Renesas - D12321VF25V Datasheet

Welcome to **<u>E-XFL.COM</u>**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8S/2000
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	POR, PWM, WDT
Number of I/O	86
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	128-BFQFP
Supplier Device Package	128-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/d12321vf25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.3 Register Configuration

The H8S/2329 Group and H8S/2328 Group have a mode control register (MDCR) that indicates the inputs at the mode pins (MD_2 to MD_0), and a system control register (SYSCR) and a system control register 2 (SYSCR2)^{*2} that control the operation of the chip. Table 3.3 summarizes these registers.

Table 3.3 Registers

Name	Abbreviation	R/W	Initial Value	Address ^{*1}
Mode control register	MDCR	R	Undefined	H'FF3B
System control register	SYSCR	R/W	H'01	H'FF39
System control register 2*2	SYSCR2	R/W	H'00	H'FF42

Notes: 1. Lower 16 bits of the address.

 The SYSCR2 register can only be used in the F-ZTAT versions. In the mask ROM and ROMless versions this register will return an undefined value if read, and cannot be modified.

3.2 Register Descriptions

3.2.1 Mode Control Register (MDCR)

Note: * Determined by pins MD₂ to MD₀.

MDCR is an 8-bit read-only register that indicates the current operating mode of the H8S/2329 Group and H8S/2328 Group chip.

Bit 7—Reserved: This bit is always read as 1, and cannot be modified.

Bits 6 to 3—Reserved: These bits are always read as 0, and cannot be modified.

Bits 2 to 0—Mode Select 2 to 0 (MDS2 to MDS0): These bits indicate the input levels at pins MD_2 to MD_0 (the current operating mode). Bits MDS2 to MDS0 correspond to pins MD_2 to MD_0 . MDS2 to MDS0 are read-only bits, and cannot be written to. The mode pin (MD_2 to MD_0) input levels are latched into these bits when MDCR is read. These latches are canceled by a reset.

ETCRAL is decremented by 1 each time a byte or word transfer is performed. In response to a single transfer request, burst transfer is performed until the value in ETCRAL reaches H'00. ETCRAL is then loaded with the value in ETCRAH. At this time, the value in the MAR register for which a block designation has been given by the BLKDIR bit in DMACRA is restored in accordance with the DTSZ, SAID/DAID, and SAIDE/DAIDE bits in DMACR.

Write Data Buffer Function: When the WDBE bit of BCRL in the bus controller is set to 1, enabling the write data buffer function, dual address transfer external write cycles or single address transfers and internal accesses (on-chip memory or internal I/O registers) are executed in parallel.

• Write Data Buffer Function and DMAC Register Setting

If the setting of a register that controls external accesses is changed during execution of an external access by means of the write data buffer function, the external access may not be performed normally. Registers that control external accesses should only be manipulated when external reads, etc., are used with DMAC operation disabled, and the operation is not performed in parallel with external access.

• Write Data Buffer Function and DMAC Operation Timing

The DMAC can start its next operation during external access using the write data buffer function. Consequently, the $\overline{\text{DREQ}}$ pin sampling timing, $\overline{\text{TEND}}$ output timing, etc., are different from the case in which the write data buffer function is disabled. Also, internal bus cycles maybe hidden, and not visible.

• Write Data Buffer Function and TEND Output

A low level is not output at the $\overline{\text{TEND}}$ pin if the bus cycle in which a low level is to be output at the $\overline{\text{TEND}}$ pin is an internal bus cycle, and an external write cycle is executed in parallel with this cycle. Note, for example, that a low level may not be output at the $\overline{\text{TEND}}$ pin if the write data buffer function is used when data transfer is performed between an internal I/O register and on-chip memory.

If at least one of the DMAC transfer addresses is an external address, a low level is output at the $\overline{\text{TEND}}$ pin.

Figure 7.42 shows an example in which a low level is not output at the $\overline{\text{TEND}}$ pin.

