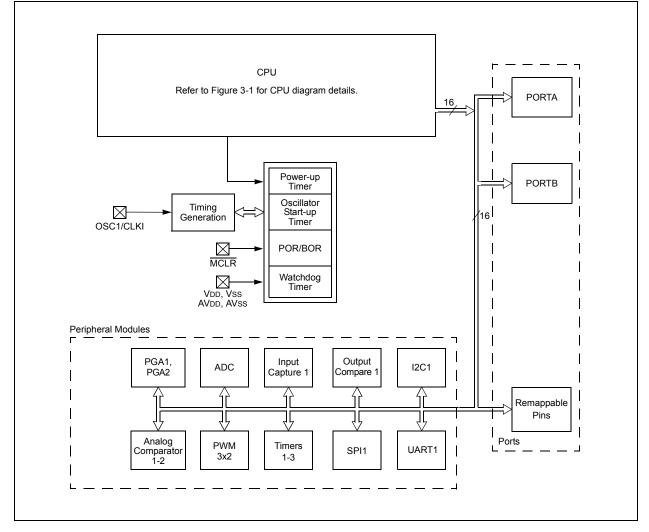
E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs202t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXGS202 Digital Signal Controller (DSC) devices.

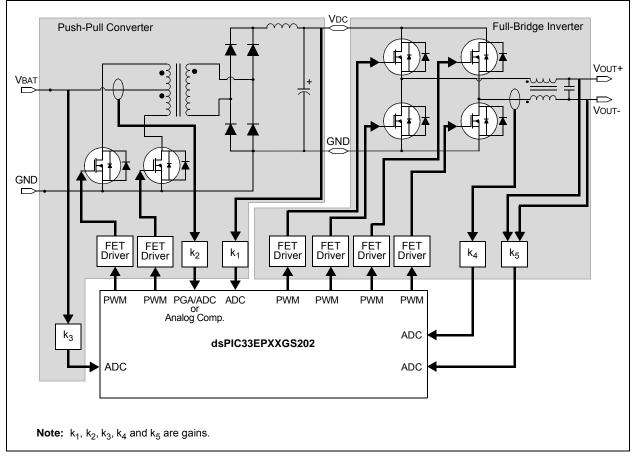

The dsPIC33EPXXGS202 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXGS202 FAMILY BLOCK DIAGRAM

FIGURE 2-6: OFF-LINE UPS

TABLE 4-22: PORTA REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	—	—				—		_				-	TRISA<4:0>	•		001F
PORTA	0E02	_	_	_	_	_	_	_	_	_	_	_			RA<4:0>			0000
LATA	0E04	_	_	_	_	_	_	_	_	_	_	_			LATA<4:0>			0000
ODCA	0E06	_	_	_	_	_	_	_	_	_	_	_			ODCA<4:0>	•		0000
CNENA	0E08	_	_	_	_	_	_	_	_	_	_	_		(CNIEA<4:0>	>		0000
CNPUA	0E0A	_	_	_	_	_	_	_	_	_	_	_		C	CNPUA<4:0	>		0000
CNPDA	0E0C	_	_	_	_	_	_	_	_	_	_	_	CNPDA<4:0>				0000	
ANSELA	0E0E	—	-	_	-			—		_	_			—		ANSA<2:0>		0007

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: PORTB REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10		TRISB<15:0>											FFFF				
PORTB	0E12								RB<15:0	>								xxxx
LATB	0E14		LATB<15:0>										xxxx					
ODCB	0E16								ODCB<15	:0>								0000
CNENB	0E18								CNIEB<15	:0>								0000
CNPUB	0E1A								CNPUB<15	5:0>								0000
CNPDB	0E1C		CNPDB<15:0> 0											0000				
ANSELB	0E1E	_	ANSB<10:9> - ANSB<7:0>										06FF					

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.9.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>)
 - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

