

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	H8S/2000
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	86
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	120-TQFP
Supplier Device Package	120-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/d12322rvte25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 2. Reserved area when EAE = 1 in BCRL; on-chip ROM when EAE = 0.
 - 3. On-chip RAM is used for flash memory programming. Do not clear the RAME bit in SYSCR to 0.
- 4. Do not access a reserved area.

Figure 3.2 (b) H8S/2328 Memory Map in Each Operating Mode (F-ZTAT Only)

Rev.6.00 Sep. 27, 2007 Page 90 of 1268 REJ09B0220-0600

6.2.7 DRAM Control Register (DRAMCR)

Bit	:	7	6	5	4	3	2	1	0
		RFSHE	RCW	RMODE	CMF	CMIE	CKS2	CKS1	CKS0
Initial valu	e :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

DRAMCR is an 8-bit readable/writable register that selects the DRAM refresh mode and refresh counter clock, and controls the refresh timer.

DRAMCR is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Note: In the H8S/2321 this register is reserved and must not be accessed.

Bit 7—Refresh Control (RFSHE): Selects whether or not refresh control is performed. When refresh control is not performed, the refresh timer can be used as an interval timer.

Bit 7		
RFSHE	Description	
0	Refresh control is not performed	(Initial value)
1	Refresh control is performed	

Bit 6—RAS-CAS Wait (RCW): Controls wait state insertion in DRAM interface CAS-before-RAS refreshing.

Bit 6 RCW	Description	
0	Wait state insertion in CAS-before-RAS refreshing disabled $$\overline{\hbox{RAS}}$$ falls in T_{Rr} cycle	(Initial value)
1	One wait state inserted in CAS-before-RAS refreshing $$\overline{\mbox{RAS}}$$ falls in $T_{\mbox{Rc1}}$ cycle	

Bit 5—Refresh Mode (RMODE): When refresh control is performed (RFSHE = 1), selects whether or not self-refresh control is performed in software standby mode.

Bit 5		
RMODE	Description	
0	Self-refreshing is not performed in software standby mode	(Initial value)
1	Self-refreshing is performed in software standby mode	

7.3.4 DMA Control Register (DMACR)

DMACR is a 16-bit readable/writable register that controls the operation of each DMAC channel. In full address mode, DMACRA and DMACRB have different functions.

DMACR is initialized to H'0000 by a reset, and in hardware standby mode.

DMACRA

Bit :	15	14	13	12	11	10	9	8
	DTSZ	SAID	SAIDE	BLKDIR	BLKE	_	_	
Initial value :	0	0	0	0	0	0	0	0
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

DMACRB

Bit	:	7	6	5	4	3	2	1	0
		—	DAID	DAIDE	_	DTF3	DTF2	DTF1	DTF0
Initial valu	re :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 15—Data Transfer Size (DTSZ): Selects the size of data to be transferred at one time.

Bit 15 DTSZ	Description	
0	Byte-size transfer	(Initial value)
1	Word-size transfer	

Channel	Bit 7 IOD3	Bit 6 IOD2	Bit 5 IOD1	Bit 4 IOD0	Descripti	on			
3	0	0	0	0	TGR3D	Output disabled	(Initial value)		
				1	is output	Initial output is 0	0 output at compare match		
			1	0	register*2	output	1 output at compare match		
				1	_ 0		Toggle output at compare match		
		1	0	0		(Output disabled		
				1	_	Initial output is 1	0 output at compare match		
					1	0	_	output	1 output at compare match
				1			Toggle output at compare match		
	1	0	0	0	TGR3D	Capture input	Input capture at rising edge		
		1 is in	is input	s input source is	Input capture at falling edge				
			1	*	register*2	nocos pin	Input capture at both edges		
		1	*	*	_	Capture input source is channel 4/count clock	Input capture at TCNT4 count- up/count-down ^{*1}		

*: Don't care

- Notes: 1. When bits TPSC2 to TPSC0 in TCR4 are set to B'000 and $\phi/1$ is used as the TCNT4 count clock, this setting is invalid and input capture is not generated.
 - 2. When the BFB bit in TMDR3 is set to 1 and TGR3D is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Contention between Overflow/Underflow and Counter Clearing: If overflow/underflow and counter clearing occur simultaneously, the TCFV/TCFU flag in TSR is not set and TCNT clearing takes precedence.

Figure 10.56 shows the operation timing when a TGR compare match is specified as the clearing source, and H'FFFF is set in TGR.

φ	
TCNT input clock	
TCNT	H'FFFF H'0000
Counter clear signal	
TGF	
TCFV flag	Prohibited

Figure 10.56 Contention between Overflow and Counter Clearing

Bit 5—Group 1 Inversion (G1INV): Selects direct output or inverted output for pulse output group 1 (pins PO7 to PO4).