9.7 Port 6

9.7.1 Overview

Port 6 is an 8-bit I/O port. Port 6 pins also function as interrupt input pins (\overline{IRQ}_0 to \overline{IRQ}_3), DMAC* I/O pins (\overline{DREQ}_0 , \overline{TEND}_0 , \overline{DREQ}_1 , and \overline{TEND}_1), and bus control output pins (\overline{CS}_4 to \overline{CS}_7). The functions of pins P6₅ to P6₂ are the same in all operating modes, while the functions of pins P6₇, P6₆, P6₁, and P6₀ change according to the operating mode. Switching of \overline{CS}_4 to \overline{CS}_7 output can be performed by setting PFCR2. Pins P6₇ to P6₄ are Schmitt-triggered inputs. Figure 9.6 shows the port 6 pin configuration.

Note: * The DMAC is not supported in the H8S/2321.

Figure 9.6 Port 6 Pin Functions

Rev.6.00 Sep. 27, 2007 Page 388 of 1268 REJ09B0220-0600

Contention between TCNT Write and Overflow/Underflow: If there is an up-count or down-count in the T₂ state of a TCNT write cycle, and overflow/underflow occurs, the TCNT write takes precedence and the TCFV/TCFU flag in TSR is not set.

Figure 10.57 shows the operation timing when there is contention between TCNT write and overflow.

Figure 10.57 Contention between TCNT Write and Overflow

Multiplexing of I/O Pins: In the chip, the TCLKA input pin is multiplexed with the TIOCC0 I/O pin, the TCLKB input pin with the TIOCD0 I/O pin, the TCLKC input pin with the TIOCB1 I/O pin, and the TCLKD input pin with the TIOCB2 I/O pin. When an external clock is input, compare match output should not be performed from a multiplexed pin.

Interrupts and Module Stop Mode: If module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source or the DMAC^{*} or DTC activation source. Interrupts should therefore be disabled before entering module stop mode.

Note: * The DMAC is not supported in the H8S/2321.

Bit 6 WT/IT		Description				
0		Interval timer: Sends the CPU an interval timer interrupt request (WOVI) when TCNT overflows	(Initial value)			
1		Watchdog timer: Generates the WDTOVF signal*1 when TCNT overflows	s*2			
Notes:	1.	The WDTOVF pin function cannot be used in the F-ZTAT versions.				
	2.	For details of the case where TCNT overflows in watchdog timer mode, see section 13.2.3, Reset Control/Status Register (RSTCSR).				

Bit 5—Timer Enable (TME): Selects whether TCNT runs or is halted.

Bit 5 TME	Description	
0	TCNT is initialized to H'00 and halted	(Initial value)
1	TCNT counts	

Bits 4 and 3—Reserved: These bits cannot be modified and are always read as 1.

Bits 2 to 0—Clock Select 2 to 0 (CKS2 to CKS0): These bits select one of eight internal clock sources, obtained by dividing the system clock (ϕ), for input to TCNT.

			Description	
Bit 2 CKS2	Bit 1 CKS1	Bit 0 CKS0	Clock	Overflow Period (when $\phi = 20 \text{ MHz})^*$
0	0	0	φ/2 (Initial value)	25.6 µs
		1	φ/64	819.2 µs
	1	0	ф/128	1.6 ms
		1	φ/512	6.6 ms
1	0	0	ф/2048	26.2 ms
		1	ф/8192	104.9 ms
	1	0	ф/32768	419.4 ms
		1	ф/131072	1.68 s

Note: * The overflow period is the time from when TCNT starts counting up from H'00 until overflow occurs.

- Full-duplex communication capability
 - The transmitter and receiver are mutually independent, enabling transmission and reception to be executed simultaneously
 - Double-buffering is used in both the transmitter and the receiver, enabling continuous transmission and continuous reception of serial data
- Choice of LSB-first or MSB-first transfer
 - Can be selected regardless of the communication mode^{*1} (except in the case of asynchronous mode 7-bit data)
- Built-in baud rate generator allows any bit rate to be selected
- Choice of serial clock source: internal clock from baud rate generator or external clock from SCK pin
- Four interrupt sources
 - Four interrupt sources—transmit-data-empty, transmit-end, receive-data-full, and receive error—that can issue requests independently
 - The transmit-data-empty and receive-data-full interrupts can activate the DMA controller (DMAC)^{*2} or data transfer controller (DTC) to execute data transfer
- Module stop mode can be set
 - As the initial setting, SCI operation is halted. Register access is enabled by exiting module stop mode
- Notes: 1. Descriptions in this section refer to LSB-first transfer.
 - 2. The DMAC is not supported in the H8S/2321.

