

Welcome to E-XFL.COM

Renesas Electronics America Inc - DF2326VF25V Datasheet

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8S/2000
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	86
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	<u>.</u>
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	128-BFQFP
Supplier Device Package	128-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2326vf25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item Operating modes	-	 Specification Four MCU operating modes (ROMless, mask ROM versions, H8S/2329B 									
	F-2	ZTAT)	0								
		CPU			Extern	al Data Bus					
		Operating		On-Chip	Initial	Maximum					
	Mode	Mode	Description	ROM	Value	Value					
	1	_	_	_	_	_					
	2 ^{*1}	_									
	3 ^{*1}										
	4 ^{*2}	Advanced	On-chip ROM disabled expansion mode	Disabled	16 bits	16 bits					
	5 ^{*2}	_	On-chip ROM disabled expansion mode	Disabled	8 bits	16 bits					
	6	_	On-chip ROM enabled expansion mode	Enabled	8 bits	16 bits					
	7		Single-chip mode	Enabled	_	_					
	 Notes: 1. Boot mode in the H8S/2329B F-ZTAT. See table 19.9, for information on H8S/2329B F-ZTAT user boot modes. See table 19.9, for information on H8S/2329B F-ZTAT user program modes 2. The ROMless versions can use only modes 4 and 5. 										
Clock pulse generator	• Bu		rrection circuit		- and J.						

Туре	Instruction	Size ^{*1}	Function
Arithmetic operations	DIVXS	B/W	Rd ÷ Rs → Rd Performs signed division on data in two general registers: either 16 bits ÷ 8 bits → 8-bit quotient and 8-bit remainder or 32 bits ÷ 16 bits → 16-bit quotient and 16- bit remainder.
	CMP	B/W/L	Rd – Rs, Rd – #IMM Compares data in a general register with data in another general register or with immediate data, and sets CCR bits according to the result.
	NEG	B/W/L	$0 - Rd \rightarrow Rd$ Takes the two's complement (arithmetic complement) of data in a general register.
	EXTU	W/L	Rd (zero extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by padding with zeros on the left.
	EXTS	W/L	Rd (sign extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by extending the sign bit.
	TAS	В	@ERd – 0, 1 → (<bit 7=""> of @Erd)^{*2} Tests memory contents, and sets the most significant bit (bit 7) to 1.</bit>

Bit 2—Data Transfer Interrupt Enable 1A (DTIE1A): Enables or disables the channel 1

transfer end interrupt.

Bit 2 DTIE1A	Description	
0	Transfer end interrupt disabled	(Initial value)
1	Transfer end interrupt enabled	

Bit 0—Data Transfer Interrupt Enable 0A (DTIE0A): Enables or disables the channel 0 transfer end interrupt.

Bit 0 DTIE0A	Description	
0	Transfer end interrupt disabled	(Initial value)
1	Transfer end interrupt enabled	

Full Address Mode (Burst Mode): Figure 7.21 shows a transfer example in which TEND output is enabled and word-size full address mode transfer (burst mode) is performed from external 16-bit, 2-state access space to external 16-bit, 2-state access space.

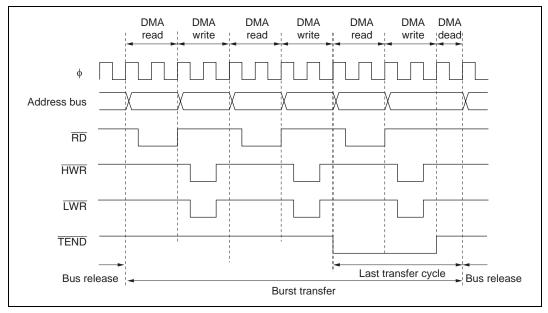


Figure 7.21 Example of Full Address Mode (Burst Mode) Transfer

In burst mode, one-byte or one-word transfers are executed consecutively until transfer ends.

In the transfer end cycle (the cycle in which the transfer counter reaches 0), a one-state DMA dead cycle is inserted after the DMA write cycle.