Bit 5 G1INV	Description
0	Inverted output for pulse output group 1 (low-level output at pin for a 1 in PODRL)
1	Direct output for pulse output group 1 (high-level output at pin for a 1 in PODRL) (Initial value)

Bit 4—Group 0 Inversion (G0INV): Selects direct output or inverted output for pulse output group 0 (pins PO3 to PO0).

Bit 4 G0INV	Description
0	Inverted output for pulse output group 0 (low-level output at pin for a 1 in PODRL)
1	Direct output for pulse output group 0 (high-level output at pin for a 1 in PODRL) (Initial value)

Bit 3—Group 3 Non-Overlap (G3NOV): Selects normal or non-overlapping operation for pulse output group 3 (pins PO15 to PO12).

Bit 3 G3NOV	Description
0	Normal operation in pulse output group 3 (output values updated at compare match A in the selected TPU channel) (Initial value)
1	Non-overlapping operation in pulse output group 3 (independent 1 and 0 output at compare match A or B in the selected TPU channel)

Bit 2—Group 2 Non-Overlap (G2NOV): Selects normal or non-overlapping operation for pulse output group 2 (pins PO11 to PO8).

Bit 2 G2NOV	Description
0	Normal operation in pulse output group 2 (output values updated at compare match A in the selected TPU channel) (Initial value)
1	Non-overlapping operation in pulse output group 2 (independent 1 and 0 output at compare match A or B in the selected TPU channel)

11.3.6 Pulse Output Triggered by Input Capture

Pulse output can be triggered by TPU input capture as well as by compare match. If TGRA functions as an input capture register in the TPU channel selected by PCR, pulse output will be triggered by the input capture signal.

Figure 11.9 shows the timing of this output.

Figure 11.9 Pulse Output Triggered by Input Capture (Example)

Bit 2—Smart Card Data Invert (SINV): Specifies inversion of the data logic level. This function is used together with the SDIR bit for communication with an inverse convention card. The SINV bit does not affect the logic level of the parity bit. For parity-related setting procedures, see section 15.3.4, Register Settings.

Bit 2 SINV	Description	
0	TDR contents are transmitted as they are	(Initial value)
	Receive data is stored as it is in RDR	
1	TDR contents are inverted before being transmitted	
	Receive data is stored in inverted form in RDR	

Bit 1—Reserved: Read-only bit, always read as 1.

Bit 0—Smart Card Interface Mode Select (SMIF): Enables or disables the smart card interface function.

Bit O BMIF	Description	
0	Smart card interface function is disabled	(Initial value)
1	Smart card interface function is enabled	

The method of calculating the value to be set in the bit rate register (BRR) from the operating frequency and bit rate, on the other hand, is shown below. N is an integer, $0 \le N \le 255$, and the smaller error is specified.

$$N = \frac{\varphi}{-S \times 2^{2n+1} \times B} \times 10^6 - 1$$

Table 15.6 Examples of BRR Settings for Bit Rate B (bits/s) (When n = 0 and S = 372)

									¢	(MHz)								
	7.1424		10.00		10.7136		13.00		14.2848		16.00		18.00		20.00		25.00	
Bits/s	N	Error	Ν	Error	Ν	Error	Ν	Error	Ν	Error	Ν	Error	Ν	Error	Ν	Error	Ν	Error
9600	0	0.00	1	30	1	25	1	8.99	1	0.00	1	12.01	2	15.99	2	6.60	3	12.49

Table 15.7 Maximum Bit Rate at Various Frequencies (Smart Card Interface Mode) (When S = 372)

φ (MHz)	Maximum Bit Rate (bits/s)	Ν	n	
7.1424	9600	0	0	
10.00	13441	0	0	
10.7136	14400	0	0	
13.00	17473	0	0	
14.2848	19200	0	0	
16.00	21505	0	0	
18.00	24194	0	0	
20.00	26882	0	0	
25.00	33602	0	0	

The bit rate error is given by the following formula:

Error (%) =
$$\left(\frac{\phi}{S \times 2^{2n+1} \times B \times (N+1)} \times 10^6 - 1\right) \times 100$$

Renesas

Table 19.16 AC Characteristics in Memory Read Mode

Conditions: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{SS} = 0 \text{ V}$, $T_a = 25^{\circ}C \pm 5^{\circ}C$

Item	Symbol	Min	Max	Unit	
Command write cycle	t _{nxtc}	20	—	μs	
CE hold time	t _{ceh}	0	—	ns	
CE setup time	t _{ces}	0	—	ns	
Data hold time	t _{dh}	50	—	ns	
Data setup time	t _{ds}	50	—	ns	
Write pulse width	t _{wep}	70	—	ns	
WE rise time	t _r	_	30	ns	
WE fall time	t _f	_	30	ns	