		\$P.4	rogram ôpaca	
\$2				
	s <u>1</u> 8 8	0x000000	23 16 8 (0
			00000000	
			0000000	
		_000000000 ∏	0000000	
		- 6×030000	0000000	
			'Phantom' Byte	
			2384.8268 . 8 (XMASON # 7)	
			THERE IN (6998(68-19-1.)	
			TRANSIS & (Waxax + 5)	
			THEREIN	
			 Whe arrives for the task spectrum is defined by the data within the page ordered by the TBLPAC regular. 	à à
		0-800000	 Material of a page section of an even with a page time. Soly read operations are shown, whe operatives are also vel 	83
		5600000000	and many manually near	

FIGURE 4-11: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE					
bit 15							bit 8					
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0					
SFTACERR	DIV0ERR		MATHERR	ADDRERR	STKERR	OSCFAIL	_					
bit 7							bit					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, read	as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clear	-	x = Bit is unkr	nown					
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit									
	1 = Interrupt	nesting is disa	abled									
	0 = Interrupt	nesting is ena	bled									
bit 14			Overflow Trap F	-								
			erflow of Accur									
	-		y overflow of A									
bit 13			Overflow Trap F	-								
			erflow of Accur y overflow of Ac									
bit 12			-		a hit							
	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit 1 = Trap was caused by catastrophic overflow of Accumulator A											
				overflow of Accu								
bit 11	COVBERR:	DVBERR: Accumulator B Catastrophic Overflow Trap Flag bit										
	1 = Trap was	s caused by ca	tastrophic over	flow of Accumula	ator B							
	0 = Trap was	s not caused b	y catastrophic o	overflow of Accur	mulator B							
bit 10	OVATE: Acc	OVATE: Accumulator A Overflow Trap Enable bit										
	1 = Trap overflow of Accumulator A											
	0 = Trap is d											
bit 9			erflow Trap En	able bit								
	1 = Trap ove 0 = Trap is d	erflow of Accun	nulator B									
bit 8	•		flow Trop Ench	la hit								
DILO		-	rflow Trap Enat									
	\pm – nay on v	calasilopinic 0		mulator A or R ie	boldeno							
				nulator A or B is	enabled							
bit 7	0 = Trap is d	lisabled			enabled							
bit 7	0 = Trap is d	lisabled : Shift Accumu	lator Error Statu									
bit 7	0 = Trap is d SFTACERR: 1 = Math err	lisabled : Shift Accumu or trap was ca	lator Error Statu used by an inva	ıs bit	shift							
bit 7 bit 6	0 = Trap is d SFTACERR: 1 = Math err 0 = Math err	lisabled Shift Accumu or trap was ca or trap was no	lator Error Statu used by an inva	us bit Ilid accumulator	shift							
	0 = Trap is d SFTACERR: 1 = Math erro 0 = Math erro DIV0ERR: D 1 = Math erro	lisabled : Shift Accumu or trap was ca or trap was no)ivide-by-Zero or trap was ca	lator Error Statu used by an inva t caused by an Error Status bit used by a divide	us bit Ilid accumulator invalid accumula e-by-zero	shift							
	0 = Trap is d SFTACERR: 1 = Math err 0 = Math err DIV0ERR: D 1 = Math err 0 = Math err	lisabled Shift Accumu or trap was ca or trap was no Divide-by-Zero or trap was ca or trap was no	lator Error Statu used by an inva t caused by an Error Status bit used by a divide t caused by a d	us bit Ilid accumulator invalid accumula e-by-zero	shift							
	0 = Trap is d SFTACERR: 1 = Math err 0 = Math err DIV0ERR: D 1 = Math err 0 = Math err	lisabled : Shift Accumu or trap was ca or trap was no)ivide-by-Zero or trap was ca	lator Error Statu used by an inva t caused by an Error Status bit used by a divide t caused by a d	us bit Ilid accumulator invalid accumula e-by-zero	shift							
bit 6	0 = Trap is d SFTACERR: 1 = Math erro 0 = Math erro DIV0ERR: D 1 = Math erro 0 = Math erro Unimplement MATHERR:	lisabled Shift Accumu or trap was ca or trap was no Divide-by-Zero or trap was ca or trap was no	lator Error Statu used by an inva t caused by an Error Status bit used by a divide t caused by a d '0' tus bit	us bit Ilid accumulator invalid accumula e-by-zero	shift							

