

Welcome to E-XFL.COM

Renesas Electronics America Inc - D12320VF25V Datasheet

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	H8S/2000
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	86
Program Memory Size	· ·
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	128-BFQFP
Supplier Device Package	128-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/d12320vf25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5.1 General Register Data Formats

Data Type	Register Number	Data Format
1-bit data	RnH	7 0 7 6 5 4 3 2 1 0 Don't care
1-bit data	RnL	7 0 Don't care 7 6 5 4 3 2 1 0
4-bit BCD data	RnH	7 4 3 0 Upper Lower Don't care
4-bit BCD data	RnL	7430Don't careUpperLower
Byte data	RnH	7 0 Don't care MSB LSB
Byte data	RnL	70Don't careMSBMSBLSB

Figure 2.7 General Register Data Formats

7.4 **Register Descriptions (3)**

7.4.1 DMA Write Enable Register (DMAWER)

The DMAC can activate the DTC with a transfer end interrupt, rewrite the channel on which the transfer ended using a DTC chain transfer, and reactivate the DTC. DMAWER applies restrictions so that specific bits of DMACR for the specific channel, and also DMATCR and DMABCR, can be changed to prevent inadvertent rewriting of registers other than those for the channel concerned. The restrictions applied by DMAWER are valid for the DTC.

Figure 7.2 shows the transfer areas for activating the DTC with a channel 0A transfer end interrupt, and reactivating channel 0A. The address register and count register area is re-set by the first DTC transfer, then the control register area is re-set by the second DTC chain transfer.

When re-setting the control register area, perform masking by setting bits in DMAWER to prevent modification of the contents of the other channels.

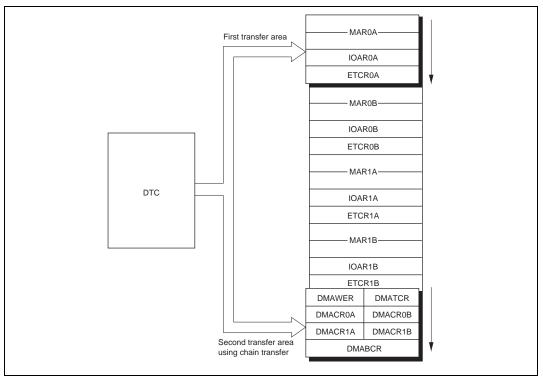


Figure 7.2 Areas for Register Re-Setting by DTC (Example: Channel 0A)

7.5.7 Block Transfer Mode

In block transfer mode, transfer is performed with channels A and B used in combination. Block transfer mode can be specified by setting the FAE bit in DMABCR and the BLKE bit in DMACRA to 1.

In block transfer mode, a transfer of the specified block size is carried out in response to a single transfer request, and this is executed the specified number of times. The transfer source is specified by MARA, and the transfer destination by MARB. Either the transfer source or the transfer destination can be selected as a block area (an area composed of a number of bytes or words).

Table 7.11 summarizes register functions in block transfer mode.

Table 7.11 Register Functions in Block Trans
--

Register	Function	Initial Setting	Operation
23 00	Source address register	Start address of transfer source	Incremented/decremented every transfer, or fixed
23 00	Destination address register	Start address of transfer destination	Incremented/decremented every transfer, or fixed
7 (ETCRAH	Holds block size	Block size	Fixed
7 V ETCRAL	Block size counter	Block size	Decremented every transfer; ETCRH value copied when count reaches H'00
15 C	Block transfer counter	Number of block transfers	Decremented every block transfer; transfer ends when count reaches H'0000

Legend:

MARA: Memory address register A

MARB: Memory address register B

ETCRA: Execute transfer count register A

ETCRB: Execute transfer count register B

Figure 7.34 shows an example of single address transfer using the write data buffer function. In this example, the CPU program area is in on-chip memory.

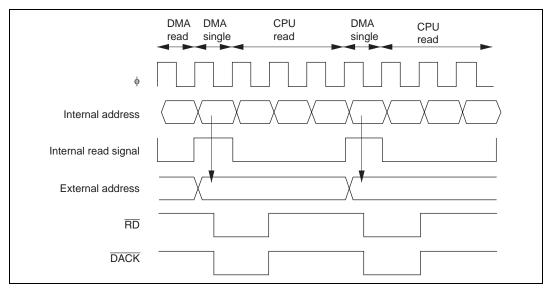


Figure 7.34 Example of Single Address Transfer Using Write Data Buffer Function

When the write data buffer function is activated, the DMAC recognizes that the bus cycle concerned has ended, and starts the next operation. Therefore, \overline{DREQ} pin sampling is started one state after the start of the DMA write cycle or single address transfer.

