

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product StatusActiveCore ProcessorH85/2000Core Size6-BitSpeed25MHzConnectivitySCI, SmarCardPripheralsDMA POR, PWM, WDTNumber of I/O86Program Memory Size12KB (S12K x 8)Program Memory TypeI-ASHERPROM Size-Nufsze Supply (Vcc/Vdd)37V ~ 3.6VOrder Jonger SignerJ02 N - 3.6VSocial Strategy-Program Signer-Program Signer-Signer Signer-		
Core Size16-BitSpeed25MHzConnectivitySCI, SmartCardPeripheralsDMA, POR, PWM, WDTNumber of I/O86Program Memory Size12KB (512K x 8)Program Memory TypeFLASHEEPROM Size-XMASize8K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersAID 8x10b; D/A 2x8bOscillator TypeInternalOperating Temperature-20°C ~ 75°C (TA)Mounting Type120-TQFP (14x14)	Product Status	Active
Speed25MHzConnectivitySCI, SmartCardPeripheralsDMA, POR, PWM, WDTNumber of I/O86Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10b; D/A 2x8bOscillator TypeInternalOperating Temperature-20°C ~ 75°C (TA)Mounting TypeSurface MountPackage / Case120-TQFP (14x14)	Core Processor	H8S/2000
ConnectivitySCI, SmartCardPeripheralsDMA, POR, PWM, WDTNumber of I/O86Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10b; D/A 2x8bOscillator TypeInternalOperating Temperature-20°C ~ 75°C (TA)Mounting TypeSurface MountPackage / Case120-TQFP (14x14)	Core Size	16-Bit
PeripheralsDMA, POR, PWM, WDTNumber of I/O86Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10b; D/A 2x8bOscillator TypeInternalOperating Temperature-20°C ~ 75°C (TA)Mounting TypeSurface MountPackage / Case120-TQFP (14x14)	Speed	25MHz
Number of I/O86Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10b; D/A 2x8bOscillator TypeInternalOperating Temperature-20°C ~ 75°C (TA)Mounting TypeSurface MountPackage / Case120-TQFP (14x14)	Connectivity	SCI, SmartCard
Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10b; D/A 2x8bOscillator TypeInternalOperating Temperature-20°C ~ 75°C (TA)Mounting Type120-TQFPSuppler Device Package120-TQFP (14x14)	Peripherals	DMA, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10b; D/A 2x8bOscillator TypeInternalOperating Temperature-20°C ~ 75°C (TA)Mounting TypeSurface MountPackage / Case120-TQFP (14x14)	Number of I/O	86
EEPROM Size-RAM Size8K × 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10b; D/A 2x8bOscillator TypeInternalOperating Temperature-20°C ~ 75°C (TA)Mounting TypeSurface MountPackage / Case120-TQFPSupplier Device Package120-TQFP (14x14)	Program Memory Size	512KB (512K x 8)
RAM Size8K × 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10b; D/A 2x8bOscillator TypeInternalOperating Temperature-20°C ~ 75°C (TA)Mounting TypeSurface MountPackage / Case120-TQFPSupplier Device Package120-TQFP (14x14)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 8x10b; D/A 2x8bOscillator TypeInternalOperating Temperature-20°C ~ 75°C (TA)Mounting TypeSurface MountPackage / Case120-TQFPSupplier Device Package120-TQFP (14x14)	EEPROM Size	-
Data ConvertersA/D 8x10b; D/A 2x8bOscillator TypeInternalOperating Temperature-20°C ~ 75°C (TA)Mounting TypeSurface MountPackage / Case120-TQFPSupplier Device Package120-TQFP (14x14)	RAM Size	8K x 8
Oscillator TypeInternalOperating Temperature-20°C ~ 75°C (TA)Mounting TypeSurface MountPackage / Case120-TQFPSupplier Device Package120-TQFP (14x14)	Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Operating Temperature-20°C ~ 75°C (TA)Mounting TypeSurface MountPackage / Case120-TQFPSupplier Device Package120-TQFP (14x14)	Data Converters	A/D 8x10b; D/A 2x8b
Mounting TypeSurface MountPackage / Case120-TQFPSupplier Device Package120-TQFP (14x14)	Oscillator Type	Internal
Package / Case 120-TQFP Supplier Device Package 120-TQFP (14x14)	Operating Temperature	-20°C ~ 75°C (TA)
Supplier Device Package 120-TQFP (14x14)	Mounting Type	Surface Mount
	Package / Case	120-TQFP
	Supplier Device Package	120-TQFP (14x14)
Purchase URL https://www.e-xfl.com/product-detail/renesas-electronics-america/df2326vte25v	Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2326vte25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

