

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	H8S/2000
Core Size	16-Bit
Speed	20MHz
Connectivity	SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	86
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	120-TQFP
Supplier Device Package	120-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/d12320vte20v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	4.1.2	Exception Handling Operation	102
	4.1.3	Exception Vector Table	102
4.2	Reset	•	104
	4.2.1	Overview	104
	4.2.2	Reset Sequence	104
	4.2.3	Interrupts after Reset	105
	4.2.4	State of On-Chip Supporting Modules after Reset Release	105
4.3	Traces.		106
4.4	Interrup	ots	107
4.5	Trap In	struction	108
4.6	Stack S	tatus after Exception Handling	108
4.7	Notes of	n Use of the Stack	109
Secti	on 5 l	Interrupt Controller	111
5.1	Overvie	2W	111
	5.1.1	Features	111
	5.1.2	Block Diagram	112
	5.1.3	Pin Configuration	113
	5.1.4	Register Configuration	113
5.2	Registe	r Descriptions	114
	5.2.1	System Control Register (SYSCR)	114
	5.2.2	Interrupt Priority Registers A to K (IPRA to IPRK)	115
	5.2.3	IRQ Enable Register (IER)	116
	5.2.4	IRQ Sense Control Registers H and L (ISCRH, ISCRL)	117
	5.2.5	IRQ Status Register (ISR)	118
5.3	Interrup	ot Sources	119
	5.3.1	External Interrupts	119
	5.3.2	Internal Interrupts	121
	5.3.3	Interrupt Exception Vector Table	121
5.4	Interrup	ot Operation	127
	5.4.1	Interrupt Control Modes and Interrupt Operation	127
	5.4.2	Interrupt Control Mode 0	130
	5.4.3	Interrupt Control Mode 2	132
	5.4.4	Interrupt Exception Handling Sequence	134
	5.4.5	Interrupt Response Times	136
5.5	Usage I	Notes	137
	5.5.1	Contention between Interrupt Generation and Disabling	137
	5.5.2	Instructions that Disable Interrupts	138
	5.5.3	Times when Interrupts Are Disabled	138
	5.5.4	Interrupts during Execution of EEPMOV Instruction	138

(3) Condition-Code Register (CCR)

This 8-bit register contains internal CPU status information, including an interrupt mask bit (I) and half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags.

Bit 7—Interrupt Mask Bit (I): Masks interrupts other than NMI when set to 1. (NMI is accepted regardless of the I bit setting.) The I bit is set to 1 by hardware at the start of an exception-handling sequence. For details, refer to section 5, Interrupt Controller.

Bit 6—User Bit or Interrupt Mask Bit (UI): Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions. With the H8S/2329 Group and H8S/2328 Group, this bit cannot be used as an interrupt mask bit.

Bit 5—Half-Carry Flag (H): When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and cleared to 0 otherwise. When the ADD.W, SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 11, and cleared to 0 otherwise. When the ADD.L, SUB.L, CMP.L, or NEG.L instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 27, and cleared to 0 otherwise.

Bit 4—User Bit (U): Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions.

Bit 3—Negative Flag (N): Stores the value of the most significant bit (sign bit) of data.

Bit 2-Zero Flag (Z): Set to 1 to indicate zero data, and cleared to 0 to indicate non-zero data.

Bit 1—Overflow Flag (V): Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other times.

Bit 0—Carry Flag (C): Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:

- Add instructions, to indicate a carry
- Subtract instructions, to indicate a borrow
- Shift and rotate instructions, to store the value shifted out of the end bit

The carry flag is also used as a bit accumulator by bit manipulation instructions.

Some instructions leave some or all of the flag bits unchanged. For the action of each instruction on the flag bits, refer to Appendix A.1, Instruction List.