If a request from another higher-priority channel is generated after burst transfer starts, that channel has to wait until the burst transfer ends.

If an NMI is generated while a channel designated for burst transfer is in the transfer enabled state, the DTME bit is cleared and the channel is placed in the transfer disabled state. If burst transfer has already been activated inside the DMAC, the bus is released on completion of a one-byte or one-word transfer within the burst transfer, and burst transfer is suspended. If the last transfer cycle of the burst transfer has already been activated inside the DMAC, execution continues to the end of the transfer even if the DTME bit is cleared.

Renesas

Section 8 Data Transfer Controller

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address	DTCE ^{*1}	Priority
TGI3A (GR3A compare match/ input capture)	TPU channel 3	48	H'0460	DTCEC5	High
TGI3B (GR3B compare match/ input capture)		49	H'0462	DTCEC4	—
TGI3C (GR3C compare match/ input capture)		50	H'0464	DTCEC3	
TGI3D (GR3D compare match/ input capture)		51	H'0466	DTCEC2	
TGI4A (GR4A compare match/ input capture)	TPU channel 4	56	H'0470	DTCEC1	_
TGI4B (GR4B compare match/ input capture)		57	H'0472	DTCEC0	
DMTEND0A (DMAC transfer complete 0)	DMAC	72	H'0490	DTCEE7	_
DMTEND0B (DMAC transfer complete 1		73	H'0492	DTCEE6	_
DMTEND1A (DMAC transfer complete 2)		74	H'0494	DTCEE5	
DMTEND1B (DMAC transfer complete 3)		75	H'0496	DTCEE4	_
TGI5A (GR5A compare match/ input capture)	TPU channel 5	60	H'0478	DTCED5	_
TGI5B (GR5B compare match/ input capture)		61	H'047A	DTCED4	_
CMIA0	8-bit timer	64	H'0480	DTCED3	
CMIB0	channel 0	65	H'0482	DTCED2	_
CMIA1	8-bit timer	68	H'0488	DTCED1	_
CMIB1	channel 1	69	H'048A	DTCED0	_
DMTEND0A (DMAC transfer complete 0)	DMAC*2	72	H'0490	DTCEE7	_
DMTEND0B (DMAC transfer complete 1)		73	H'0492	DTCEE6	_
DMTEND1A (DMAC transfer complete 2)		74	H'0494	DTCEE5	_
DMTEND1B (DMAC transfer complete 3)		75	H'0496	DTCEE4	 Low

Port A Data Register (PADR)

Bit	:	7	6	5	4	3	2	1	0
		PA7DR	PA6DR	PA5DR	PA4DR	PA3DR	PA2DR	PA1DR	PA0DR
Initial val	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PADR is an 8-bit readable/writable register that stores output data for the port A pins (PA_7 to PA_0).

PADR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port A Register (PORTA)

Bit	:	7	6	5	4	3	2	1	0
	ſ	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Initial va	lue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PA7 to PA0.

PORTA is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port A pins (PA_7 to PA_0) must always be performed on PADR.

If a port A read is performed while PADDR bits are set to 1, the PADR values are read. If a port A read is performed while PADDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTA contents are determined by the pin states, as PADDR and PADR are initialized. PORTA retains its prior state in software standby mode.

10.3 Interface to Bus Master

10.3.1 16-Bit Registers

TCNT and TGR are 16-bit registers. As the data bus to the bus master is 16 bits wide, these registers can be read and written to in 16-bit units.

These registers cannot be read or written to in 8-bit units; 16-bit access must always be used.

An example of 16-bit register access operation is shown in figure 10.2.

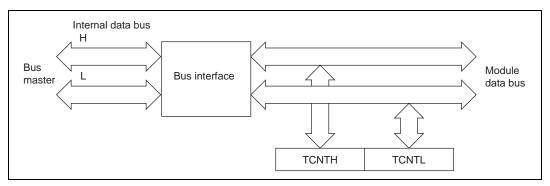


Figure 10.2 16-Bit Register Access Operation [Bus Master ↔ TCNT (16 Bits)]

10.3.2 8-Bit Registers

Registers other than TCNT and TGR are 8-bit. As the data bus to the CPU is 16 bits wide, these registers can be read and written to in 16-bit units. They can also be read and written to in 8-bit units.