19.14.5 System Control Register 2 (SYSCR2)	
19.14.6 RAM Emulation Register (RAMER)	
19.15 On-Board Programming Modes	
19.15.1 Boot Mode	
19.15.2 User Program Mode	
19.16 Programming/Erasing Flash Memory	
19.16.1 Program Mode	
19.16.2 Program-Verify Mode	
19.16.3 Erase Mode	
19.16.4 Erase-Verify Mode	
19.17 Flash Memory Protection	
19.17.1 Hardware Protection	
19.17.2 Software Protection	
19.17.3 Error Protection	
19.18 Flash Memory Emulation in RAM	
19.18.1 Emulation in RAM	
19.18.2 RAM Overlap	
19.19 Interrupt Handling when Programming/Erasing Flash Memory	
19.20 Flash Memory PROM Mode	
19.20.1 PROM Mode Setting	
19.20.2 Socket Adapters and Memory Map	
19.20.3 PROM Mode Operation	
19.20.4 Memory Read Mode	
19.20.5 Auto-Program Mode	
19.20.6 Auto-Erase Mode	
19.20.7 Status Read Mode	
19.20.8 Status Polling	
19.20.9 PROM Mode Transition Time	
19.20.10 Notes on Memory Programming	
19.21 Flash Memory Programming and Erasing Precautions	
19.22 Overview of Flash Memory (H8S/2326 F-ZTAT)	
19.22.1 Features	
19.22.2 Overview	
19.22.3 Flash Memory Operating Modes	
19.22.4 On-Board Programming Modes	
19.22.5 Flash Memory Emulation in RAM	
19.22.6 Differences between Boot Mode and User Program Mode	
19.22.7 Block Configuration	
19.22.8 Pin Configuration	
19.22.9 Register Configuration	

1.3.3 Pin Functions

Table 1.3Pin Functions

		Pi	n No.		
Туре	Symbol	TFP-120	FP-128B	I/O	Name and Function
Power	V _{cc}	1, 33, 52, 76, 81	5, 39, 58, 84, 89	Input	Power supply: For connection to the power supply. All V _{CC} pins should be connected to the system power supply.
	V _{SS}	6, 15, 24, 38, 47, 59, 79, 104	3, 10, 19, 28, 35, 36, 44, 53, 65, 67, 68, 87, 99, 100, 114	Input	Ground: For connection to ground (0 V) . All V _{SS} pins should be connected to the system power supply (0 V) .
Clock	XTAL	77	85	Input	Connects to a crystal resonator. See section 20, Clock Pulse Generator for typical connection diagrams for a crystal resonator and external clock input.
	EXTAL	78	86	Input	Connects to a crystal resonator. The EXTAL pin can also input an external clock. See section 20, Clock Pulse Generator for typical connection diagrams for a crystal resonator and external clock input.
	φ	80	88	Output	System clock: Supplies the system clock to an external device.

2.6 Instruction Set

2.6.1 Overview

The H8S/2000 CPU has 65 types of instructions. The instructions are classified by function in table 2.1.