7.5.13 DMAC Multi-Channel Operation

The DMAC channel priority order is: channel 0 > channel 1, and channel A > channel B. Table 7.13 summarizes the priority order for DMAC channels.

Table 7.13 DMAC Channel Priority Order

Short Address Mode	Full Address Mode	Priority	
Channel 0A	Channel 0	High	
Channel 0B		Ť	
Channel 1A	Channel 1		
Channel 1B		Low	

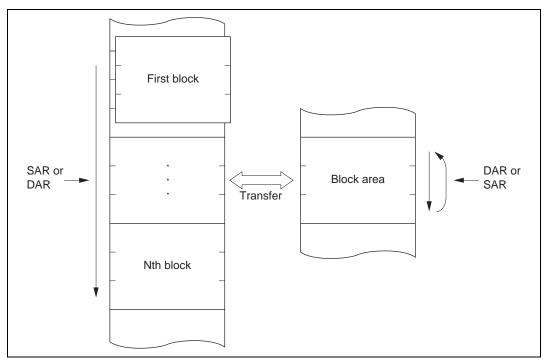


Figure 8.8 Memory Map in Block Transfer Mode

11.2.8 Port 2 Data Direction Register (P2DDR)

Bit	Bit : 7		6	5	4	3	2	1	0
		P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR
Initial va	alue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

P2DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 2.

Port 2 is multiplexed with pins PO7 to PO0. Bits corresponding to pins used for PPG output must be set to 1. For further information about P2DDR, see section 9, I/O Port.

11.2.9 Module Stop Control Register (MSTPCR)

		MSTPCRH										MSTI	PCRL	-		
Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value :	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MSTPCR is a 16-bit readable/writable register that performs module stop mode control.

When the MSTP11 bit in MSTPCR is set to 1, PPG operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 11—Module Stop (MSTP11): Specifies the PPG module stop mode.

Bit 11 MSTP11	Description	
0	PPG module stop mode cleared	
1	PPG module stop mode set	(Initial value)

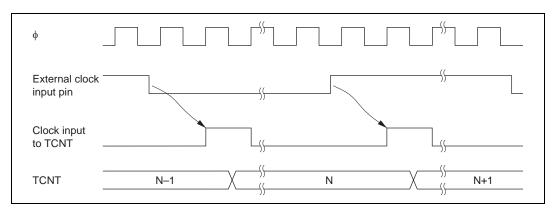


Figure 12.3 Count Timing for External Clock Input

12.3.2 Compare Match Timing

Setting of Compare Match Flags A and B (CMFA, CMFB): The CMFA and CMFB flags in TCSR are set to 1 by a compare match signal generated when the TCOR and TCNT values match. The compare match signal is generated at the last state in which the match is true, just before the timer counter is updated.

Therefore, when TCOR and TCNT match, the compare match signal is not generated until the next incrementation clock input. Figure 12.4 shows this timing.

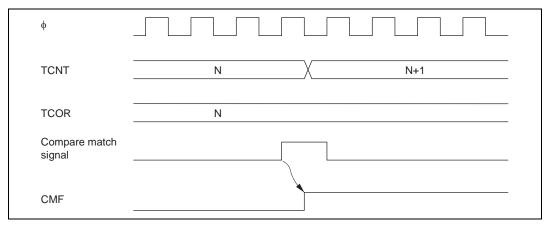


Figure 12.4 Timing of CMF Setting

Bit 3—Smart Card Data Transfer Direction (SDIR): Selects the serial/parallel conversion format.

This bit is valid when 8-bit data is used as the transmit/receive format.

Bit 3 SDIR	Description	
0	TDR contents are transmitted LSB-first	(Initial value)
	Receive data is stored in RDR LSB-first	
1	TDR contents are transmitted MSB-first	
	Receive data is stored in RDR MSB-first	

Bit 2—Smart Card Data Invert (SINV): Specifies inversion of the data logic level. The SINV bit does not affect the logic level of the parity bit(s): parity bit inversion requires inversion of the O/\overline{E} bit in SMR.