Section 2	CPU
-----------	-----

Туре	Instruction	Size ^{*1}	Function
System control	TRAPA	_	Starts trap-instruction exception handling.
instructions	RTE	_	Returns from an exception-handling routine.
	SLEEP	_	Causes a transition to a power-down state.
	LDC	B/W	$(EAs) \rightarrow CCR, (EAs) \rightarrow EXR$ Moves the source operand contents or immediate data to CCR or EXR. Although CCR and EXR are 8-bit registers, word-size transfers are performed between them and memory. The upper 8 bits are valid.
	STC	B/W	$CCR \rightarrow (EAd), EXR \rightarrow (EAd)$ Transfers CCR or EXR contents to a general register or memory. Although CCR and EXR are 8-bit registers, word-size transfers are performed between them and memory. The upper 8 bits are valid.
	ANDC	В	CCR \land #IMM \rightarrow CCR, EXR \land #IMM \rightarrow EXR Logically ANDs the CCR or EXR contents with immediate data.
	ORC	В	$\label{eq:CCR} \begin{array}{l} CCR \lor \#IMM \to CCR, EXR \lor \#IMM \to EXR \\ Logically \ ORs \ the \ CCR \ or \ EXR \ contents \ with \ immediate \\ data. \end{array}$
	XORC	В	CCR ⊕ #IMM → CCR, EXR ⊕ #IMM → EXR Logically exclusive-ORs the CCR or EXR contents with immediate data.
	NOP	_	$PC + 2 \rightarrow PC$ Only increments the program counter.

Figure 6.30 (a) Example of Burst ROM Access Timing (When AST0 = BRSTS1 = 1)

8.3.8 Chain Transfer

Setting the CHNE bit to 1 enables a number of data transfers to be performed consecutively in response to a single transfer request. It is also possible, by setting both the CHNE bit and CHNS bit to 1, to specify execution of chain transfer only when the transfer counter value is 0. SAR, DAR, CRA, CRB, MRA, and MRB, which define data transfers, can be set independently.

Figure 8.9 shows the memory map for chain transfer.

Figure 8.9 Chain Transfer Memory Map

In the case of transfer with CHNE set to 1, an interrupt request to the CPU is not generated at the end of the specified number of transfers or by setting of the DISEL bit to 1, and the interrupt source flag for the activation source is not affected.

Channel	Bit 7 CCLR2	Bit 6 CCLR1	Bit 5 CCLR0	Description				
0, 3	0	0	0	TCNT clearing disabled (Initial value				
			1	TCNT cleared by TGRA compare match/input capture				
		1	0	TCNT cleared by TGRB compare match/input capture				
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation ^{*1}				
	1	0	0	TCNT clearing disabled				
			1	TCNT cleared by TGRC compare match/input capture ^{*2}				
		1	0	TCNT cleared by TGRD compare match/input capture ^{*2}				
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation ^{*1}				

Bits 7 to 5—Counter Clear 2 to 0 (CCLR2 to CCLR0)	These	bits selec	t the TC	NT (counter
clearing source.					

Channel	Bit 7 Reserved [*]	Bit 6 ³ CCLR1	Bit 5 CCLR0	Description
1, 2, 4, 5	0	0	0	TCNT clearing disabled (Initial value)
			1	TCNT cleared by TGRA compare match/input capture
		1	0	TCNT cleared by TGRB compare match/input capture
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation ^{*1}

Notes: 1. Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

- 2. When TGRC or TGRD is used as a buffer register, TCNT is not cleared because the buffer register setting has priority, and compare match/input capture does not occur.
- 3. Bit 7 is reserved in channels 1, 2, 4, and 5. It is always read as 0 and cannot be modified.

• Free-running count operation and periodic count operation Immediately after a reset, the TPU's TCNT counters are all designated as free-running counters. When the relevant bit in TSTR is set to 1 the corresponding TCNT counter starts upcount operation as a free-running counter. When TCNT overflows (from H'FFFF to H'0000), the TCFV bit in TSR is set to 1. If the value of the corresponding TCIEV bit in TIER is 1 at this point, the TPU requests an interrupt. After overflow, TCNT starts counting up again from H'0000.

Figure 10.7 illustrates free-running counter operation.

When compare match is selected as the TCNT clearing source, the TCNT counter for the relevant channel performs periodic count operation. The TGR register for setting the period is designated as an output compare register, and counter clearing by compare match is selected by means of bits CCLR2 to CCLR0 in TCR. After the settings have been made, TCNT starts up-count operation as a periodic counter when the corresponding bit in TSTR is set to 1. When the count value matches the value in TGR, the TGF bit in TSR is set to 1 and TCNT is cleared to H'0000.