Table 2.1	Instruction	Classification
-----------	-------------	----------------

Function	Instructions	Size	Types
Data transfer	MOV	BWL	5
	POP ^{*1} , PUSH ^{*1}	WL	
	LDM, STM	L	_
	MOVFPE, MOVTPE ^{*3}	В	_
Arithmetic	ADD, SUB, CMP, NEG	BWL	19
operations	ADDX, SUBX, DAA, DAS	В	
	INC, DEC	BWL	_
	ADDS, SUBS	L	_
	MULXU, DIVXU, MULXS, DIVXS	BW	_
	EXTU, EXTS	WL	_
	TAS ^{*4}	В	-
Logic operations	AND, OR, XOR, NOT	BWL	4
Shift	SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR	BWL	8
Bit manipulation	BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR	В	14
Branch	Bcc ^{*2} , JMP, BSR, JSR, RTS	_	5
System control	TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP	—	9
Block data transfer	EEPMOV	—	1

Total: 65

Legend:

B: Byte

W: Word

L: Longword

- Notes: 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV.W Rn, @-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn and MOV.L ERn, @-SP.
 - 2. Bcc is the general name for conditional branch instructions.
 - 3. Cannot be used in the H8S/2329 Group and H8S/2328 Group.
 - 4. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

			Vector Address ^{*1}	
Exception Source		Vector Number	Advanced Mode	
Reset		0	H'0000 to H'0003	
Reserved		1	H'0004 to H'0007	
Reserved for syster	n use	2	H'0008 to H'000B	
		3	H'000C to H'000F	
		4	H'0010 to H'0013	
Trace		5	H'0014 to H'0017	
Reserved for syster	n use	6	H'0018 to H'001B	
External interrupt	NMI	7	H'001C to H'001F	
Trap instruction (4 s	sources)	8	H'0020 to H'0023	
		9	H'0024 to H'0027	
		10	H'0028 to H'002B	
		11	H'002C to H'002F	
Reserved for syster	n use	12	H'0030 to H'0033	
		13	H'0034 to H'0037	
		14	H'0038 to H'003B	
		15	H'003C to H'003F	
External interrupt	IRQ0	16	H'0040 to H'0043	
	IRQ1	17	H'0044 to H'0047	
	IRQ2	18	H'0048 to H'004B	
	IRQ3	19	H'004C to H'004F	
	IRQ4	20	H'0050 to H'0053	
	IRQ5	21	H'0054 to H'0057	
	IRQ6	22	H'0058 to H'005B	
	IRQ7	23	H'005C to H'005F	
Internal interrupt*2		24 	H'0060 to H'0063	
		91	H'016C to H'016F	

Exception Vector Table Table 4.2

Notes: 1. Lower 16 bits of the address.

2. For details of internal interrupt vectors, see section 5.3.3, Interrupt Exception Vector Table.

5.2.4	IRQ Sense Control Registers H and L (ISCRH, ISCRL)
-------	--

ISCRH

Bit	:	15	14	13	12	11	10	9	8
		IRQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							
ISCRL									
Bit	:	7	6	5	4	3	2	1	0
		IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

ISCR (composed of ISCRH and ISCRL) is a 16-bit readable/writable register that selects rising edge, falling edge, or both edge detection, or level sensing, for the input at pins $\overline{IRQ7}$ to $\overline{IRQ0}$.

ISCR is initialized to H'0000 by a reset and in hardware standby mode.

Bits 15 to 0—IRQ7 Sense Control A and B (IRQ7SCA, IRQ7SCB) to IRQ0 Sense Control A and B (IRQ0SCA, IRQ0SCB)

Bits 15 to 0 IRQ7SCB to IRQ0SCB IRQ0SCA to		 Description	
	1	Interrupt request generated at falling edge of $\overline{IRQ7}$ to $\overline{IRQ0}$ input	
1	0	Interrupt request generated at rising edge of IRQ7 to IRQ0 input	
	1	Interrupt request generated at both falling and rising edges of $\overline{\text{IRQ7}}$ to $\overline{\text{IRQ0}}$ input	

Bit 6—Data Transfer Enable 1A (DTE1A): Enables or disables data transfer on channel 1A.