Bit 2 SINV	Description	
0	TDR contents are transmitted without modification	(Initial value)
	Receive data is stored in RDR without modification	
1	TDR contents are inverted before being transmitted	
	Receive data is stored in RDR in inverted form	

Bit 1—Reserved: This bit cannot be modified and is always read as 1.

Bit 0—Smart Card Interface Mode Select (SMIF): When the smart card interface operates as a normal SCI, 0 should be written to this bit.

Bit 0 SMIF	Description	
0	Operates as normal SCI (smart card interface function disabled)	(Initial value)
1	Smart card interface function enabled	

14.4 SCI Interrupts

The SCI has four interrupt sources: the transmit-end interrupt (TEI) request, receive-error interrupt (ERI) request, receive-data-full interrupt (RXI) request, and transmit-data-empty interrupt (TXI) request. Table 14.12 shows the interrupt sources and their relative priorities. Individual interrupt sources can be enabled or disabled with the TIE, RIE, and TEIE bits in the SCR. Each kind of interrupt request is sent to the interrupt controller independently.

When the TDRE flag in SSR is set to 1, a TXI interrupt request is generated. When the TEND flag in SSR is set to 1, a TEI interrupt request is generated. A TXI interrupt can activate the DMAC^{*} or DTC to perform data transfer. The TDRE flag is cleared to 0 automatically when data transfer is performed by the DMAC^{*} or DTC. The DMAC^{*} and DTC cannot be activated by a TEI interrupt request.

When the RDRF flag in SSR is set to 1, an RXI interrupt request is generated. When the ORER, PER, or FER flag in SSR is set to 1, an ERI interrupt request is generated. An RXI interrupt can activate the DMAC^{*} or DTC to perform data transfer. The RDRF flag is cleared to 0 automatically when data transfer is performed by the DMAC^{*} or DTC. The DMAC^{*} and DTC cannot be activated by an ERI interrupt request.

Also note that the $DMAC^*$ cannot be activated by an SCI channel 2 interrupt.

Note: * The DMAC is not supported in the H8S/2321.

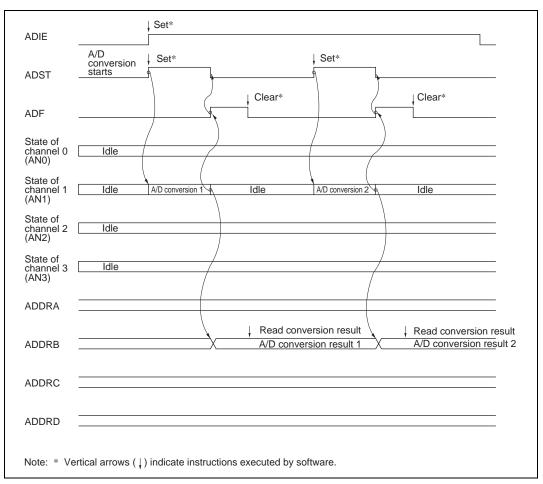


Figure 16.3 Example of A/D Converter Operation (Single Mode, Channel 1 Selected)

Automatic SCI Bit Rate Adjustment: When boot mode is initiated, the H8S/2329B F-ZTAT chip measures the low period of the asynchronous SCI communication data (H'00) transmitted continuously from the host. The SCI transmit/receive format should be set as follows: 8-bit data, 1 stop bit, no parity. The chip calculates the bit rate of the transmission from the host from the measured low period, and transmits one H'00 byte to the host to indicate the end of bit rate adjustment. The host should confirm that this adjustment end indication (H'00) has been received normally, and transmit one H'55 byte to the chip. If reception cannot be performed normally, initiate boot mode again (reset), and repeat the above operations. Depending on the host's transmission bit rate and the chip's system clock frequency, there will be a discrepancy between the bit rates of the host and the chip. To ensure correct SCI operation, the host's transfer bit rate should be set to 9,600 or 19,200 bps.

Table 19.10 shows typical host transfer bit rates and system clock frequencies for which automatic adjustment of the MCU's bit rate is possible. The boot program should be executed within this system clock range.