If the value of the corresponding TGIE bit in TIER is 1 at this point, the TPU requests an interrupt. After a compare match, TCNT starts counting up again from H'0000.

Figure 10.8 illustrates periodic counter operation.

• Phase counting mode 2

Figure 10.30 shows an example of phase counting mode 2 operation, and table 10.10 summarizes the TCNT up/down-count conditions.

Figure 10.30 Example of Phase Counting Mode 2 Operation

Table 10.10 Up/Down-Count Conditions in Phase Counting Mode 2

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level	_ _	Don't care
Low level	-	
<u> </u>	Low level	
<u> </u>	High level	Up-count
High level	T_	Don't care
Low level		
<u> </u>	High level	
<u> </u>	Low level	Down-count

Legend:

⁺L: Falling edge

13.2.2 Timer Control/Status Register (TCSR)

Bit	: 7		6	5	4	3	2	1	0
	ĺ	OVF	WT/IT	TME	_		CKS2	CKS1	CKS0
Initial value	:	0	0	0	1	1	0	0	0
R/W	:	R/(W)*	R/W	R/W	_	_	R/W	R/W	R/W

Note: * Only 0 can be written, to clear the flag.

TCSR is an 8-bit readable/writable^{*} register. Its functions include selecting the clock source to be input to TCNT, and the timer mode.

TCR is initialized to H'18 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Note: * TCSR is write-protected by a password to prevent accidental overwriting. For details see section 13.2.4, Notes on Register Access.

Bit 7—Overflow Flag (OVF): Indicates that TCNT has overflowed from H'FF to H'00, when in interval timer mode. This flag cannot be set during watchdog timer operation.

Bit 7 OVF	Description							
0	[Clearing condition]	(Initial value)						
	Cleared by reading TCSR when $OVF = 1^*$, then writing 0 to OVF							
1	[Setting condition]							
	Set when TCNT overflows (changes from H'FF to H'00) in interval timer mode							
Note: *V	When OVF is polled and the interval timer interrupt is disabled. $OVF = 1 \text{ n}$	nust be read at						

Note: * When OVF is polled and the interval timer interrupt is disabled, OVF = 1 must be read at least twice.

Bit 6—Timer Mode Select (WT/ITT): Selects whether the WDT is used as a watchdog timer or interval timer. If used as an interval timer, the WDT generates an interval timer interrupt request (WOVI) when TCNT overflows. If used as a watchdog timer, the WDT generates the WDTOVF signal^{*1} when TCNT overflows.

The method of calculating the value to be set in the bit rate register (BRR) from the operating frequency and bit rate, on the other hand, is shown below. N is an integer, $0 \le N \le 255$, and the smaller error is specified.

$$N = \frac{\varphi}{-S \times 2^{2n+1} \times B} \times 10^6 - 1$$

Table 15.6 Examples of BRR Settings for Bit Rate B (bits/s) (When n = 0 and S = 372)

									¢	(MHz)								
	7.1424		10.00		10.7136		13.00		14.2848		16.00		18.00		20.00		25.00	
Bits/s	Ν	Error	Ν	Error	Ν	Error	Ν	Error	Ν	Error	Ν	Error	Ν	Error	Ν	Error	Ν	Error
9600	0	0.00	1	30	1	25	1	8.99	1	0.00	1	12.01	2	15.99	2	6.60	3	12.49

Table 15.7 Maximum Bit Rate at Various Frequencies (Smart Card Interface Mode) (When S = 372)

φ (MHz)	Maximum Bit Rate (bits/s)	Ν	n	
7.1424	9600	0	0	
10.00	13441	0	0	
10.7136	14400	0	0	
13.00	17473	0	0	
14.2848	19200	0	0	
16.00	21505	0	0	
18.00	24194	0	0	
20.00	26882	0	0	
25.00	33602	0	0	

The bit rate error is given by the following formula:

Error (%) =
$$\left(\frac{\phi}{S \times 2^{2n+1} \times B \times (N+1)} \times 10^6 - 1\right) \times 100$$