0 ERI Interrupt due to receive error (ORER, FER, or PER) Not possible Not possible High possible RXI Interrupt due to receive data full state (RDRF) Possible Possible Possible TXI Interrupt due to transmit data empty state (TDRE) Possible Possible Possible TEI Interrupt due to transmission end (TEND) Not Not possible Not possible 1 ERI Interrupt due to receive error (ORER, FER, or PER) Not Not possible RXI Interrupt due to receive data full Possible Possible RXI Interrupt due to receive data full Possible Possible TXI Interrupt due to receive data full Possible Possible TXI Interrupt due to receive data full Possible Possible TXI Interrupt due to transmit data empty Possible Possible TXI Interrupt due to transmit data empty Possible Possible TXI Interrupt due to transmit data empty Possible Possible	Channel
RXI Interrupt due to receive data full state (RDRF) Possible Possible TXI Interrupt due to transmit data empty state (TDRE) Possible Possible TEI Interrupt due to transmission end (TEND) Not Not possible 1 ERI Interrupt due to receive error (ORER, FER, or PER) Not Not possible RXI Interrupt due to receive data full Possible Possible TXI Interrupt due to receive data full Possible Possible TXI Interrupt due to receive data full Possible Possible TXI Interrupt due to transmit data empty state (RDRF) Possible Possible TXI Interrupt due to transmit data empty state (TDRE) Possible Possible	0
TXI Interrupt due to transmit data empty state (TDRE) Possible Possible TEI Interrupt due to transmission end (TEND) Not possible Not possible 1 ERI Interrupt due to receive error (ORER, FER, or PER) Not possible Not possible RXI Interrupt due to receive data full state (RDRF) Possible Possible Possible TXI Interrupt due to transmit data empty state (TDRE) Possible Possible Possible	
TEI Interrupt due to transmission end (TEND) Not possible Not possible 1 ERI Interrupt due to receive error (ORER, FER, or PER) Not possible Not possible RXI Interrupt due to receive data full state (RDRF) Possible Possible TXI Interrupt due to transmit data empty state (TDRE) Possible Possible	
1 ERI Interrupt due to receive error (ORER, FER, or PER) Not possible Not possible RXI Interrupt due to receive data full state (RDRF) Possible Possible TXI Interrupt due to transmit data empty state (TDRE) Possible Possible	
RXIInterrupt due to receive data fullPossiblePossiblestate (RDRF)TXIInterrupt due to transmit data emptyPossiblePossiblestate (TDRE)Formation of the state (TDRE)Formation of the state (TDRE)Formation of the state (TDRE)	1
TXI Interrupt due to transmit data empty Possible Possible state (TDRE)	
TEIInterrupt due to transmission endNotNot(TEND)possiblepossible	
2 ERI Interrupt due to receive error Not Not (ORER, FER, or PER) possible possible	2
RXI Interrupt due to receive data full Possible Not state (RDRF) possible	
TXI Interrupt due to transmit data empty Possible Not state (TDRE) possible	
TEI Interrupt due to transmission end Not Not (TEND) possible possible Low	

Table 14.12 SCI Interrupt Sources

Notes: 1. This table shows the initial state immediate after a reset. Relative priorities among channels can be changed by the interrupt controller.

2. The DMAC is not supported in the H8S/2321.

A TEI interrupt is requested when the TEND flag is set to 1 while the TEIE bit is set to 1. The TEND flag is cleared at the same time as the TDRE flag. Consequently, if a TEI interrupt and a TXI interrupt are requested simultaneously, the TXI interrupt may be accepted first, with the result that the TDRE and TEND flags are cleared. Note that the TEI interrupt will not be accepted in this case.

