

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l100rbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The ultra-low-power STM32L100C6 and STM32L100R8/RB devices incorporate the connectivity power of the universal serial bus (USB) with the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at a frequency of 32 MHz (33.3 DMIPS), a memory protection unit (MPU), high-speed embedded memories (Flash memory up to 128 Kbytes and RAM up to 10 Kbytes) and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

All the devices offer a 12-bit ADC, 2 DACs and 2 ultra-low-power comparators, six generalpurpose 16-bit timers and two basic timers, which can be used as time bases.

Moreover, the STM32L100C6 and STM32L100R8/RB devices contain standard and advanced communication interfaces: up to two I²Cs and SPIs, three USARTs and a USB.

They also include a real-time clock with sub-second counting and a set of backup registers that remain powered in Standby mode.

Finally, the integrated LCD controller has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with contrast independent of the supply voltage.

The ultra-low-power STM32L100C6 and STM32L100R8/RB devices operate from a 1.8 to 3.6 V power supply. They are available in the -40 to +85 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications.

Figure 4. STM32L100C6 and STM32L100R8/RB UFQFPN48 pinout

1. This figure shows the package top view.

Ρ	ins					Pin functions	
LQFP64	UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
58	42	PB6	I/O	FT	PB6	PB6 I2C1_SCL/TIM4_CH1/USART1_TX	
59	43	PB7	I/O	FT	PB7	PB7 I2C1_SDA/TIM4_CH2/ USART1_RX	
60	44	BOOT0	Ι	В	BOOT0	-	-
61	45	PB8	I/O	FT	PB8	TIM4_CH3/I2C1_SCL/ LCD_SEG16/TIM10_CH1	-
62	46	PB9	I/O	FT	PB9	TIM4_CH4/I2C1_SDA/ LCD_COM3/TIM11_CH1	-
63	47	V _{SS_3}	S		V _{SS_3}	V _{SS_3} -	
64	48	V _{DD_3}	S		V _{DD_3}	-	-

Table 7. STM32L100C6 and STM32L100R8/RB pin definitions (continued)

1. I = input, O = output, S = supply.

 Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to *Table 1 on page 10*.

3. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is on (by setting the LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose PC14/PC15 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins section in the STM32Lxx reference manual (RM0038).

4. The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is on (by setting the HSEON bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is off (after reset, the HSE oscillator is off). The HSE has priority over the GPIO function.

38/103

DocID024295 Rev 5

	Digital alternate function number														
Bestmann	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFOI6	AFIO7	AFI O8	AFI O9	AFIO11	AFIO 12	AFIO 13	AFIO14	AFIO15
Port name		Alternate function													
	SYSTEM	TIM2	TIM3/4	TIM9/10/11	I2C1/2	SPI1/2	N/A	USART 1/2/3	N/A	N/A	LCD	N/A	N/A	RI	SYSTEM
PC10	-	-	-	-	-	-	-	USART3_TX	-	-	COM4 / SEG28 / SEG40	-	-	TIMx_IC3	EVENTOUT
PC11	-	-	-	-	-	-	-	USART3_RX	-	-	COM5 / SEG29 / SEG41	-	-	TIMx_IC4	EVENTOUT
PC12	-	-	-	-	-	-	-	USART3_CK	-	-	COM6 / SEG30 / SEG42	-	-	TIMx_IC1	EVENTOUT
PC13- WKUP2	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOUT
PC14- OSC32_IN	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTOUT
PC15- OSC32_OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENTOUT
PD2	-	-	TIM3_ETR	-	-	-	-	-	-	-	COM7 / SEG31 / SEG43	-	-	TIMx_IC3	EVENTOUT
PH0- OSC_IN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PH1- OSC_OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 8. Alternate function input/output (continued)