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
 - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
 - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

10.6 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

10.6.1 KEY RESOURCES

- "I/O Ports" (DS70000598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 13-2: IC1CON2: INPUT CAPTURE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽¹⁾	TRIGSTAT ⁽²⁾		SYNCSEL4(3)	SYNCSEL3(3)	SYNCSEL2(3)	SYNCSEL1(3)	SYNCSEL0(3)
bit 7							bit 0

Legend:	HS = Hardware Settable b	it	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

bit 7

- ICTRIG: Input Capture Trigger Operation Select bit⁽¹⁾
 - 1 = Input source used to trigger the input capture timer (Trigger mode)
 - 0 = Input source used to synchronize the input capture timer to a timer of another module (Synchronization mode)
- bit 6 TRIGSTAT: Timer Trigger Status bit⁽²⁾
 - 1 = IC1TMR has been triggered and is running
 - 0 = IC1TMR has not been triggered and is being held clear

bit 5 Unimplemented: Read as '0'

- **Note 1:** The input source is selected by the SYNCSEL<4:0> bits of the IC1CON2 register.
 - 2: This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - **3:** Do not use the IC1 module as its own sync or trigger source.
 - 4: This option should only be selected as a trigger source and not as a synchronization source.

REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER (CONTINUED)

10001 = 12 Postscaler generates a Special Event Trigger on every second compare match event 0000 = 1:1 Postscaler generates a Special Event Trigger on every compare match event

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 15-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER 2

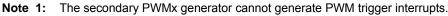
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—		_	—	_	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
—	_	—		—	P	CLKDIV<2:0> ⁽¹)		
bit 7							bit 0		
Legend:									
R = Readable bit	:	W = Writable I	bit	U = Unimplemented bit, read as '0'					
-n = Value at PO	R	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾

111 = Reserved

110 = Divide-by-64, maximum PWM timing resolution


101 = Divide-by-32, maximum PWM timing resolution

- 100 = Divide-by-16, maximum PWM timing resolution
- 011 = Divide-by-8, maximum PWM timing resolution
- 010 = Divide-by-4, maximum PWM timing resolution
- 001 = Divide-by-2, maximum PWM timing resolution
- 000 = Divide-by-1, maximum PWM timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 U-0 TRGDIV3 TRGDIV2 TRGDIV1 **TRGDIV0** bit 15 bit 8 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DTM⁽¹⁾ TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 **TRGSTRT0** bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15-12 TRGDIV<3:0>: Trigger # Output Divider bits 1111 = Trigger output for every 16th trigger event 1110 = Trigger output for every 15th trigger event 1101 = Trigger output for every 14th trigger event 1100 = Trigger output for every 13th trigger event 1011 = Trigger output for every 12th trigger event 1010 = Trigger output for every 11th trigger event 1001 = Trigger output for every 10th trigger event 1000 = Trigger output for every 9th trigger event 0111 = Trigger output for every 8th trigger event 0110 = Trigger output for every 7th trigger event 0101 = Trigger output for every 6th trigger event 0100 = Trigger output for every 5th trigger event 0011 = Trigger output for every 4th trigger event 0010 = Trigger output for every 3rd trigger event 0001 = Trigger output for every 2nd trigger event 0000 = Trigger output for every trigger event Unimplemented: Read as '0' bit 11-8 bit 7 DTM: Dual Trigger Mode bit⁽¹⁾ 1 = Secondary trigger event is combined with the primary trigger event to create a PWM trigger 0 = Secondary trigger event is not combined with the primary trigger event to create a PWM trigger; two separate PWM triggers are generated bit 6 Unimplemented: Read as '0' bit 5-0 TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits 111111 = Wait 63 PWM cycles before generating the first trigger event after the module is enabled 000010 = Wait 2 PWM cycles before generating the first trigger event after the module is enabled 000001 = Wait 1 PWM cycle before generating the first trigger event after the module is enabled 000000 = Wait 0 PWM cycles before generating the first trigger event after the module is enabled