Renesas

Figure 19.12 RAM Areas in Boot Mode

Notes on Use of Boot Mode

- When the chip comes out of reset in boot mode, it measures the low-level period of the input at the SCI's RxD1 pin. The reset should end with RxD1 high. After the reset ends, it takes approximately 100 states before the chip is ready to measure the low-level period of the RxD1 pin.
- In boot mode, if any data has been programmed into the flash memory (if all data is not 1), all flash memory blocks are erased. Boot mode is for use when user program mode is unavailable, such as the first time on-board programming is performed, or if the program activated in user program mode is accidentally erased.
- Interrupts cannot be used while the flash memory is being programmed or erased.
- The RxD1 and TxD1 pins should be pulled up on the board.
- Before branching to the programming control program (RAM area H'FF8400 to H'FFFBFF), the chip terminates transmit and receive operations by the on-chip SCI (channel 1) (by clearing the RE and TE bits in SCR to 0), but the adjusted bit rate value remains set in BRR. The transmit data output pin, TxD1, goes to the high-level output state (P31DDR = 1, P31DR = 1).

Flash Memory Programming and Erasing Precautions.

Figure 19.40 User Program Mode Execution Procedure

19.20 Flash Memory PROM Mode

19.20.1 PROM Mode Setting

Programs and data can be written and erased in PROM mode as well as in the on-board programming modes. In PROM mode, the on-chip ROM can be freely programmed using a PROM programmer that supports the Renesas microcomputer device type with 256-kbyte on-chip flash memory (FZTAT256V3A). Flash memory read mode, auto-program mode, auto-erase mode, and status read mode are supported with this device type. In auto-program mode, auto-erase mode, and status read mode, a status polling procedure is used, and in status read mode, detailed internal signals are output after execution of an auto-program or auto-erase operation.

Table 19.34 shows PROM mode pin settings.

Pin Names	Settings/External Circuit Connection
Mode pins: MD2, MD1, MD0	Low-level input
Mode setting pins: P66, P65, P64	High-level input to P66, low-level input to P65 and P64
FWE pin	High-level input (in auto-program and auto-erase modes)
STBY pin	High-level input (do not select hardware standby mode)
RES pin	Reset circuit
XTAL, EXTAL pins	Oscillator circuit
Other pins requiring setting: P32, P25	High-level input to P32, low-level input to P25

Table 19.34 PROM Mode Pin Settings

Bit 2—Program-Verify 1 (PV1): Selects program-verify mode transition or clearing for addresses H'000000 to H'03FFFF. Do not set the SWE1, ESU1, PSU1, EV1, E1, or P1 bit at the same time.

Bit 2 PV1	Description	
0	Program-verify mode cleared	(Initial value)
1	Transition to program-verify mode	
	[Setting condition]	
	When FWE = 1, SWE1 = 1	

Bit 1—Erase 1 (E1): Selects erase mode transition or clearing for addresses H'000000 to H'03FFFF. Do not set the SWE1, ESU1, PSU1, EV1, PV1, or P1 bit at the same time.

Bit 1		
E1	Description	
0	Erase mode cleared	(Initial value)
1	Transition to erase mode	
	[Setting condition]	
	When $FWE = 1$, $SWE1 = 1$, and $ESU1 = 1$	

Bit 0—Program 1 (P1): Selects program mode transition or clearing for addresses H'000000 to H'03FFFF. Do not set the SWE1, PSU1, ESU1, EV1, PV1, or E1 bit at the same time.