5

Symbol	Boromotor	Con	£	Tun	Max ⁽¹⁾	Unit	
Symbol	rarameter	Conc	Conditions			105 °C	Unit
			Range 3.	1 MHz	200	300	
			V _{CORE} =1.2 V	2 MHz	380	500	μA
		fuer = fuerr	VOS[1:0] = 11	4 MHz	720	860	
		up to 16 MHz,	Range 2	4 MHz	0.9	1	
		included $f_{\rm Her} = f_{\rm Her} / 2$ above	V _{CORE} =1.5 V	8 MHz	1.65	2	
	Supply current in Run mode, code executed from RAM, Flash switched off	16 MHz (PLL ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	3.2	3.7	mA
			Range 1, V _{CORE} =1.8 V	8 MHz	2	2.5	
1				16 MHz	4	4.5	
^I DD (Run from RAM)			VOS[1:0] = 01	32 MHz	7.7	8.5	
		HSI clock source (16 MHz)	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	3.3	3.8	
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	7.8	9.2	
		MSI clock, 65 kHz	Range 3.	65 kHz	40	80	μΑ
		MSI clock, 524 kHz	V _{CORE} =1.2 V	524 kHz	110	160	
		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	700	820	

Table 17. Curren	t consumption in R	un mode, code with d	lata processing r	unning from RAM
------------------	--------------------	----------------------	-------------------	-----------------

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter		Conditions		Тур	Max (1)	Unit
			MSI clock, 65 kHz f _{HCLK} = 32 kHz Flash OFF	T _A = -40 °C to 25 °C	4.4	-	
			MSI clock, 65 kHz	$T_A = -40 \text{ °C to } 25 \text{ °C}$	17.5	25	
I _{DD} (LP Sleep)		All peripherals	f _{HCLK} = 32 kHz Flash ON	T _A = 85 °C	22	27	
		OFF, V _{DD} from 1.8 V	MSI clock, 65 kHz	T_A = -40 °C to 25 °C	18	26	
	Supply current in Low power sleep mode	to 3.6 V	f _{HCLK} = 65 kHz, Flash ON	T _A = 85 °C	23	28	
			MSI clock, 131 kHz f _{HCLK} = 131 kHz,	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	22	30	
				T _A = 55 °C	24	32	
			Flash ON	T _A = 85 °C	26	34	
		TIM9 and USART1 enabled	MSI clock, 65 kHz	T_A = -40 °C to 25 °C	17.5	25	μA
			f _{HCLK} = 32 kHz	T _A = 85 °C	22	27	
			MSI clock, 65 kHz	T_A = -40 °C to 25 °C	18	26	
		Flash ON,	f _{HCLK} = 65 kHz	T _A = 85 °C	23	28	
		V _{DD} from 1.8 V to		T_A = -40 °C to 25 °C	22	30	
		3.6 V	MSI CIOCK, 131 KHZ	T _A = 55 °C	24	32	
			HOLK I I I III	T _A = 85 °C	26	34	
I _{DD} Max (LP Sleep)	Max allowed current in Low power Sleep mode	V _{DD} from 1.8 V to 3.6 V	-	-	-	200	

Table 20. Current consumption in Low power sleep mode

1. Guaranteed by characterization results, unless otherwise specified.

Symbol	Parameter	C	Conditions				Unit
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8 \text{ V}$	1.2	2.75	
			LCD OFF	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.4	4	
				T _A = 55°C	2.6	6	
		RTC clocked by LSI,		T _A = 85°C	4.8	10	
		HSI and HSE OFF	LCD ON	$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.3	6	
		(no independent	(static	T _A = 55°C	4.5	8	
I _{DD} (Stop with RTC)		wateridog)	duty)(3)	T _A = 85°C	6.6	12	
			LCD ON	$T_A = -40^{\circ}C$ to $25^{\circ}C$	7.7	10	
			(1/8	T _A = 55°C	8.6	12	
	Supply current in Stop mode with RTC enabled		duty) ⁽⁴⁾	T _A = 85°C	10.7	16	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.6	4	
			OFF	T _A = 55°C	2.7	6	μΑ
		RTC clocked by LSF	_	T _A = 85°C	4.8	10	
		external clock (32.768	LCD ON	$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.6	6	
		MZ), regulator in LP mode, HSI and HSE OFF (no independent watchdog)	(static	T _A = 55°C	4.6	8	
			duty)(0)	T _A = 85°C	6.7	12	
			LCD ON (1/8 duty) ⁽⁴⁾	$T_A = -40^{\circ}C$ to $25^{\circ}C$	7.6	10	
				T _A = 55°C	8.6	12	
				T _A = 85°C	10.7	16	
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8 \text{ V}$	1.45	-	
		(no independent watchdog) ⁽⁵⁾	LCD OFF	$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.0 \text{ V}$	1.9	-	
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.6 \text{ V}$	2.2	-	
	Supply current	Regulator in LP mode, HSE OFF, independen watchdog and LSI ena	HSI and t bled	$T_A = -40^{\circ}C$ to 25°C	1.1	2.2	
I _{DD (Stop)}	in Stop mode	Regulator in LP mode.	LSI, HSI	$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$	0.5	0.9	μA
	(IVI Cuisabled)	and HSE OFF (no inde	pendent	T _A = 55°C	1.9	5	
		watchdog)		T _A = 85°C	3.7	8	