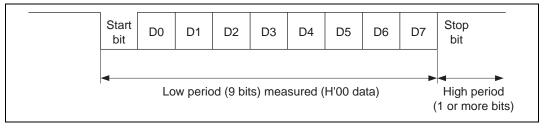
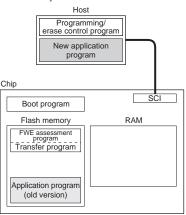


Figure 19.11 Automatic SCI Bit Rate Adjustment

Table 19.10 System Clock Frequencies for which Automatic Adjustment of H8S/2329B	
F-ZTAT Bit Rate is Possible	

Host Bit Rate	System Clock Frequency for which Automatic Adjustment of H8S/2329B F-ZTAT Bit Rate is Possible
19,200 bps	16 MHz to 25 MHz
9,600 bps	8 MHz to 25 MHz


On-Chip RAM Area Divisions in Boot Mode: In boot mode, the 2-kbyte area from H'FF7C00 to H'FF83FF is reserved for use by the boot program, as shown in figure 19.12. The area to which the programming control program is transferred is H'FF8400 to H'FFFBFF. The boot program area can be used when the programming control program transferred into RAM enters the execution state. A stack area should be set up as required.

Renesas

User program mode

1. Initial state


(1) The FWE assessment program that confirms that the FWE pin has been driven high, and (2) the program that will transfer the programming/ erase control program to on-chip RAM should be written into the flash memory by the user beforehand. (3) The programming/erase control program should be prepared in the host or in the flash memory.

3. Flash memory initialization The programming/erase program in RAM is

executed, and the flash memory is initialized (to H'FF). Erasing can be performed in block units, but not in byte units.

2. Programming/erase control program transfer When the FWE pin is driven high, user software confirms this fact, executes the transfer program in the flash memory, and transfers the programming/erase control program to RAM.

4. Writing new application program Next, the new application program in the host is written into the erased flash memory blocks. Do not write to unerased blocks.

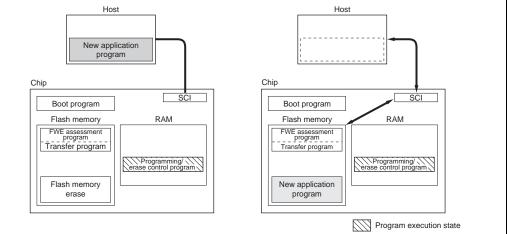


Figure 19.32 User Program Mode (Example)

19.13.8 Pin Configuration

The flash memory is controlled by means of the pins shown in tables 19.26.

Pin Name	Abbreviation	I/O	Function
Reset	RES	Input	Reset
Flash write enable	FWE	Input	Flash program/erase protection by hardware
Mode 2	MD2	Input	Sets MCU operating mode
Mode 1	MD1	Input	Sets MCU operating mode
Mode 0	MD0	Input	Sets MCU operating mode
Port 64	P64	Input	Sets MCU operating mode in PROM mode
Port 65	P65	Input	Sets MCU operating mode in PROM mode
Port 66	P66	Input	Sets MCU operating mode in PROM mode
Transmit data	TxD1	Output	Serial transmit data output
Receive data	RxD1	Input	Serial receive data input

Table 19.26 Flash Memory Pins

Bit 2—Program-Verify (PV): Selects program-verify mode transition or clearing. Do not set the SWE, ESU, PSU, EV, E, or P bit at the same time.

Bit 2 PV	Description	
0	Program-verify mode cleared	(Initial value)
1	Transition to program-verify mode	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 1—Erase (E): Selects erase mode transition or clearing. Do not set the SWE, ESU, PSU, EV, PV, or P bit at the same time.

Bit 1 E	Description	
0	Erase mode cleared	(Initial value)
1	Transition to erase mode	
	[Setting condition]	
	When $FWE = 1$, $SWE = 1$, and $ESU = 1$	

Bit 0—Program (P): Selects program mode transition or clearing. Do not set the SWE, PSU, ESU, EV, PV, or E bit at the same time.

Bit 0 P	Description	
0	Program mode cleared	(Initial value)
1	Transition to program mode	
	[Setting condition]	
	When $FWE = 1$, $SWE = 1$, and $PSU = 1$	

Block (Size)	Address
EB0 (4 kbytes)	H'000000 to H'000FFF
EB1 (4 kbytes)	H'001000 to H'001FFF
EB2 (4 kbytes)	H'002000 to H'002FFF
EB3 (4 kbytes)	H'003000 to H'003FFF
EB4 (4 kbytes)	H'004000 to H'004FFF
EB5 (4 kbytes)	H'005000 to H'005FFF
EB6 (4 kbytes)	H'006000 to H'006FFF
EB7 (4 kbytes)	H'007000 to H'007FFF
EB8 (32 kbytes)	H'008000 to H'00FFFF
EB9 (64 kbytes)	H'010000 to H'01FFFF
EB10 (64 kbytes)	H'020000 to H'02FFFF
EB11 (64 kbytes)	H'030000 to H'03FFFF