Bit 0		
P1	Description	
0	Program mode cleared	(Initial value)
1	Transition to program mode	
	[Setting condition]	
	When $FWE = 1$, $SWE1 = 1$, and $PSU1 = 1$	

Figure 22.18 DMAC TEND Output Timing

Figure 22.19 DMAC DREQ Input Timing

Section 22 Electrical Characteristics

				Condition A		Condition B			Test
Item			Symbol	Min	Max	Min	Max	Unit	Conditions
SCI	Input clock	Asynchronous	t _{Scyc}	4	_	4		t _{cyc}	Figure 22.28
	cycle	Synchronous	_	6	_	6	_	_	
	Input clock pulse width		t _{SCKW}	0.4	0.6	0.4	0.6	t _{Scyc}	_
	Input clock ris	t _{SCKr}	_	1.5	—	1.5	t _{cyc}	_	
	Input clock fa	t _{SCKf}	_	1.5		1.5	_		
	Transmit data delay time		t _{TXD}	_	50		40	ns	Figure 22.29
	Receive data setup time (synchronous)		t _{RXS}	50	_	40	_	ns	_
	Receive data hold time (synchronous)		t _{RXH}	50	_	40	_	ns	_
A/D converter	Trigger input	setup time	t _{TRGS}	30	—	30	_	ns	Figure 22.30

22.2.2 DC Characteristics

Table 22.13 DC Characteristics

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}^{*1}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (widerange specifications)

ltem		Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt	Ports 1, 2,	V_{T}^{-}	$V_{CC} \times 0.2$	_		V	
trigger input	P6 ₄ to P6 ₇	V _T ⁺	_	_	$V_{\text{CC}} \times 0.7$	V	
vollage	PA ₄ to PA ₇	$V_T^+ - V_T^-$	$V_{\text{CC}} \times 0.07$	_	_	V	
	Port 5 (when using IRQ)						
Input high voltage	$\label{eq:response} \overline{\text{RES}}, \overline{\text{STBY}}, \text{NMI}, \\ \text{MD}_2 \text{ to } \text{MD}_{0,,} \\ \text{FWE}^{*2}, \text{EMLE}^{*3} \\ \end{array}$	V _{IH}	$V_{CC} imes 0.9$		V _{CC} + 0.3	V	
	EXTAL	_	$V_{CC} \times 0.7$	_	V _{CC} + 0.3	V	
	Ports 3, 5, B to G, $P6_0$ to $P6_3$, PA_0 to PA_3		2.2		V _{CC} + 0.3	V	_
	Port 4		2.2	_	AV _{CC} + 03	3 V	
Input low voltage	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	VIL	-0.3	_	$V_{CC} imes 0.1$	V	
	NMI, EXTAL, Ports 3 to 5, B to G, P6 ₀ to P6 ₃ , PA ₀ to PA ₃		-0.3	_	$V_{CC} \times 0.2$	V	_
Output high	All output pins	V _{OH}	$V_{CC}-0.5$	_	_	V	I _{OH} = -200 µA
voltage			$V_{CC} - 1.0$	_	_	V	$I_{OH} = -1 \text{ mA}$
Output low voltage	All output pins	V _{OL}	—	—	0.4	V	I _{OL} = 1.6 mA
Input	RES	I _{in}	_	_	10.0	μA	$V_{in} = 0.5 V to$
leakage current	$\label{eq:stars} \begin{array}{l} \overline{\text{STBY}}, \text{NMI}, \\ \text{MD}_2 \text{ to } \text{MD}_0, \\ \text{FWE}^{*2}, \text{EMLE}^{*3} \end{array}$	_	_	_	1.0	μΑ	V _{CC} 0.5 V
	Port 4	-	_	—	1.0	μA	$\label{eq:Vin} \begin{array}{l} V_{\text{in}} = 0.5 \ \text{V} \ \text{to} \\ AV_{\text{CC}} - 0.5 \ \text{V} \end{array}$