Bit 6		
DTE1A	Description	
0	Data transfer disabled	(Initial value)
1	Data transfer enabled	

Bit 5—Data Transfer Enable 0B (DTE0B): Enables or disables data transfer on channel 0B.

Bit 5 DTE0B	Description	
0	Data transfer disabled	(Initial value)
1	Data transfer enabled	

Bit 4—Data Transfer Enable 0A (DTE0A): Enables or disables data transfer on channel 0A.

Bit 4 DTE0A	Description	
0	Data transfer disabled	(Initial value)
1	Data transfer enabled	

Bits 3 to 0—Data Transfer End Interrupt Enable (DTIE): These bits enable or disable an interrupt to the CPU or DTC when transfer ends. If the DTIE bit is set to 1 when DTE = 0, the DMAC regards this as indicating the end of a transfer, and issues a transfer end interrupt request to the CPU or DTC.

A transfer end interrupt can be canceled either by clearing the DTIE bit to 0 in the interrupt handling routine, or by performing processing to continue transfer by setting the transfer counter and address register again, and then setting the DTE bit to 1.

Bit 3—Data Transfer Interrupt Enable 1B (DTIE1B): Enables or disables the channel 1B transfer end interrupt.

Bit 3 DTIE1B	Description	
0	Transfer end interrupt disabled	(Initial value)
1	Transfer end interrupt enabled	

System Control Register (SYSCR)

Bit	it : 7		6	5	4	3	2	1	0
			—	INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME
Initial value :		0	0	0	0	0	0	0	1
R/W	: R/W —		—	R/W	R/W	R/W	R/W	R/W	R/W

SYSCR is an 8-bit readable/writable register that selects the interrupt control mode, controls the \overline{LWR} pin, switches the $\overline{IRQ_4}$ to $\overline{IRQ_7}$ input pins, and selects the detected edge for NMI. SYSCR is initialized to H'01 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select either of two interrupt control modes for the interrupt controller. For details, see section 5, Interrupt Controller.

Bit 3—NMI Edge Select (NMIEG): Selects the input edge for the NMI pin. For details, see section 5, Interrupt Controller.

Bit 2—LWR Output Disable (LWROD): Enables or disables \overline{LWR} output. For details, see section 9.13, Port F.

Bit 1—IRQ Port Switching Select (IRQPAS): Selects switching of input pins for \overline{IRQ}_4 to \overline{IRQ}_7 . IRQ₄ to \overline{IRQ}_7 input is always performed from one of the ports.

Bit 1 IRQPAS	Description	
0	PA_4 to PA_7 used for $\overline{IRQ_4}$ to $\overline{IRQ_7}$ input	(Initial value)
1	$P5_0$ to $P5_3$ used for \overline{IRQ}_4 to \overline{IRQ}_7 input	

Bit 0—RAM Enable (RAME): Enables or disables on-chip RAM. For details, see section 18, RAM.

9.11.2 Register Configuration

Table 9.20 shows the port D register configuration.

Table 9.20 Port D Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port D data direction register	PDDDR	W	H'00	H'FEBC
Port D data register	PDDR	R/W	H'00	H'FF6C
Port D register	PORTD	R	Undefined	H'FF5C
Port D MOS pull-up control register	PDPCR	R/W	H'00	H'FF73

Note: * Lower 16 bits of the address.

Port D Data Direction Register (PDDDR)

Bit	it : 7		6	5	4	3	2	1	0
	PD7		PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR
Initial value :		0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PDDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port D. PDDDR cannot be read; if it is, an undefined value will be read.

PDDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

• Modes 4 to 6

The input/output direction specification by PDDDR is ignored, and port D is automatically designated for data I/O.