Address
H'000000 to H'000FFF
H'001000 to H'001FFF
H'002000 to H'002FFF
H'003000 to H'003FFF
H'004000 to H'004FFF
H'005000 to H'005FFF
H'006000 to H'006FFF
H'007000 to H'007FFF
H'008000 to H'00FFFF
H'010000 to H'01FFFF
H'020000 to H'02FFFF
H'030000 to H'03FFFF
H'040000 to H'04FFFF
H'050000 to H'05FFFF

 Table 19.7
 Flash Memory Erase Blocks

19.5.5 System Control Register 2 (SYSCR2)

Bit	:	7	6	5	4	3	2	1	0
				_		FLSHE	_	_	
Initial val	ue :	0	0	0	0	0	0	0	0
R/W	:	_	_	_	_	R/W	_	_	R/W

SYSCR2 is an 8-bit readable/writable register that performs on-chip flash memory control.

SYSCR2 is initialized to H'00 by a reset and in hardware standby mode.

SYSCR2 can only be used in the F-ZTAT version. In the mask ROM version this register will return an undefined value if read, and cannot be modified.

Bits 7 to 4—Reserved: These bits cannot be modified and are always read as 0.

21.2 Register Descriptions

Bit	:	7	6	5	4	3	2	1	0
		SSBY	STS2	STS1	STS0	OPE	—	—	IRQ37S
Initial val	ue :	0	0 0		0	1	0 0		0
R/W	:	R/W	R/W	R/W	R/W	R/W	—		R/W

21.2.1 Standby Control Register (SBYCR)

SBYCR is an 8-bit readable/writable register that performs software standby mode control.

SBYCR is initialized to H'08 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Software Standby (SSBY): Specifies a transition to software standby mode. Remains set to 1 when software standby mode is released by an external interrupt, and a transition is made to normal operation. The SSBY bit should be cleared by writing 0 to it.

Bit 7 SSBY	Description	
0	Transition to sleep mode after execution of SLEEP instruction	(Initial value)
1	Transition to software standby mode after execution of SLEEP instruction	

Bits 6 to 4—**Standby Timer Select 2 to 0 (STS2 to STS0):** These bits select the time the MCU waits for the clock to stabilize when software standby mode is cleared by an external interrupt. With crystal oscillation, refer to table 21.4 and make a selection according to the operating frequency so that the standby time is at least 8 ms (the oscillation stabilization time). With an external clock, any selection can be made*.

Note: * Except in the F-ZTAT versions.

Software standby mode is then cleared at the rising edge on the NMI pin.

Figure 21.2 Software Standby Mode Application Example

21.6.5 Usage Notes

I/O Port Status: In software standby mode, I/O port states are retained. If the OPE bit is set to 1, the address bus and bus control signal output is also retained. Therefore, there is no reduction in current dissipation for the output current when a high-level signal is output.

Current Dissipation during Oscillation Stabilization Wait Period: Current dissipation increases during the oscillation stabilization wait period.

Write Data Buffer Function: The write data buffer function and software standby mode cannot be used at the same time. When the write data buffer function is used, the WDBE bit in BCRL should be cleared to 0 to cancel the write data buffer function before entering software standby mode. Also check that external writes have finished, by reading external addresses, etc., before executing a SLEEP instruction to enter software standby mode. See section 6.9, Write Data Buffer Function, for details of the write data buffer function.

Figure 22.13 Burst ROM Access Timing (1-State Access)