 Table 21. Typical and maximum current consumptions in Stop mode

Symbol	Parameter	Conditions	Тур (1)	Max (1)(2)	Unit	
	RMS (root mean square) supply current during wakeup time when exiting from Stop mode	MSI = 4.2 MHz		2	-	
		MSI = 1.05 MHz		1.45	-	
I _{DD} (WU from Stop)		MSI = 65 kHz ⁽⁶⁾	$V_{DD} = 3.0 V$ $T_A = -40^{\circ}C \text{ to } 25^{\circ}C$	1.45	-	mA

 Table 21. Typical and maximum current consumptions in Stop mode (continued)

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified.

- 3. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected.
- 4. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
- 5. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.
- 6. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining time of the wakeup period, the current is similar to the Run mode current.

Symbol	Parameter	Conditions		Тур ⁽¹⁾	Max (1)(2)	Unit
			T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.9	-	
		RTC clocked by LSI (no	T_A = -40 °C to 25 °C	1.1	1.8	
			T _A = 55 °C	1.42	2.5	
I _{DD}	Supply current in Standby		T _A = 85 °C	1.87	3	
(Standby with RTC)	mode with RTC enabled		T _A = -40 °C to 25 °C V _{DD} = 1.8 V	1	-	μΑ
		RTC clocked by LSE (no	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.33	2.9	
			T _A = 55 °C	1.59	3.4	
			T _A = 85 °C	2.01	4.3	
		Independent watchdog and LSI enabled	T _A = -40 °C to 25 °C	1.1	1.6	
I _{DD}	Supply current in Standby		$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	0.3	0.55	
(Standby)		Independent watchdog and LSI OFF	T _A = 55 °C	0.5	0.8	
			T _A = 85 °C	1	1.7	
I _{DD (WU} from Standby)	RMS supply current during wakeup time when exiting from Standby mode	-	V _{DD} = 3.0 V T _A = -40 °C to 25 °C	1	-	mA

Table 22. Typical and maximum current consumptions in Standby mode

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified.

3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

		Typical	consumption,	V _{DD} = 3.0 V, T _A	= 25 °C	
Pe	ripheral	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low power sleep and run	Unit
	TIM2	13	10.5	8	10.5	
	TIM3	14	12	9	12	
	TIM4	12.5	10.5	8	11	
	TIM6	5.5	4.5	3.5	4.5	
	TIM7	5.5	5	3.5	4.5	
	LCD	5.5	5	3.5	5	
	WWDG	4	3.5	2.5	3.5	
	SPI2	5.5	5	4	5	µA/MHz
APB1	USART2	9	8	5.5	8.5	(f _{HCLK})
	USART3	10.5	9	6	8	
	I2C1	8.5	7	5.5	7.5	
	I2C2	8.5	7	5.5	6.5	
	USB	12.5	10	6.5	10	
	PWR	4.5	4	3	3.5	
	DAC	9	7.5	6	7	
	COMP	4.5	4	3.5	4.5	
	SYSCFG & RI	3	2.5	2	2.5	
	TIM9	9	7.5	6	7	
	TIM10	6.5	5.5	4.5	5.5	
APB2	TIM11	7	6	4.5	5.5	µА/MHz (fuci к)
	ADC ⁽²⁾	11.5	9.5	8	9	VIIULK/
	SPI1	5	4.5	3	4	
	USART1	9	7.5	6	7.5	

Table 23. Peripheral current consumption⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	20	-	pF	
I _{HSE}	HSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load	-	-	3	mA	
1	HSE oscillator power	C = 20 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.7 (stabilized)	m۸	
I _{HSE} HSE driving current I _{DD(HSE)} HSE oscillator power consumption	consumption	C = 10 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.46 (stabilized)	mA	
9 _m	Oscillator transconductance	Startup	3.5	-	-	mA /V	
t _{SU(HSE)}	Startup time	V _{DD} is stabilized	-	1	-	ms	

Table 27. HSE oscillator characteristics⁽¹⁾⁽²⁾ (continued)

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results.