• Mode 7

Setting a PDDDR bit to 1 makes the corresponding port D pin an output port, while clearing the bit to 0 makes the pin an input port.

Bit 3—Input Capture/Output Compare Flag D (TGFD): Status flag that indicates the occurrence of TGRD input capture or compare match in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 3 is reserved. It is always read as 0 and cannot be modified.

Bit 3 TGFD	Description
0	[Clearing conditions] (Initial value)
	 When DTC is activated by TGID interrupt while DISEL bit of MRB in DTC is 0
	 When 0 is written to TGFD after reading TGFD = 1
1	[Setting conditions]
	 When TCNT = TGRD while TGRD is functioning as output compare register
	 When TCNT value is transferred to TGRD by input capture signal while TGRD is functioning as input capture register

Bit 2—Input Capture/Output Compare Flag C (TGFC): Status flag that indicates the occurrence of TGRC input capture or compare match in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 2 is reserved. It is always read as 0 and cannot be modified.

Bit 2	
TGFC	Description
0	[Clearing conditions] (Initial value)
	When DTC is activated by TGIC interrupt while DISEL bit of MRB in DTC is 0
	 When 0 is written to TGFC after reading TGFC = 1
1	[Setting conditions]
	 When TCNT = TGRC while TGRC is functioning as output compare register
	When TCNT value is transferred to TGRC by input capture signal while TGRC is
	functioning as input capture register

Examples of Cascaded Operation: Figure 10.22 illustrates the operation when counting upon TCNT2 overflow/underflow has been set for TCNT1, TGR1A, and TGR2A have been designated as input capture registers, and TIOC pin rising edge has been selected.

When a rising edge is input to the TIOCA1 and TIOCA2 pins simultaneously, the upper 16 bits of the 32-bit data are transferred to TGR1A, and the lower 16 bits to TGR2A.

TCNT1 clock					
TCNT1	H'03A1	χ		H'03A2	
TCNT2 clock					
TCNT2	H'FFFF	χ	H'0000	χ	H'0001
TIOCA1, TIOCA2					
TGR1A			X	H'03A2	
TGR2A			χ	H'0000	

Figure 10.22 Example of Cascaded Operation (1)

Figure 10.23 illustrates the operation when counting upon TCNT2 overflow/underflow has been set for TCNT1, and phase counting mode has been designated for channel 2.

TCNT1 is incremented by TCNT2 overflow and decremented by TCNT2 underflow.

11.3.5 Inverted Pulse Output

If the G3INV, G2INV, G1INV, and G0INV bits in PMR are cleared to 0, values that are the inverse of the PODR contents can be output.

Figure 11.8 shows the outputs when G3INV and G2INV are cleared to 0, in addition to the settings of figure 11.7.

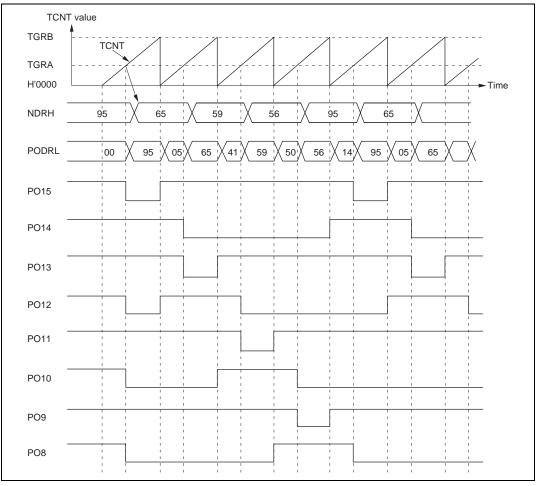


Figure 11.8 Inverted Pulse Output (Example)

13.2.3 Reset Control/Status Register (RSTCSR)

Bit	:	7	6	5	4	3	2	1	0
		WOVF	RSTE	_	—	_	_	—	—
Initial value :		0	0	0	1	1	1	1	1
R/W	:	R/(W)*	R/W	R/W	_	_	_	_	_

Note: * Only 0 can be written, to clear the flag.