Examples of 8-bit register access operation are shown in figures 10.3 to 10.5.

Renesas

Example of Synchronous Operation: Figure 10.15 shows an example of synchronous operation.

In this example, synchronous operation and PWM mode 1 have been designated for channels 0 to 2, TGR0B compare match has been set as the channel 0 counter clearing source, and synchronous clearing has been set for the channel 1 and 2 counter clearing source.

Three-phase PWM waveforms are output from pins TIOC0A, TIOC1A, and TIOC2A. At this time, synchronous presetting, and synchronous clearing by TGR0B compare match, is performed for channel 0 to 2 TCNT counters, and the data set in TGR0B is used as the PWM cycle.

For details of PWM modes, see section 10.4.6, PWM Modes.

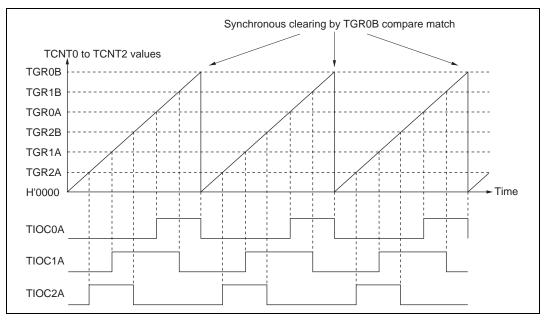


Figure 10.15 Example of Synchronous Operation

Status Flag Clearing Timing: After a status flag is read as 1 by the CPU, it is cleared by writing 0 to it. When the DTC or $DMAC^*$ is activated, the flag is cleared automatically. Figure 10.46 shows the timing for status flag clearing by the CPU, and figure 10.47 shows the timing for status flag clearing by the DTC or $DMAC^*$.

Note: * The DMAC is not supported in the H8S/2321.

Figure 10.46 Timing for Status Flag Clearing by CPU

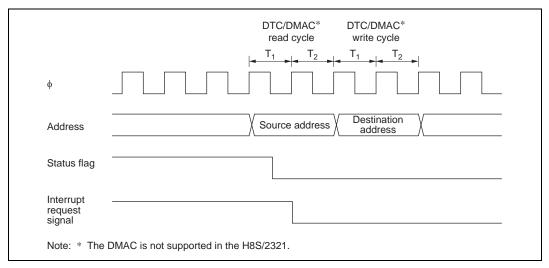


Figure 10.47 Timing for Status Flag Clearing by DTC/DMAC Activation

13.2 Register Descriptions

13.2.1 Timer Counter (TCNT)

Bit	:	7	6	5	4	3	2	1	0	
Initial va	lue :	0	0	0	0	0	0	0	0	
R/W	:	R/W								

TCNT is an 8-bit readable/writable^{*1} up-counter.

When the TME bit is set to 1 in TCSR, TCNT starts counting pulses generated from the internal clock source selected by bits CKS2 to CKS0 in TCSR. When the count overflows (changes from H'FF to H'00), either the watchdog timer overflow signal (\overline{WDTOVF})^{*2} or an interval timer interrupt (WOVI) is generated, depending on the mode selected by the WT/ \overline{IT} bit in TCSR.

TCNT is initialized to H'00 by a reset, in hardware standby mode, or when the TME bit is cleared to 0. It is not initialized in software standby mode.

- Notes: 1. TCNT is write-protected by a password to prevent accidental overwriting. For details see section 13.2.4, Notes on Register Access.
 - 2. The \overline{WDTOVF} pin function cannot be used in the F-ZTAT versions.