3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 13*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}. Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

- Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 14). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
- Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of CL = 6 pF and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

6.3.7 Internal clock source characteristics

The parameters given in the following table are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 12*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
(1)(2)	HSI user-trimmed	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	resolution	Trimming code is a multiple of 16	-	-	±1.5	%
ACC _{HSI} ⁽²⁾	-	V _{DDA} = 1.8 V to 3.6 V T _A = -40 to 85 °C	-10	-	+10	%
t _{SU(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	100	140	μA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

Low-speed internal (LSI) RC oscillator

Table 30. LSI oscillator characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
$D_{LSI}^{(2)}$	LSI oscillator frequency drift 0°C ≤T _A ≤85°C	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	_	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 15* and *Table 43*, respectively.

Unless otherwise specified, the parameters given in *Table 43* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 12*.

OSPEEDRx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit	
	f	Maximum frequency ⁽³⁾	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	400	kH-7	
00	Imax(IO)out	Maximum nequency.	C_{L} = 50 pF, V_{DD} = 1.8 V to 2.7 V	-	400	KI IZ	
00	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	625	ne	
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.8 V to 2.7 V	-	625	ns	
	f	Maximum froquency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	2		
01	Imax(IO)out		C_{L} = 50 pF, V_{DD} = 1.8 V to 2.7 V	-	1	IVIHZ	
01	t _{f(IO)out} t _{r(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	125	ns	
			C_{L} = 50 pF, V_{DD} = 1.8 V to 2.7 V	-	250		
	F _{max(IO)out}))out Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V	-	10	MHz	
10			C_{L} = 50 pF, V_{DD} = 1.8 V to 2.7 V	-	2		
10	t _{f(IO)out} t _{r(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	25	- ns	
			C_{L} = 50 pF, V_{DD} = 1.8 V to 2.7 V	-	125		
	E	Maximum fraguanay ⁽³⁾	C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V	-	50		
11	rmax(IO)out		C_{L} = 50 pF, V_{DD} = 1.8 V to 2.7 V	-	8	IVIHZ	
11	t _{f(IO)out}	Output rice and fall time	C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5		
	t _{r(IO)out}		C _L = 50 pF, V _{DD} = 1.8 V to 2.7 V	-	30		
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	8	-	ns	

Table 43. I/O AC chara	cteristics ⁽¹⁾
------------------------	---------------------------

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L100C6 and STM32L100R8/RB reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. The maximum frequency is defined in *Figure 15*.

SPI characteristics

Unless otherwise specified, the parameters given in the following table are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 12*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit	
		Master mode	- 16			
f _{SCK} 1/t	SPI clock frequency	Slave mode	-	16	MHz	
		Slave transmitter	-	12 ⁽³⁾		
$t_{r(SCK)}^{(2)}_{t_{f(SCK)}^{(2)}}$	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	6	ns	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%	
t _{su(NSS)}	NSS setup time	Slave mode	4t _{HCLK}	_		
t _{h(NSS)}	NSS hold time	Slave mode	2t _{HCLK}	-		
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode	t _{SCK} /2– 5	t _{SCK} /2+ 3		
t _{su(MI)} ⁽²⁾	Data input sotup timo	Master mode	5	-		
t _{su(SI)} ⁽²⁾		Slave mode	6	-		
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	5	-	ns	
t _{h(SI)} ⁽²⁾		Slave mode	5	-		
t _{a(SO)} ⁽⁴⁾	Data output access time	Slave mode	0	3t _{HCLK}		
t _{v(SO)} ⁽²⁾	Data output valid time	Slave mode	-	33		
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode	-	6.5		
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode	17	-		
t _{h(MO)} ⁽²⁾		Master mode	0.5	-		

Table 48	. SPI	characteristics ⁽¹	I)
----------	-------	-------------------------------	----

1. The characteristics above are given for voltage Range 1.

2. Guaranteed by characterization results.

3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK)) ranging between 40 to 60%.