Instruction	н	Ν	Ζ	V	С	Definition
ADD	¢	¢	€	€	\$	$H = Sm-4 \cdot Dm-4 + Dm-4 \cdot \overline{Rm-4} + Sm-4 \cdot \overline{Rm-4}$
						N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot R0$
						$V = Sm \cdot Dm \cdot \overline{Rm} + \overline{Sm} \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot Dm + Dm \cdot \overline{Rm} + Sm \cdot \overline{Rm}$
ADDS	_	_	_	_	—	
ADDX	¢	¢	¢	€	¢	$H = Sm-4 \cdot Dm-4 + Dm-4 \cdot \overline{Rm-4} + Sm-4 \cdot \overline{Rm-4}$
						N = Rm
						$Z = Z' \cdot \overline{Rm} \cdot \dots \cdot \overline{R0}$
						$V = Sm \cdot Dm \cdot Rm + \overline{Sm} \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot Dm + Dm \cdot Rm + Sm \cdot \overline{Rm}$
AND	_	¢	¢	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \dots \cdot \overline{R0}$
ANDC	¢	¢	€	⊅	\$	Stores the corresponding bits of the result.
						No flags change when the operand is EXR.
BAND	_	—	_	—	€	$C = C' \cdot Dn$
Bcc	_	—	_	—	—	
BCLR	_	_		_	—	
BIAND	_	—	_	—	€	$C = C' \cdot \overline{Dn}$
BILD	_	—	_	—	€	$C = \overline{Dn}$
BIOR	_	_	_	—	€	$C = C' + \overline{Dn}$
BIST	_	_	_	—	_	
BIXOR	_	_	_		€	$C = C' \cdot Dn + \overline{C'} \cdot \overline{Dn}$
BLD	_		_		\$	C = Dn
BNOT	_	_	_		_	
BOR	_				\$	C = C' + Dn
BSET	_	—				
BSR	_	—	—	_	_	
BST	—	—	—	_	_	
BTST	—	—	€	_	_	$Z = \overline{Dn}$
BXOR	_	_	_	_	\$	$C = C' \cdot \overline{Dn} + \overline{C'} \cdot Dn$

Table A.7 Condition Code Modification

Rev.6.00 Sep. 27, 2007 Page 1051 of 1268 REJ09B0220-0600

BRR2—E	Bit Rat	e Registe	r 2		H'FF89	SCI2, Smart Card Interface 2					
Bit	:	7	6	5	4	3	2	1	0		
Initial value :		1	1	1	1	1	1	1	1		
Read/Write:		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
				Sets	s the seri	al transfer	bit rate				

Note: For details, see section 14.2.8, Bit Rate Register (BRR).

0	TDR contents are transmitted LSB-first Receive data is stored in RDR LSB-first
1	TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first

TIOR0L—Timer I/O Control Register 0L

H'FFD3

TPU0

Bit :	7	6	5	4	3	2	1	0
:	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/W							
							1	

TGR0C I/O Control

0	0	0	0	TGR0C	Output disabled	
			1	compare	Initial output is	0 output at compare match
		1	0	register	0 Output	1 output at compare match
	1				Toggle output at compare match	
	1	0	0		Output disabled	
			1		Initial output is	0 output at compare match
		1	0		i output	1 output at compare match
			1			Toggle output at compare match
1	0	0	0	TGR0C	Capture input	Input capture at rising edge
			1	capture	source is TIOCC ₀ pin	Input capture at falling edge
	1 * register		•	Input capture at both edges		
	1	*	*		Capture input source is channel 1/count clock	Input capture at TCNT1 count-up/ count-down

* : Don't care

Note: When the BFA bit in TMDR0 is set to 1 and TGR0C is used as a buffer register, this setting is invalid and input capture/output compare does not occur.

TGR0D I/O Control

0	0	0	0	TGR0D (Output disabled					
			1	compare	Initial output is	0 output at compare match				
		1	0	register *2	σοιραί	1 output at compare match				
			1			Toggle output at compare match				
	1	0	0		Output disabled					
			1		Initial output is	0 output at compare match				
		1	0		ιοιιραι	1 output at compare match				
			1			Toggle output at compare match				
1	0	0	0	TGR0D	Capture input	Input capture at rising edge				
			1	is input capture	source is TIOCD ₀ pin	Input capture at falling edge				
		1	*	register *2		Input capture at both edges				
	1	*	*	_	Capture input source is channel 1/count clock	Input capture at TCNT1 count-up/ count-down*1				

* : Don't care

- - When the BFB bit in TMDR0 is set to 1 and TGR0D is used as a buffer register, this setting is invalid and input capture/output compare does not occur.

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

Note: * This timer counter can be used as an up/down-counter only in phase counting mode or when performing overflow/underflow counting on another channel. In other cases it functions as an up-counter.

TGR1A—Timer General Register 1A TGR1B—Timer General Register 1B							H'FFE8 H'FFEA						T T					
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Initial value	:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Appendix F Package Dimensions

The package dimension that is shown in the Renesas Semiconductor Package Data Book has priority.

Figure F.1 TFP-120 Package Dimensions