Figure 19.21 Memory Read Mode Timing Waveforms after Command Write

Table 19.17 AC Characteristics when Entering Another Mode from Memory Read Mode

Conditions: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{SS} = 0 \text{ V}$, $T_a = 25^{\circ}C \pm 5^{\circ}C$

Item	Symbol	Min	Max	Unit	
Command write cycle	t _{nxtc}	20	—	μs	
CE hold time	t _{ceh}	0	—	ns	
CE setup time	t _{ces}	0	—	ns	
Data hold time	t _{dh}	50	—	ns	
Data setup time	t _{ds}	50	—	ns	
Write pulse width	t _{wep}	70	_	ns	
WE rise time	tr	_	30	ns	
WE fall time	t _f	_	30	ns	

Figure 19.22 Timing Waveforms when Entering Another Mode from Memory Read Mode

Bit 3—RAM Select (RAMS): Specifies selection or non-selection of flash memory emulation in RAM. When RAMS = 1, all flash memory blocks are program/erase-protected.

Bit 3 RAMS	Description	
0	Emulation not selected	(Initial value)
	Program/erase-protection of all flash memory blocks is disabled	
1	Emulation selected	
	Program/erase-protection of all flash memory blocks is enabled	

Bits 2 to 0—Flash Memory Area Selection (RAM2 to RAM0): These bits are used together with bit 3 to select the flash memory area to be overlapped with RAM (see table 19.29).

Table 19.29 Flash Memory Area Divisions

RAM Area	Block Name	RAMS	RAM2	RAM1	RAM0
H'FFDC00 to H'FFEBFF	RAM area, 4 kbytes	0	*	*	*
H'000000 to H'000FFF	EB0 (4 kbytes)	1	0	0	0
H'001000 to H'001FFF	EB1 (4 kbytes)	1	0	0	1
H'002000 to H'002FFF	EB2 (4 kbytes)	1	0	1	0
H'003000 to H'003FFF	EB3 (4 kbytes)	1	0	1	1
H'004000 to H'004FFF	EB4 (4 kbytes)	1	1	0	0
H'005000 to H'005FFF	EB5 (4 kbytes)	1	1	0	1
H'006000 to H'006FFF	EB6 (4 kbytes)	1	1	1	0
H'007000 to H'007FFF	EB7 (4 kbytes)	1	1	1	1

*: Don't care

19.24 On-Board Programming Modes

When pins are set to on-board programming mode, program/erase/verify operations can be performed on the on-chip flash memory. There are two on-board programming modes: boot mode and user program mode. The pin settings for transition to each of these modes are shown in table 19.51. For a diagram of the transitions to the various flash memory modes, see figure 19.59.

	Mode			Pins	
MCU Mode	CPU Operating Mode	FWE	MD2	MD1	MD0
Boot mode	Advanced expanded mode with on-chip ROM enabled	1	0	1	0
	Advanced single-chip mode	_			1
User program mode*	Advanced expanded mode with on-chip ROM enabled	1	1	1	0
	Advanced single-chip mode				1

Table 19.51 Setting On-Board Programming Modes

Note: * Normally, user mode should be used. Set the FWE pin to 1 to make a transition to user program mode before performing a program/erase/verify operation.

19.24.1 Boot Mode

When boot mode is used, the flash memory programming control program must be prepared in the host beforehand. The channel 1 SCI to be used is set to asynchronous mode.

When a reset-start is executed after the H8S/2326 F-ZTAT chip's pins have been set to boot mode, the boot program built into the chip is started and the programming control program prepared in the host is serially transmitted to the chip via the SCI. In the chip, the programming control program received via the SCI is written into the programming control program area in on-chip RAM. After the transfer is completed, control branches to the start address of the programming control program area and the programming control program execution state is entered (flash memory programming is performed).

The transferred programming control program must therefore include coding that follows the programming algorithm given later.