			lns	Ac	ddr∈ ctio	ssii n Le	ng ¹	Nod th (E	e/ 3yte	(se							
		eziS busi		~0	н ев~) ки	בפט/@בפהב ויבמח)	E	() JC)	86(Condit	ion	Ŝ	e de	No. of States *1	
	Mnemonic	edO	XX#	u Ŋ	-,e -,e	ר <u>@</u> שוו	e@) @	00	—	Operation	Z H H		>	υ	Advanced	
SHLR	SHLR.B Rd	ш		2								0	\leftrightarrow	0	\leftrightarrow	٢	· · · ·
	SHLR.B #2,Rd	۵		2								0 	\leftrightarrow	0	\leftrightarrow	~	
	SHLR.W Rd	≥		2								0	\leftrightarrow	0	\leftrightarrow	٢	
	SHLR.W #2,Rd	≥		2							MSB	0 	\leftrightarrow	0	\leftrightarrow	٢	
	SHLR.L ERd	_		2								0 	\leftrightarrow	0	\leftrightarrow	٢	
	SHLR.L #2,ERd	_		2								0	\leftrightarrow	0	\leftrightarrow	٢	
ROTXL	ROTXL.B Rd	В		2	-							↔ 	\leftrightarrow	0	\leftrightarrow	٢	
	ROTXL.B #2,Rd	В		2	-							↔ 	\leftrightarrow	0	\leftrightarrow	L	
	ROTXL.W Rd	Ν		2	$\left - \right $							↔ 	\leftrightarrow	0	\leftrightarrow	L.	
	ROTXL.W #2,Rd	\geq		5							C MSB	↔ 	\leftrightarrow	0	\leftrightarrow	1	
	ROTXL.L ERd	_		2								↔ 	\leftrightarrow	0	\leftrightarrow	1	
	ROTXL.L #2,ERd	_		2								↔ 	\leftrightarrow	0	\leftrightarrow	Ł	
ROTXR	ROTXR.B Rd	В		5								↔ 	\leftrightarrow	0	\leftrightarrow	1	
	ROTXR.B #2,Rd	В		2	-							↔ 	\leftrightarrow	0	\leftrightarrow	1	
	ROTXR.W Rd	≥		2	-	_	_					↔ 	\leftrightarrow	0	\leftrightarrow	1	
	ROTXR.W #2,Rd	≥		2	-						MSB - LSB C	↔ 	\leftrightarrow	0	\leftrightarrow	٢	
	ROTXR.L ERd	_		2								↔ 	\leftrightarrow	0	\leftrightarrow	1	
	ROTXR.L #2,ERd	_		2								↔ 	\leftrightarrow	0	\leftrightarrow	1	

Operation Code Map (3) Table A.3

f DH is 0.	of DH is 1.		ш												
ificant bit o	ificant bit o		ш												
most signi	most signi		۵												
tion when	tion when		U												
 Instruct 	- Instruct		В												
N			A												
ļ			6												
			8												
			7					BLD BILD	BST BIST			BLD BILD	BST BIST		
byte	DL		9			AND		BAND BIAND				BAND BIAND			
4th	Н		5			XOR		BXOR BIXOR				BXOR BIXOR			
3rd byte	H CL	-	4			OR		BOR BIOR				BOR BIOR			
0	L CF	-	з		DIVXS		BTST	BTST			BTST	BTST			
2nd byt	В		2	MULXS					BCLR	BCLR			BCLR	BCLR	1-1-22
byte	AL		+		DIVXS				BNOT	BNOT			BNOT	BNOT	
1st	AH		0	MULXS					BSET	BSET			BSET	BSET	
Instruction code				01C05	01D05	01F06	7Cr06 *1	7Cr07 *1	7Dr06 *1	7Dr07 *1	7Eaa6 *2	7Eaa7 *2	7Faa6 *2	7Faa7 *2	

Notes:

r is the register specification field. aa is the absolute address specification. -- ~i