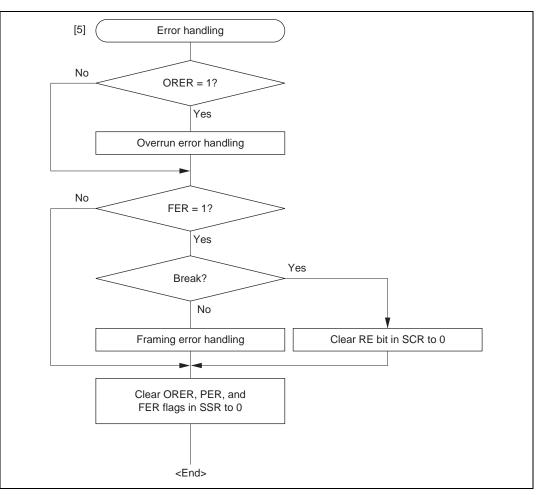


Figure 14.12 Sample Multiprocessor Serial Reception Flowchart (cont)

19.11.3 PROM Mode Operation

Table 19.14 shows how the different operating modes are set when using PROM mode, and table 19.15 lists the commands used in PROM mode. Details of each mode are given below.

Memory Read Mode: Memory read mode supports byte reads.

Auto-Program Mode: Auto-program mode supports programming of 128 bytes at a time. Status polling is used to confirm the end of auto-programming.

Auto-Erase Mode: Auto-erase mode supports automatic erasing of the entire flash memory. Status polling is used to confirm the end of auto-erasing.

Status Read Mode: Status polling is used for auto-programming and auto-erasing, and normal termination can be confirmed by reading the I/O_6 signal. In status read mode, error information is output if an error occurs.

Table 19.14 Settings for Each Operating Mode in PROM Mode

	Pin Names							
Mode	CE	ŌĒ	WE	I/O ₇ to I/O ₀	A ₁₈ to A ₀			
Read	L	L	Н	Data output	Ain			
Output disable	L	Н	Н	Hi-Z	Х			
Command write	L	Н	L	Data input	Ain ^{*2}			
Chip disable ^{*1}	Н	Х	Х	Hi-Z	Х			

Legend:

H: High level

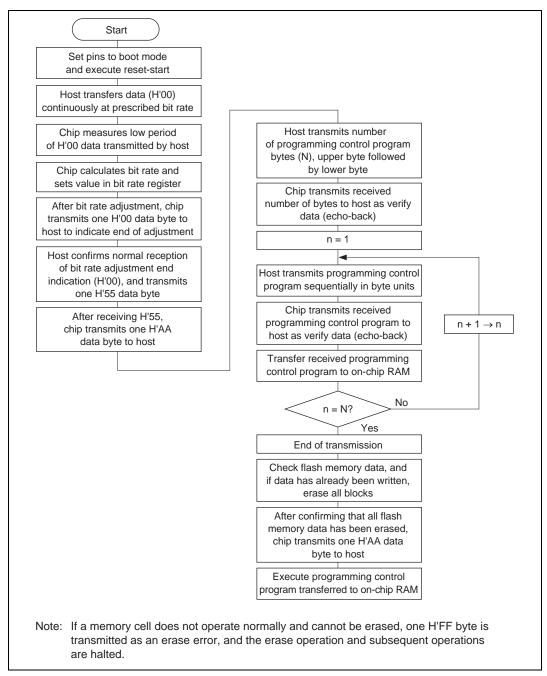
L: Low level

Hi-Z: High impedance

X: Don't care

Notes: 1. Chip disable is not a standby state; internally, it is an operation state.

2. Ain indicates that there is also address input in auto-program mode.



19.13.8 Pin Configuration

The flash memory is controlled by means of the pins shown in tables 19.26.

Pin Name	Abbreviation	I/O	Function
Reset	RES	Input	Reset
Flash write enable	FWE	Input	Flash program/erase protection by hardware
Mode 2	MD2	Input	Sets MCU operating mode
Mode 1	MD1	Input	Sets MCU operating mode
Mode 0	MD0	Input	Sets MCU operating mode
Port 64	P64	Input	Sets MCU operating mode in PROM mode
Port 65	P65	Input	Sets MCU operating mode in PROM mode
Port 66	P66	Input	Sets MCU operating mode in PROM mode
Transmit data	TxD1	Output	Serial transmit data output
Receive data	RxD1	Input	Serial receive data input

Table 19.26 Flash Memory Pins

Figure 19.37 Boot Mode Execution Procedure

19.20.9 PROM Mode Transition Time

Commands cannot be accepted during the oscillation stabilization period or the PROM mode setup period. After the PROM mode setup time, a transition is made to memory read mode.