Table 19.28 Flash Memory Erase Blocks

19.14.5 System Control Register 2 (SYSCR2)

Bit	:	7	6	5	4	3	2	1	0
			_	—		FLSHE	_	—	—
Initial val	ue :	0	0	0	0	0	0	0	0
R/W	:	—	—	—	—	R/W	—	—	—

SYSCR2 is an 8-bit readable/writable register that performs on-chip flash memory control.

SYSCR2 is initialized to H'00 by a reset and in hardware standby mode.

SYSCR2 can only be used in the F-ZTAT versions. In the mask ROM versions this register will return an undefined value if read, and cannot be modified.

Bits 7 to 4—Reserved: These bits cannot be modified and are always read as 0.

22.1.2 DC Characteristics

Table 22.2 DC Characteristics (H8S/2328, H8S/2327, H8S/2323)

Conditions: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}^{*1}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (widerange specifications)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt	Ports 1, 2,	V _T ⁻	$V_{\text{CC}} \times 0.2$	_	_	V	
trigger input voltage	P6 ₄ to P6 ₇	V _T ⁺	_	—	$V_{\text{CC}} \times 0.7$	V	
vollage	PA ₄ to PA ₇	$V_T^+ - V_T^-$	$V_{\text{CC}} \times 0.07$	—	_	V	
	Port 5 (when using \overline{IRQ})						
Input high voltage	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	V _{IH}	$V_{CC} \times 0.9$	—	V _{CC} + 0.3	V	
	EXTAL	_	$V_{CC} \times 0.7$	—	$V_{CC} + 0.3$	V	
	Ports 3, 5, B to G, $P6_0$ to $P6_3$, PA_0 to PA_3	_	2.2	_	V _{CC} + 0.3	V	_
	Port 4	_	2.2	—	$AV_{CC} + 0.3$	V	
Input low voltage	$\overline{\text{RES}}, \overline{\text{STBY}}, \\ \text{MD}_2 \text{ to } \text{MD}_0$	V _{IL}	-0.3		$V_{CC} \times 0.1$	V	
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	_	-0.3	_	$V_{CC} imes 0.2$	V	
Output high	All output pins	V _{OH}	$V_{CC}-0.5$	—	_	V	I _{OH} = -200 μA
voltage			V _{cc} – 1.0	—	_	V	$I_{OH} = -1 \text{ mA}$
Output low voltage	All output pins	V _{OL}	—	—	0.4	V	I _{OL} = 1.6 mA
Input	RES	I _{in}	_	_	10.0	μA	V _{in} = 0.5 V to
leakage current	STBY, NMI, MD ₂ to MD ₀	_	_	—	1.0	μΑ	V _{CC} - 0.5 V
	Port 4	_	_	_	1.0	μA	$\label{eq:Vin} \begin{array}{l} V_{\text{in}} = 0.5 \ V \ \text{to} \\ AV_{\text{CC}} - 0.5 \ V \end{array}$

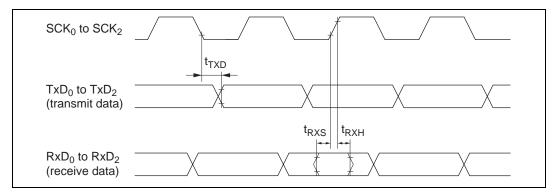


Figure 22.29 SCI Input/Output Timing (Synchronous Mode)