REGISTER 15-19: TRGCONx: PWMx TRIGGER CONTROL REGISTER

REGISTER 17-4: I2C1MSK: I2C1 SLAVE MODE ADDRESS MASK REGISTER

	-		-				
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	_	—		—	—	AMSK	<9:8>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			AMSł	<<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Address Mask Select bits

For 10-Bit Address:

1 = Enables masking for bit Ax of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax; bit match is required in this position

For 7-Bit Address (I2C1MSK<6:0> only):

1 = Enables masking for bit Ax + 1 of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax + 1; bit match is required in this position

REGISTER 19-3: ADCON2L: ADC CONTROL REGISTER 2 LOW

R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
REFCIE	REFERCIE ⁽²⁾	_	EIEN	_	SHREISEL2 ⁽¹⁾	SHREISEL1 ⁽¹⁾	SHREISEL0 ⁽¹⁾
bit 15			21211		01111210222	OFINEIOLET	bit 8
							bit o
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	SHRADCS6	SHRADCS5	SHRADCS4	SHRADCS3	SHRADCS2	SHRADCS1	SHRADCS0
bit 7	0	0.11.0.2000	0	0	0111012002	0	bit 0
U.I.I							
Legend:							
R = Reada	able bit	W = Writable b	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	wn
bit 15	REFCIE: Ban	d Gap and Ref	erence Voltage	Readv Comm	on Interrupt En	able bit	
			-	-	ap will become		
		interrupt is disa				-	
bit 14	REFERCIE: E	Band Gap or Re	eference Voltag	e Error Comm	on Interrupt En	able bit ⁽²⁾	
						voltage error is o	detected
		-		nd gap and re	ference voltage	error event	
bit 13	-	ted: Read as '(
bit 12	•	iterrupts Enable		r the input che	nnolo interrunte		(flog is sot)
						(when EISTATx en ANxRDY flag	
bit 11		ted: Read as '0	-				
bit 10-8	-	:0>: Shared Co		upt Time Seleo	ction bits ⁽¹⁾		
			•	•		prior to when the	data is readv
	110 = Early in	iterrupt is set a	nd interrupt is g	generated 7 TA	DCORE clocks p	rior to when the	data is ready
						rior to when the	
						prior to when the prior to when the	
						prior to when the	
						rior to when the	
	-	-		generated 1 TA	DCORE clock pr	ior to when the c	lata is ready
bit 7	-	ted: Read as '(
bit 6-0		:0>: Shared AI	-				
	Core Clock) p		IDER OF ICORES	RC (Core Sour	ce Clock) period	s for one shared	IADCORE (ADC
		54 Core Source	Clock periods				
	•		·				
	•						
	-0000011 = 6	Core Source C	lock periods				
		Core Source C					
		Core Source C					
	0000000 = 2	Core Source C	lock periods				
Note 1:	For the 6-bit sha	ared ADC core	resolution (SHF	RRES<1:0> = (00), the SHREIS	SEL<2:0> setting	S,
						d ADC core reso	

- (SHRRES<1:0> = 01), the SHREISEL<2:0> settings, '110' and '111', are not valid and should not be used.
- 2: To avoid false interrupts, the REFERCIE bit must be set only after the module is enabled (ADON = 1).

22.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXGS202 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

22.1 Configuration Bits

In the dsPIC33EPXXGS202 family devices, the Configuration Words are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored at the end of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 22-1 with detailed descriptions in Table 22-2. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration Shadow registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Words for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled. Program code executing out of configuration space will cause a device Reset.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles, with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note:	For more deta	ils on the inst	ruction set,
	refer to the	"16-bit MCU	and DSC
	Programmer's		
	(DS70157).		