RSTCSR is an 8-bit readable/writable^{*} register that controls the generation of the internal reset signal when TCNT overflows, and selects the type of internal reset signal.

RSTCSR is initialized to H'1F by a reset signal from the $\overline{\text{RES}}$ pin, but not by the WDT internal reset signal caused by overflows.

Note: * RSTCSR is write-protected by a password to prevent accidental overwriting. For details see section 13.2.4, Notes on Register Access.

Bit 7—Watchdog Timer Overflow Flag (WOVF): Indicates that TCNT has overflowed (changed from H'FF to H'00) during watchdog timer operation. This bit is not set in interval timer mode.

Bit 7 WOVF	Description	
0	[Clearing condition]	(Initial value)
	Cleared by reading RSTCSR when $WOVF = 1$, then writing 0 to $WOVF$	
1	[Setting condition]	
	Set when TCNT overflows (changes from H'FF to H'00) during watchdog operation	ı timer

Bit 6—Reset Enable (RSTE): Specifies whether or not a reset signal is generated in the chip if TCNT overflows during watchdog timer operation.

Bit 6 RSTE	Description	
0	Reset signal is not generated if TCNT overflows st	(Initial value)
1	Reset signal is generated if TCNT overflows	
Noto: * T	he medules within the ship are not report, but TCNT and TCCD wi	ithin the WDT are readt

Note: * The modules within the chip are not reset, but TCNT and TCSR within the WDT are reset.

16.2 Register Descriptions

16.2.1 A/D Data Registers A to D (ADDRA to ADDRD)

Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	—	—	_	_	—	—
Initial value	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

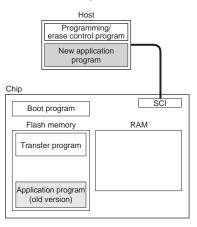
There are four 16-bit read-only ADDR registers, ADDRA to ADDRD, used to store the results of A/D conversion.

The 10-bit data resulting from A/D conversion is transferred to the ADDR register for the selected channel and stored there. The upper 8 bits of the converted data are transferred to the upper byte (bits 15 to 8) of ADDR, and the lower 2 bits are transferred to the lower byte (bits 7 and 6) and stored. Bits 5 to 0 are always read as 0.

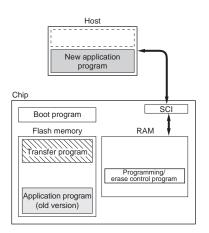
The correspondence between the analog input channels and ADDR registers is shown in table 16.3.

The ADDR registers can always be read by the CPU. The upper byte can be read directly, but for the lower byte, data transfer is performed via a temporary register (TEMP). For details, see section 16.3, Interface to Bus Master.

The ADDR registers are initialized to H'0000 by a reset, and in standby mode or module stop mode.


Table 16.3	Analog Input Channels and Co	rresponding ADDR Registers
-------------------	------------------------------	----------------------------

Ana	log Input Channel		
Group 0	Group 1	A/D Data Register	
AN0	AN4	ADDRA	
AN1	AN5	ADDRB	
AN2	AN6	ADDRC	
AN3	AN7	ADDRD	


User program mode

1. Initial state

(1) The program that will transfer the programming/erase control program to on-chip RAM should be written into the flash memory by the user beforehand. (2) The programming/erase control program should be prepared in the host or in the flash memory.

 Flash memory initialization The programming/erase program in RAM is executed, and the flash memory is initialized (to H'FF). Erasing can be performed in block units, but not in byte units. Programming/erase control program transfer Executes the transfer program in the flash memory, and transfers the programming/erase control program to RAM.

 Writing new application program Next, the new application program in the host is written into the erased flash memory blocks. Do not write to unerased blocks.