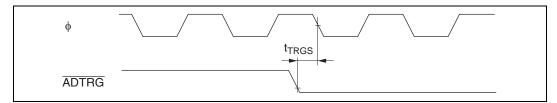


Figure 22.30 A/D Converter External Trigger Input Timing

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FF06	DMABCRH	FAE1	FAE0	SAE1	SAE0	DTA1B	DTA1A	DTA0B	DTA0A	Short address mode	
		FAE1	FAE0	_	_	DTA1	_	DTA0	_	Full address mode	_
H'FF07	DMABCRL	DTE1B	DTE1A	DTE0B	DTE0A	DTIE1B	DTIE1A	DTIE0B	DTIE0A	Short address mode	_
		DTME1	DTE1	DTME0	DTE0	DTIE1B	DTIE1A	DTIE0B	DTIE0A	Full address mode	_
H'FF2C	ISCRH	IRQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA	Interrupt	8 bits
H'FF2D	ISCRL	IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA	controller	
H'FF2E	IER	IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E	-	
H'FF2F	ISR	IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F	-	
H'FF30 to	DTCER	DTCE7	DTCE6	DTCE5	DTCE4	DTCE3	DTCE2	DTCE1	DTCE0	DTC	8 bits
H'FF35										-	
H'FF37	DTVECR	SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVEC0		
H'FF38	SBYCR	SSBY	STS2	STS1	STS0	OPE	_	_	IRQ37S	Power- down mode	8 bits
H'FF39	SYSCR	_	_	INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME	MCU	8 bits
H'FF3A	SCKCR	PSTOP	_	DIV	_	_	SCK2	SCK1	SCK0	Clock pulse generator	8 bits
H'FF3B	MDCR	_	_	_	_	_	MDS2	MDS1	MDS0	MCU	8 bits
H'FF3C	MSTPCRH	MSTP15	MSTP14	MSTP13	MSTP12	MSTP11	MSTP10	MSTP9	MSTP8	Power-	8 bits
H'FF3D	MSTPCRL		MSTP6	MSTP5	MSTP4	MSTP3	MSTP2	MSTP1	MSTP0	down mode	
H'FF42	SYSCR2*4	_	_	_	_	FLSHE	_	_	—	MCU	8 bits
H'FF44	Reserved	_	—	_	_	_	—	_	—	Reserved	—
HFF45	PFCR1	_	—	—	—	A23E	A22E	A21E	A20E	Port	8 bits
H'FF46	PCR	G3CMS1	G3CMS0	G2CMS1	G2CMS0	G1CMS1	G1CMS0	G0CMS1	G0CMS0	PPG	8 bits
H'FF47	PMR	G3INV	G2INV	G1INV	G0INV	G3NOV	G2NOV	G1NOV	G0NOV	_	
H'FF48	NDERH	NDER15	NDER14	NDER13	NDER12	NDER11	NDER10	NDER9	NDER8	_	
H'FF49	NDERL	NDER7	NDER6	NDER5	NDER4	NDER3	NDER2	NDER1	NDER0	_	
H'FF4A	PODRH	POD15	POD14	POD13	POD12	POD11	POD10	POD9	POD8	_	
H'FF4B	PODRL	POD7	POD6	POD5	POD4	POD3	POD2	POD1	POD0	_	
H'FF4C ^{*6}	NDRH	NDR15	NDR14	NDR13	NDR12	NDR11	NDR10	NDR9	NDR8	-	
H'FF4D*6	NDRL	NDR7	NDR6	NDR5	NDR4	NDR3	NDR2	NDR1	NDR0	-	
H'FF4E ^{*6}	NDRH	_	_	_	—	NDR11	NDR10	NDR9	NDR8	_	
H'FF4F ^{*6}	NDRL	_				NDR3	NDR2	NDR1	NDR0		

Rev.6.00 Sep. 27, 2007 Page 1060 of 1268 REJ09B0220-0600

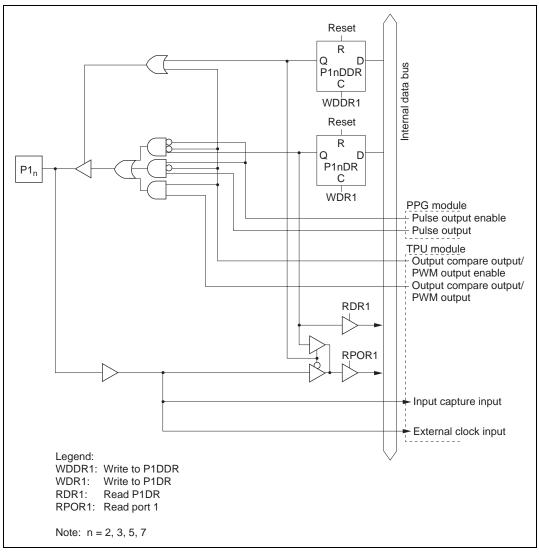


Figure C.1 (b) Port 1 Block Diagram (Pins P1₂, P1₃, P1₅, and P1₇)

Figure C.5 (c) Port 5 Block Diagram (Pin P5₂)