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
$a\in\{b,c,d\}$	a is selected from the set of values b, c, d
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write-back destination address register \in {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (Direct Addressing)

TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Base Instr #	Assembly Mnemonic		Assembly Syntax Description		# of Words	# of Cycles	Status Flags Affected
74	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
75	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
76	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	Wn = Wn - lit10 - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
78	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
79	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
80	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
81	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
82	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
83	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
84	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
85	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
86	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

NOTES:

TABLE 25-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			(unless oth		ns: 3.0V to 3.6V ≤ TA ≤ +85°C for Ind ≤ TA ≤ +125°C for E		
Parameter No.	Тур.	Max.	Units		Conditions		
Operating Cur	rent (IDD) ⁽¹⁾						
DC20d	5	10	mA	-40°C			
DC20a	5	10	mA	+25°C	3.3V	10 MIPS	
DC20b	5	10	mA	+85°C	3.3V	10 101195	
DC20c	5	10	mA	+125°C			
DC22d	10	15	mA	-40°C			
DC22a	10	15	mA	+25°C	2.21/		
DC22b	10	15	mA	+85°C	3.3V	20 MIPS	
DC22c	10	15	mA	+125°C			
DC24d	15	20	mA	-40°C			
DC24a	15	20	mA	+25°C	3.3V		
DC24b	15	20	mA	+85°C	3.3V	40 MIPS	
DC24c	15	20	mA	+125°C			
DC25d	20	28	mA	-40°C			
DC25a	20	28	mA	+25°C	3.3V	60 MIPS	
DC25b	20	28	mA	+85°C	3.3V	00 101175	
DC25c	20	28	mA	+125°C]		
DC26d	30	35	mA	-40°C			
DC26a	30	35	mA	+25°C	3.3V	70 MIPS	
DC26b	30	35	mA	+85°C]		

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

 Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC Clock Overshoot/Undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing:

while(1) {

· JTAG is disabled

TABLE 25-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: } 3.0V \ to \ 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ for \ Industrial \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \ for \ Extended \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions				
	VIL	Input Low Voltage					
DI10		Any I/O Pin and MCLR	Vss	—	0.2 Vdd	V	
DI18		I/O Pins with SDA1, SCL1	Vss	—	0.3 Vdd	V	SMBus disabled
DI19		I/O Pins with SDA1, SCL1	Vss	—	0.8	V	SMBus enabled
	Vih	Input High Voltage					
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾	0.8 Vdd	—	Vdd	V	
		I/O Pins 5V Tolerant and MCLR ⁽⁴⁾	0.8 VDD	—	5.5	V	
		5V Tolerant I/O Pins with SDA1, SCL1 ⁽⁴⁾	0.8 Vdd	—	5.5	V	SMBus disabled
		5V I/O Pins with SDA1, SCL1 ⁽⁴⁾	2.1	—	5.5	V	SMBus enabled
		I/O Pins with SDA1, SCL1 Not 5V Tolerant ⁽⁴⁾	0.8 Vdd	—	Vdd	V	SMBus disabled
		I/O Pins with SDA1, SCL1 Not 5V Tolerant ⁽⁴⁾	2.1	—	Vdd	V	SMBus enabled
DI30	ICNPU	Input Change Notification Pull-up Current	50	250	600	μA	VDD = 3.3V, VPIN = VSS
DI31	ICNPD	Input Change Notification Pull-Down Current ⁽⁵⁾	—	50		μA	VDD = 3.3V, VPIN = VDD

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 5: VIL Source < (Vss 0.3). Characterized but not tested.
- **6:** VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- 7: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 8: |Injection Currents| > 0 can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 25-20: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Characteristic	Min. Typ. Max. Units Conditions					ons	
Internal	FRC Accuracy @ FRC Fre	equency =	: 7.37 MHz	(1,2)				
F20a	FRC	-2	0.5	+2	%	$-40^\circ C \le T A \le -10^\circ C$	VDD = 3.0-3.6V	
		-0.9	0.5	+0.9	%	$-10^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V	
F20b	FRC	-2	1	+2	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V	

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.
2: Over the lifetime of the 28-Lead 4x4 UQFN package device, the internal FRC accuracy could vary between ±4%.

TABLE 25-21: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS		d Operatin g temperat	ure -40°	$C \le TA \le +$	to 3.6V (unless otherv 85°C for Industrial 125°C for Extended	wise stated)	
Param No.	Characteristic	Characteristic Min. Typ. Max. Units Conditions						
LPRC (@ 32.768 kHz ⁽¹⁾							
F21a	LPRC	-30	_	+30	%	$-40^\circ C \le T A \le -10^\circ C$	VDD = 3.0-3.6V	
		-20	_	+20	%	$-10^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V	
F21b	LPRC	-30	_	+30	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V	

Note 1: This is the change of the LPRC frequency as VDD changes.