Table 19.45 Command Wait State Transition Time Specifications

Item	Symbol	Min	Max	Unit	
Standby release (oscillation stabilization time)	t _{osc1}	30	_	ms	
PROM mode setup time	t _{bmv}	10	—	ms	
V _{CC} hold time	t _{dwn}	0		ms	



Figure 19.55 Oscillation Stabilization Time, PROM Mode Setup Time, and Power Supply Fall Sequence

22.2.4 A/D Conversion Characteristics

Table 22.20 A/D Conversion Characteristics

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

		Conditio	on B	
Item	Min	Тур	Max	Unit
Resolution	10	10	10	Bits
Conversion time	10.6	—	_	μS
Analog input capacitance	_	_	20	pF
Permissible signal source impedance	_	_	5	kΩ
Nonlinearity error	_	_	±5.5	LSB
Offset error	_	_	±5.5	LSB
Full-scale error	_	_	±5.5	LSB
Quantization error	_	_	±0.5	LSB
Absolute accuracy	_	_	±6.0	LSB

Inctruc-									Instruction Format	n Format				
tion	Mnemonic	Size	1st byte	oyte	2nd byte	yte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
Bcc	BHI d:8		4	~	disp	đ								
	BHI d:16	Ι	5	80	2	0	disp	d						
	BLS d:8	Ι	4	e	disp	d								
	BLS d:16	Ι	5	8	ю	0	disp	d						
	BCC d:8 (BHS d:8)		4	4	disp	d								
	BCC d:16 (BHS d:16)	Ι	5	8	4	0	disp	d						
	BCS d:8 (BLO d:8)		4	5	disp	d								
	BCS d:16 (BLO d:16)		5	8	5	0	disp	d						
	BNE d:8	Ι	4	9	disp	d								
	BNE d:16	Ι	5	80	9	0	disp	d						
	BEQ d:8	Ι	4	7	disp	d								
	BEQ d:16	Ι	5	80	7	0	disp	d						
	BVC d:8	I	4	œ	disp	d								
	BVC d:16	Ι	5	8	8	0	disp	d						
	BVS d:8	I	4	6	disp	d								
	BVS d:16	Ι	2	8	6	0	disp	d						
	BPL d:8	Ι	4	A	disp	d								
	BPL d:16		5	8	A	0	disp	d						
	BMI d:8	Ι	4	в	disp	d								
	BMI d:16		5	8	В	0	disp	þ						
	BGE d:8	Ι	4	υ	disp	d								
	BGE d:16		5	8	υ	0	disp	þ						
	BLT d:8	Ι	4	D	disp	d								
	BLT d:16	Ι	5	8	۵	0	disp	d						
	BGT d:8		4	ш	disp	d								
	BGT d:16	Ι	2	8	ш	0	disp	d						
	BLE d:8	Ι	4	ш	disp	ď								
	BLE d:16		5	80	ш	0	disp	đ						