Appendix B Internal I/O Registers

	Register							-		Module	Data Bus
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name	Width
H'FF78	SMR0	C/A/ GM ^{*7}	CHR/ BLK ^{*8}	PE	O/E	STOP/ BCP1 ^{*9}	MP/ BCP0 ^{*10}	CKS1	CKS0	SCI0, smart	8 bits
H'FF79	BRR0									card	
H'FF7A	SCR0	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0		
H'FF7B	TDR0										
H'FF7C	SSR0	TDRE	RDRF	ORER	FER/ ERS ^{*11}	PER	TEND	MPB	MPBT		
H'FF7D	RDR0									_	
H'FF7E	SCMR0	_	_	_	_	SDIR	SINV	_	SMIF		
H'FF80	SMR1	C/Ā/ GM ^{*7}	CHR/ BLK ^{*8}	PE	O/Ē	STOP/ BCP1 ^{*9}	MP/ BCP0 ^{*10}	CKS1	CKS0	SCI1, smart	8 bits
H'FF81	BRR1									card	
H'FF82	SCR1	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	- menace i	
H'FF83	TDR1									_	
H'FF84	SSR1	TDRE	RDRF	ORER	FER/ ERS ^{*11}	PER	TEND	MPB	MPBT	_	
H'FF85	RDR1									_	
H'FF86	SCMR1	_	_	_	_	SDIR	SINV	_	SMIF		
H'FF88	SMR2	C/Ā/ GM ^{*7}	CHR/ BLK ^{*8}	PE	O/Ē	STOP/ BCP1 ^{*9}	MP/ BCP0 ^{*10}	CKS1	CKS0	SCI2, smart	8 bits
H'FF89	BRR2									card	
H'FF8A	SCR2	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	- Interface 2	
H'FF8B	TDR2									_	
H'FF8C	SSR2	TDRE	RDRF	ORER	FER/ ERS ^{*11}	PER	TEND	MPB	MPBT		
H'FF8D	RDR2									_	
H'FF8E	SCMR2	_	_	_	_	SDIR	SINV	_	SMIF		
H'FF90	ADDRAH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	A/D	8 bits
H'FF91	ADDRAL	AD1	AD0	_	_	_	_	_	_	converter	
H'FF92	ADDRBH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2		
H'FF93	ADDRBL	AD1	AD0	_		_	_	_	_		
H'FF94	ADDRCH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	_	
H'FF95	ADDRCL	AD1	AD0	_	_	_	_	_	_	_	
H'FF96	ADDRDH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	_	
H'FF97	ADDRDL	AD1	AD0	_	_	_	_	_	_	_	
H'FF98	ADCSR	ADF	ADIE	ADST	SCAN	CKS	CH2	CH1	CH0	_	
H'FF99	ADCR	TRGS1	TRGS0	_	_	CKS1	CH3	_	_		
H'FFA4	DADR0									D/A	8 bits
H'FFA5	DADR1									converter	
H'FFA6	DACR01	DAOE1	DAOE0	DAE	_	_		_	—		