TABLE 25-23:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

АС СН	ARACTERIS	STICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SY00	Τρυ	Power-up Period	_	400	600	μS	
SY10	Tost	Oscillator Start-up Time		1024 Tosc	_	_	Tosc = OSC1 Period
SY12	Twdt	Watchdog Timer Time-out Period	0.81	_	1.22	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 25-21) at +85°C
			3.25	_	4.88	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 25-21) at +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	
SY20	TMCLR	MCLR Pulse Width (low)	2	_	_	μS	
SY30	TBOR	BOR Pulse Width (low)	1	_	_	μS	
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μS	-40°C to +85°C
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	_	_	30	μS	
SY37	Toscdfrc	FRC Oscillator Start-up Delay		_	29	μS	
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay		—	70	μS	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

INDEX

Α	
Absolute Maximum Ratings	265
AC Characteristics	277
ADC Specifications	
Analog-to-Digital Conversion Requirements	307
Auxiliary PLL Clock	279
Capacitive Loading Requirements on	
Output Pins	277
External Clock Requirements	278
High-Speed PWMx Requirements	287
I/O Requirements	281
I2C1 Bus Data Requirements (Master Mode)	301
I2C1 Bus Data Requirements (Slave Mode)	303
Input Capture 1 Requirements	285
Internal FRC Accuracy	280
Internal LPRC Accuracy	
Load Conditions	277
OC1/PWMx Mode Requirements	286
Output Compare 1 Requirements	286
PLL Clock	279
Reset, WDT, OST, PWRT Requirements	282
SPI1 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1) Requirements	291
SPI1 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1) Requirements	290
SPI1 Master Mode (Half-Duplex, Transmit Only)	
Requirements	
SPI1 Maximum Data/Clock Rate Summary	288
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0) Requirements	299
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0) Requirements	297
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0) Requirements	293
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0) Requirements	295
Temperature and Voltage Specifications	277
Timer1 External Clock Requirements	283
Timer2 External Clock Requirements	284
Timer3 External Clock Requirements	284
UART1 I/O Requirements	304
AC/DC Characteristics	
DACx Specifications	308
High-Speed Analog Comparator	
Specifications	307
PGAx Specifications	
Arithmetic Logic Unit (ALU)	26
Assembler	
MPASM Assembler	262
В	
-	
Bit-Reversed Addressing	
Example	
Implementation	
Sequence Table (16-Entry)	57

Block Diagrams	
16-Bit Timer1 Module	133
ADC Module	200
Addressing for Table Registers	61
CALL Stack Frame	
Connections for On-Chip Voltage Regulator	246
CPU Core	
Data Access from Program Space Address	
Generation	
Dedicated ADC Core 0-1	201
dsPIC33EPXXGS202 Family	7
High-Speed Analog Comparator x	230
High-Speed PWM Architecture	153
Hysteresis Control	232
I2C1 Module	186
Input Capture Module	141
Interleaved PFC	14
MCLR Pin Connections	
Multiplexing Remappable Outputs for RPn	112
Off-Line UPS	16
Oscillator System	88
PGAx Functions	236
PGAx Module	
Phase-Shifted Full-Bridge Converter	
PLL Module	
Programmer's Model	
PSV Read Address Generation	
Recommended Minimum Connection	
Remappable Input for U1RX	
Reset System	
Security Segments Example	
Shared ADC Core	
Shared Port Structure	
Simplified Conceptual of High-Speed PWM	
SPI1 Module	
Suggested Oscillator Circuit Placement	
Timerx Module (x = $2,3$)	
Type B/Type C Timer Pair (32-Bit Timer)	
UART1 Module	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	239, 246
С	

C Compilers	
MPLAB XC	
Code Examples	
Port Write/Read	108
PWM Write-Protected Register	
Unlock Sequence	152
PWRSAV Instruction Syntax	
Code Protection	239, 248
CodeGuard Security	239, 248
Configuration Bits	
Description	
Configuration Register Map	