Full address m	ode (cont))									
Bit :	7	6	5		4		3	2	1	0	-
DMACRB :	—	DAID	DAID	E	_		DTF3	DTF2	DTF1	DTF0	
Initial value :	0	0	0		0		0	0	0	0	
Read/Write :	R/W	R/W	R/W		R/W		R/W	R/W	R/W	R/W	
O	eserved nly 0 shou ritten to th		Data	Onl	ten t	hou o thi	ld be s bit				
				DTF			в	lock Transf	er Mode		Normal Mode
			3	2	1	0		NUUR HAIISI			
				0		0					
						1	Activated end inter	d by A/D con rrupt	verter conv	rersion	-
					1	0	Activated	d by DREQ p	oin falling e	dge input	Activated by DREQ pin falling edge input
						1	Activated	d by DREQ p	oin low-leve	l input	Activated by DREQ pin low-level input
				1	0	0		d by SCI cha pty interrupt		smission	_
						1	Activated data-full	d by SCI cha interrupt	annel 0 rece	ption	_
					1	0		d by SCI cha pty interrupt		smission	Auto-request (cycle steal)
						1		d by SCI cha interrupt	annel 1 rece	ption	Auto-request (burst)
			1	0	0	0	Activated match/in	d by TPU cha put capture	annel 0 con A interrupt	npare	_
						1		d by TPU cha put capture		npare	_
					1	0	Activated match/in	d by TPU cha put capture	annel 2 con A interrupt	npare	_
						1		d by TPU cha put capture		npare	_
				1	0	0	Activated match/in	d by TPU cha put capture	annel 4 con A interrupt	npare	_
						1	Activated match/in	d by TPU cha put capture	annel 5 con A interrupt	npare	_
					1	0	-				_
						1	_				_

Destination Address Increment/Decrement

0	0	MARB is fixed
	1	MARB is incremented after a data transfer
1	0	MARB is fixed
	1	MARB is decremented after a data transfer

DACR01—D/A Control Register 01

H'FFA6

D/A Converter

Bit :	7	6	5	4	3	2	1	0
	DAOE1	DAOE0	DAE	—	—	_	—	_
Initial value :	0	0	0	1	1	1	1	1
Read/Write :	R/W	R/W	R/W	_	_	_	_	_
		D/A Out	put Enab	le 0				
		0 A	nalog out	tput DA ₀ is	disabled			
				D/A conve tput DA ₀ is		nabled		

D/A Output Enable 1

0	Analog output DA ₁ is disabled
1	Channel 1 D/A conversion is enabled
	Analog output DA ₁ is enabled

D/A Conversion Control

DAOE1	DAOE0	DAE	Description
0	0	*	Channel 0 and 1 D/A conversion disabled
	1	0	Channel 0 D/A conversion enabled
			Channel 1 D/A conversion disabled
		1	Channel 0 and 1 D/A conversion enabled
1	0	0	Channel 0 D/A conversion disabled
			Channel 1 D/A conversion enabled
		1	Channel 0 and 1 D/A conversion enabled
	1	*	Channel 0 and 1 D/A conversion enabled

* : Don't care

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
PA ₄ /A ₂₀	4, 5	L	Т	[A20E • DDR = 1] kept	[A20E ⋅ DDR = 1] kept	$\overline{ A20E} \cdot DDR = 1]$ Output port
				[A20E • OPE = 1] T	[A20E+A20E • DDR = 1]	[A20E+A20E • DDR = 1]
				[A20E • OPE = 1] kept	Т	Address output
	6	Т	Т	$[A20E = 0],$ $[A20E \cdot \overline{DDR} = 1]$	[A20E = 0] kept	[A20E = 0] I/O port
				kept [A20E • DDR •	[A20E • DDR = 1] kept	$[A20E \cdot \overline{DDR} = 1]$ Output port
				OPE = 1] T	[A20E • DDR = 1] T	[A20E · DDR = 1] Address output
				[A20E • DDR • OPE = 1] kept		
	7	Т	Т	kept	kept	I/O port
PA ₃ /A ₁₉ PA ₂ /A ₁₈	4, 5	L	Т	[OPE = 0] T	Т	Address output
PA ₁ /A ₁₇ PA ₀ /A ₁₆				[OPE = 1] kept		
	6	Т	Т	$[DDR \cdot OPE = 0]$ T	Т	[DDR = 0] Input port
				[DDR • OPE = 1] kept		[DDR = 1] Address output
	7	Т	Т	kept	kept	I/O port
Port B	4, 5	L	Т	[OPE = 0] T	Т	Address output
				[OPE = 1] kept		
	6	Т	Т	$[DDR \cdot OPE = 0]$ T	Т	[DDR = 0] Input port
				[DDR • OPE = 1] kept		[DDR = 1] Address output
	7	Т	Т	kept	kept	I/O port