The system configuration in boot mode is shown in figure 19.66, and the boot program mode execution procedure in figure 19.67.

	o. of States* ¹	Advanced	6	÷	4		4		5		9		£	4	4	5		9		1	3	З	4
	ž	с																					
	po	>												Ι	1								
	C F	N	Ι	1	Ι		Ι		1		Ι					Ι				\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
	itio	z	Ι						Ι		Ι												
	puq	н	Ī		İ										Ì	İ				İ	Ī		
	ŏ	-	Ι	1	Ι		Ι		1		Ι					Ι				Ι			Τ
		Operation	(Rn8 of @aa:32)←0	(#xx:3 of Rd8)←[¬ (#xx:3 of Rd8)]	(#xx:3 of @ERd)←	[¬ (#xx:3 of @ERd)]	(#xx:3 of @aa:8)←	[¬ (#xx:3 of @aa:8)]	(#xx:3 of @aa:16)←	[¬ (#xx:3 of @aa:16)]	(#xx:3 of @aa:32)←	[¬ (#xx:3 of @aa:32)]	(Rn8 of Rd8)←[¬ (Rn8 of Rd8)]	(Rn8 of @ERd)←[¬ (Rn8 of @ERd)]	(Rn8 of @aa:8)←[¬ (Rn8 of @aa:8)]	(Rn8 of @aa:16)←	[¬ (Rn8 of @aa:16)]	(Rn8 of @aa:32)←	[¬ (Rn8 of @aa:32)]	⊣ (#xx:3 of Rd8)→Z	⊐ (#xx:3 of @ERd)→Z	⊣ (#xx:3 of @aa:8)→Z	¬ (#xx:3 of @aa:16)→Z
(s)		-																					
Syte	3 33	00																					
) (B	d,PC))@																					
g N	B	6 @	8				4		9		∞				4	9		ω				4	9
Ler	+uЯ3@\nЯ3	-@																					
se n	(uA3,b)@																					
l cti	uЯз	0			4									4							4		
stri A		uЯ		2									2							2			
드	2	CX#																					
	erand Size	dO	В	В	В		В		В		В		В	В	В	В		В		В	В	В	Ш
		Mnemonic	BCLR Rn,@aa:32	BNOT #xx:3,Rd	BNOT #xx:3,@ERd		BNOT #xx:3,@aa:8		BNOT #xx:3,@aa:16		BNOT #xx:3,@aa:32		BNOT Rn,Rd	BNOT Rn,@ERd	BNOT Rn,@aa:8	BNOT Rn,@aa:16		BNOT Rn,@aa:32		BTST #xx:3,Rd	BTST #xx:3,@ERd	BTST #xx:3,@aa:8	BTST #xx:3,@aa:16
			BCLR	BNOT																BTST			

PFDDR—Port F Data Direction Register

Bit	:	7	6	5	4	3	2	1	0	
		PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR	
Modes 4 to 6										
Initial value	:	1	0	0	0	0	0	0	0	
Read/Write	:	W	W	W	W	W	W	W	W	
Mode 7										
Initial value	:	0	0	0	0	0	0	0	0	
Read/Write	:	W	W	W	W	W	W	W	W	

Specify input or output for individual port F pins

H'FEBE

PGDDR—Por	a Data Dir	ection Re	egister	Η	'FEBF			Port G		
Bit	:	7	6	5	4	3	2	1	0	
		_			PG4DDR	PG4DDR PG3DDR		PG1DDR	PG0DDR	
Modes 4 and	5			1			1			
Initial value	:	Undefined	Undefined	Undefined	1	0	0	0	0	
Read/Write	:	_	_	_	W	W	W	W	W	
Modes 6 and	7									
Initial value	:	Undefined	Undefined	Undefined	0	0	0	0	0	
Read/Write	:	_	_	_	W	W	W	W	W	

Specify input or output for individual port G pins

H'FED7

DRAMCR—DRAM Control Register (Not supported in H8S/2321)

Rev.6.00 Sep. 27, 2007 Page 1110 of 1268 REJ09B0220-0600

Refresh control is performed

1

IOAR0B—I/O Address Register 0B (Not supported in H8S/2321)								H	['FE]	EC]	DMAC
Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IOAR0B :																
Initial value :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
														* :	Unde	fined
	In sh In fu	nort a II ado	ddres dress	ss mo mode	ode: \$ e: No	Speci ot use	fies t d	ransf	er so	urce/	trans	fer de	estina	ation a	addre	ess
ETCR0B—Tra	nsfer	Cou	nt R	egist	er 0I	3		H	['FE]	EE]	DMAC
(Not	: supj	porte	ed in	H8S/	/2321	l)										
Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETCR0B :									-							
Initial value :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Sequential mode and idle mode							Т	ransf	er co	unter						
Repeat mode	Tra	nsfer	num	ber s	torag	ge reg	jister					Tran	sfer o	count	er	
Block transfer mode						E	Block	trans	fer co	ounte	r					
Neder Nederse	-1 in		.1	-1-										*:	Unde	fined

Note: Not used in normal mode.

Smart Card Data Direction

0	TDR contents are transmitted LSB-first Receive data is stored in RDR LSB-first
1	TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first

Figure C.2 (b) Port 2 Block Diagram (Pins P2₂ and P2₄)

C.10 Port D

Figure C.10 Port D Block Diagram (Pins PD₀ to PD₇)