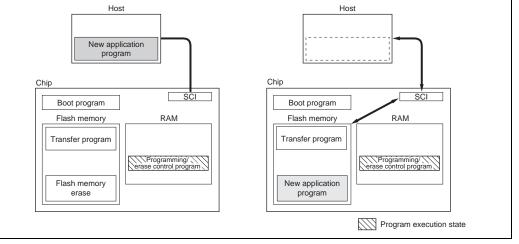


Figure 19.5 User Program Mode (Example)

Bit 2—Program-Verify 1 (PV1): Selects program-verify mode transition or clearing for addresses H'000000 to H'03FFFF. Do not set the SWE1, ESU1, PSU1, EV1, E1, or P1 bit at the same time.

Bit 2 PV1	Description	
0	Program-verify mode cleared	(Initial value)
1	Transition to program-verify mode	
	[Setting condition]	
	When FWE = 1, SWE1 = 1	

Bit 1—Erase 1 (E1): Selects erase mode transition or clearing for addresses H'000000 to H'03FFFF. Do not set the SWE1, ESU1, PSU1, EV1, PV1, or P1 bit at the same time.

Bit 1 E1	Description	
0	Erase mode cleared	(Initial value)
1	Transition to erase mode	
	[Setting condition]	
	When $FWE = 1$, $SWE1 = 1$, and $ESU1 = 1$	

Bit 0—Program 1 (P1): Selects program mode transition or clearing for addresses H'000000 to H'03FFFF. Do not set the SWE1, PSU1, ESU1, EV1, PV1, or E1 bit at the same time.

Bit 0 P1	Description	
0	Program mode cleared	(Initial value)
1	Transition to program mode	
	[Setting condition]	
	When FWE = 1, SWE1 = 1, and PSU1 = 1	

(2) Control Signal Timing

Table 22.6 Control Signal Timing

Condition A: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

		Con	dition A	Con	dition B	5	Test
Item	Symbol	Min	Max	Min	Max	Unit	Conditions
RES setup time	t _{RESS}	200	_	200	_	ns	Figure 22.4
RES pulse width	t _{RESW}	20		20	—	t _{cyc}	
NMI setup time	t _{NMIS}	150	_	150	_	ns	Figure 22.5
NMI hold time	t _{NMIH}	10	_	10	_		
NMI pulse width (in recovery from software standby mode)	t _{NMIW}	200	—	200	—		
IRQ setup time	t _{IRQS}	150	—	150	—	ns	
IRQ hold time	t _{IRQH}	10	_	10	_		
IRQ pulse width (in recovery from software standby mode)	t _{IRQW}	200		200			