4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

Table 55. Maximum source impedance R_{AIN} max⁽¹⁾

		R _{AIN} max	x (kOhm)		
Ts (µs)	Multiplexed channels		Direct o	Ts (cycles) fanc= 16 MHz ⁽²⁾	
	2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	2.4 V < V _{DDA} < 3.3 V	1.8 V < V _{DDA} < 2.4 V	
0.25	Not allowed	Not allowed	0.7	Not allowed	4
0.5625	0.8	Not allowed	2.0	1.0	9
1	2.0	0.8	4.0	3.0	16
1.5	3.0	1.8	6.0	4.5	24
3	6.8	4.0	15.0	10.0	48
6	15.0	10.0	30.0	20.0	96
12	32.0	25.0	50.0	40.0	192
24	50.0	50.0	50.0	50.0	384

1. Guaranteed by design.

2. Number of samples calculated for f_{ADC} = 16 MHz. For f_{ADC} = 8 and 4 MHz the number of sampling cycles can be reduced with respect to the minimum sampling time Ts (us).

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 8*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 100 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	V	
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V	
+.	Comparator startup timo	Fast mode	-	15	20		
START		Slow mode	-	20	25		
t _{d slow}	Propagation dolay ⁽²⁾ in alow mode	1.8 V ≤V _{DDA} ≤2.7 V	-	1.8	3.5		
	Fropagation delay 7 in slow mode	2.7 V ≤V _{DDA} ≤3.6 V	-	2.5	6	μs	
t _{d fast}	Propagation dolay ⁽²⁾ in fact mode	1.8 V ≤V _{DDA} ≤2.7 V	-	0.8	2		
	Fropagation delay and last mode	2.7 V ≤V _{DDA} ≤3.6 V	-	1.2	4		
V _{offset}	Comparator offset error	-	-	±4	±20	mV	
dThreshold/ dt	Threshold voltage temperature coefficient	$V_{DDA} = 3.3V$ $T_{A} = 0 \text{ to } 50 ^{\circ}\text{C}$ $V = V_{REFINT},$ $3/4 V_{REFINT},$ $1/2 V_{REFINT},$ $1/4 V_{REFINT}$	-	15	100	ppm /°C	
laguage	Current consumption ⁽³⁾	Fast mode	-	3.5	5	μA	
ICOMP2		Slow mode	-	0.5	2		

Table #	58.	Compara	tor 2	charac	teristics
---------	-----	---------	-------	--------	-----------

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included.

Symbol		millimeters		inches ⁽¹⁾		
	Min	Тур	Мах	Тур	Min	Мах
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 60. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanicaldata (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

DocID024295 Rev 5

7.2 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information

Figure 29. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

Symbol		millimeters		inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
E	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

Table 61. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 30. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint

1. Dimensions are in millimeters.

Date	Revision	Changes
30-Jan-2015	4	Updated DMIPS features in cover page and Section 2: Description. Updated Table 23: Peripheral current consumption with new measured values. Updated Table 55: Maximum source impedance RAIN max adding note 2. Updated Section 7: Package information with new package device marking. Updated Figure 5: Memory map. Updated Table 63: Ordering information scheme.
28-Apr-2016	5	Updated <i>Section 7: Package information</i> structure: Paragraph titles and paragraph heading level. Updated <i>Table 60: LQFP64 10 x 10 mm, 64-pin low-profile quad flat</i> <i>package mechanical data.</i> Updated <i>Section 7: Package information</i> for LQFP64 and UFQFPN48 package device markings, adding text for device orientation versus pin 1 identifier. Updated <i>Table 15: Embedded internal reference voltage</i> temperature coefficient at 100ppm/°C and table note 3: 'guaranteed by design' changed by 'guaranteed by characterization results'. Updated <i>Table 58: Comparator 2 characteristics</i> new maximum threshold voltage temperature coefficient at 100ppm/°C. Updated <i>Table 38: ESD absolute maximum ratings</i> CDM class. Updated all the notes, removing 'not tested in production'. Updated <i>Table 9: Voltage characteristics</i> adding note about V _{REF} - pin. Updated <i>Table 2: Functionalities depending on the operating power</i> <i>supply range</i> LSI and LSE functionalities putting "Y" in Standby mode. Removed note 1 below <i>Figure 2: Clock tree</i> . Updated <i>Table 56: DAC characteristics</i> resistive load.

Table 64. Document revision history (continued)