ADCSR—A/D Control/Status Register

H'FF98

A/D Converter

	1		6	:	5	4	4 3 2		1	0	
	ADF	A	DIE	AD	ST	SC	AN C	KS	CH2	CH1	CH0
Initial value :	0		0	. (0	0)	0	0	0	0
Read/Write :	R/(W)*	1 R	/W	R	/W	R/	W R	/W	R/W	R/W	R/W
							Channel S Note: Th En bei	Select - ese bits sure that fore ma	select at conve king a c	the analog inpersion is halted	ut channels 1 (ADST = 0 ion.
							Group Selection	CH1	annel ection	Single Mode (SCAN = 0)	Scan Mod (SCAN = 1
							0	0	0	AN ₀ (Initial value)	AN ₀
									1	AN ₁	AN ₀ , AN ₁
								1	0	AN ₂	AN ₀ to AN
									1	AN ₃	AN ₀ to AN
							1	0	0	AN ₄	AN ₄
									1	AN ₅	AN_4, AN_5
								1	0	AN ₆	AN ₄ to AN
						CIUCI	001001				
					Sco 1	Note	: CKS is of ADCI See AD H'FF99 de ngle mode	used in R. CR—A A/D Co	combin /D Cont onverter	ation with bit 3 rol Register r.	3 (CKS1)
				A/D S	Sc C 1 Start	Note	: CKS is of ADCI See AD H'FF99 de ngle mode	used in R. CR—A A/D Co	combin /D Cont onverter	ation with bit 3 rol Register r.	3 (CKS1)
				A/D S	Sc C 1 Start A/D	Note Note an Mo Sir Sc convei	: CKS is of ADCI See AD H'FF99 de angle mode an mode	used in R. CR—A A/D Co	combin /D Cont onverter	ation with bit 3	3 (CKS1)
				A/D 5	Start A/D • Sin auto • Sca seq 0 by mod	Note Note Sir Sir Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc	c CKS is of ADCI See AD H'FF99 de an mode an mode rsion stopp de: A/D co ally when le: A/D co ly on the s are, a res op mode	used in R. CR—A/ A/D Co Ded Doversion conversion conversion selected et, or tra	combin /D Cont onverter on is sta sion end n is star d chann ansition	ation with bit 3 rol Register r. arted. Cleared ds ted. Conversid els until ADST to standby mo	3 (CKS1) to 0 on continues is cleared t ode or
		A/D	Interr	A/D 3	Scale	Note Note Sir Sir Sconver gle mo conver gle mo conatica an mod uential y softw dule str	c CKS is of ADCI See AD H'IFF99 de an mode an mode rsion stopp de: A/D co ally when le: A/D co ally on the : are, a res op mode	used in R. CR—A/ A/D Co Ded Donversio conversion selected et, or tra	combin /D Cont ponverter on is sta sion enc n is star d chann ansition	ation with bit 3 rol Register r. arted. Cleared ds ted. Conversio els until ADST to standby mo	to 0 to continues is cleared to ode or
		A/D	Interr	A/D S 0 1 rupt E	Scc C Start A/D • Sin auto • Scc seq 0 by moor nable version	Note Note an Mo Sir Sir Sconver gle mo conver gle mo contica an mod uential y softw dule str n end i	c CKS is of ADCI See AD H'FF99 de an mode an mode rsion stopp de: A/D co ally when le: A/D co ly on the s are, a res op mode	used in R. CR—A. A/D Co Ded Double Conversion con	combin /D Cont onverter on is sta sion enc n is star d chann ansition	ation with bit 3 rol Register r. arted. Cleared ts ted. Conversion els until ADST to standby mo	to 0 to continues is cleared to ode or

0	[Clearing conditions] • When 0 is written to the ADF flag after reading ADF = 1 • When the DMAC ^{*2} or DTC is activated by an ADI interrupt, and ADDR is read
1	[Setting conditions] • Single mode: When A/D conversion ends • Scan mode: When A/D conversion ends on all specified channels

Notes: 1. Can only be written with 0 for flag clearing.2. The DMAC is not supported in the H8S/2321.

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
PG ₀ /CAS ^{*3}	4 to 6	Т	Т	$[DRAME^{*4} = 0]$ kept $[DRAME^{*4} \cdot OPE = 1]$ T $[DRAME^{*4} \cdot OPE = 1]$ $OPE = 1]$ CAS^{*3}	Т	$[DRAME^{*4} = 0]$ Input port $[DRAME^{*4} = 1]$ CAS ^{*3}
	7	Т	Т	kept	kept	I/O port

- Legend:
- H: High level
- L: Low level
- T: High impedance
- kept: Input port becomes high-impedance, output port retains state
- DDR: Data direction register
- OPE: Output port enable
- WAITE: Wait input enable
- WAITPS: WAIT pin select
- BRLE: Bus release enable
- BREQOE: BREQO pin enable
- **BREQOPS: BREQO pin select**
- DRAME: DRAM space setting
- LCASE: DRAM space setting, 16-bit access setting
- AnE: Address n enable (n = 23 to 21)
- A20E: Address 20 enable
- ASOD: AS output disable
- CS167E: CS167 enable
- CS25E: CS25 enable
- LWROD: LWR output disable
- Notes: 1. $\overline{\text{LCAS}}$ is not supported in the H8S/2321.
 - 2. As the DRAM interface is not supported in the H8S/2321, LCASE is always 0.
 - 3. \overline{CAS} is not supported in the H8S/2321.
 - 4. As the DRAM interface is not supported in the H8S/2321, DRAME is always 0.
 - 5. The $\overline{\text{WDTOVF}}$ pin function is not usable on the F-ZTAT version.
 - 6. A low level is output if a WDT overflow occurs while WT/IT is set to 1.

Renesas