Renesas

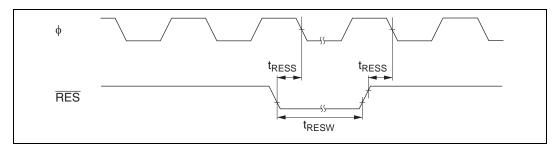


Figure 22.4 Reset Input Timing

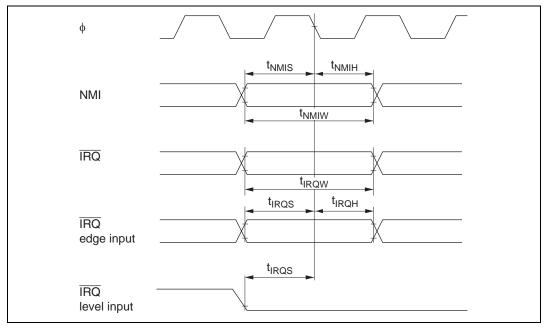


Figure 22.5 Interrupt Input Timing

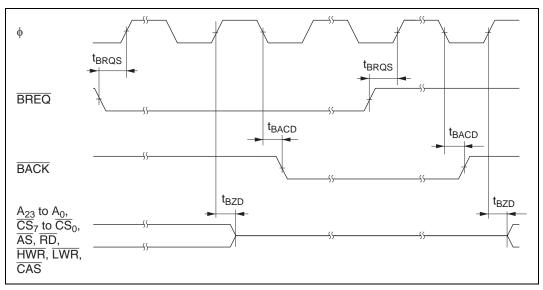


Figure 22.14 External Bus Release Timing

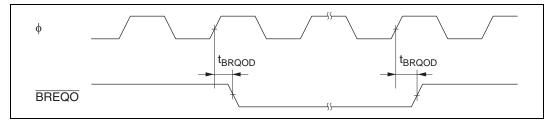


Figure 22.15 External Bus Request Output Timing

(2) Control Signal Timing

Table 22.16 Control Signal Timing

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

		Con	dition B		
Item	Symbol	Min	Max	Unit	Test Conditions
RES setup time	t _{RESS}	200	_	ns	Figure 22.4
RES pulse width	t _{RESW}	20	—	t _{cyc}	_
NMI setup time	t _{NMIS}	150	_	ns	Figure 22.5
NMI hold time	t _{NMIH}	10			
NMI pulse width (in recovery from software standby mode)	t _{NMIW}	200	—		
IRQ setup time	t _{IRQS}	150	_	ns	_
IRQ hold time	t _{IRQH}	10	_		
IRQ pulse width (in recovery from software standby mode)	t _{IRQW}	200	_		

			Inst	Add	Addressing Mode/ Instruction Length (Bytes)	Len	gt Q	de/	(se					
		erand Size		uS	(nA3,b	+uX3@/uX3		ରୁଏଏ ମ୍ବାଧC)		0	Condition Code	Cod		No. of States ^{*1}
	Mnemonic		va xx#	⊒@ עצו			r)@ 8@		_	Operation	N N H	z v	с	Advanced
BCLR	BCLR Rn,@aa:32	В					8			(Rn8 of @aa:32)←0				9
BNOT	BNOT #xx:3,Rd	В	~~~	2						(#xx:3 of Rd8)←[¬ (#xx:3 of Rd8)] —				-
	BNOT #xx:3,@ERd	В		4						(#xx:3 of @ERd)←				4
										[¬ (#xx:3 of @ERd)]				
	BNOT #xx:3,@aa:8	В					4			(#xx:3 of @aa:8)←				4
										[¬ (#xx:3 of @aa:8)]				
	BNOT #xx:3,@aa:16	В					9			(#xx:3 of @aa:16)←				5
										[¬ (#xx:3 of @aa:16)]				
	BNOT #xx:3,@aa:32	В					8			(#xx:3 of @aa:32)←				9
										[¬ (#xx:3 of @aa:32)]				
	BNOT Rn,Rd	В	N	2						(Rn8 of Rd8)←[¬ (Rn8 of Rd8)] —				1
	BNOT Rn,@ERd	В	_	4			_	-		(Rn8 of @ERd) ← [¬ (Rn8 of @ERd)] —	 		Ι	4
	BNOT Rn,@aa:8	В					4			(Rn8 of @aa:8)←[¬ (Rn8 of @aa:8)] —				4
	BNOT Rn,@aa:16	ш					9			(Rn8 of @aa:16)←				5
										[⊣ (Rn8 of @aa:16)]				
	BNOT Rn,@aa:32	Ш					00			(Rn8 of @aa:32)←				9
			_	_			_	-		[¬ (Rn8 of @aa:32)]			_	
BTST	BTST #xx:3,Rd	ш	11	2						ר (#xx:3 of Rd8)→Z		 ↔		-
	BTST #xx:3,@ERd	ш		4				_		ר (#xx:3 of @ERd)→Z —		 ↔		З
	BTST #xx:3,@aa:8	В		_			4	_		¬ (#xx:3 of @aa:8)→Z —		 ↔		с
	BTST #xx:3,@aa:16	В					9			ר (#xx:3 of @aa:16)→Z		 ↔		4