
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	H8S/2000
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	86
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-BFQFP
Supplier Device Package	128-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2328bvf25wv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The revision list can be viewed directly by clicking the title page.

The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.

16

H8S/2329 Group

Hardware Manual

Renesas 16-Bit Single-Chip

Microcomputer H8S Family/H8S/2300 Series

H8S/2329	HD64F2329B	H8S/2324S	HD6412324S
1100/2020		/	
	HD64F2329E	H8S/2323	HD6432323
H8S/2328	HD6432328	H8S/2322R	HD6412322R
	HD64F2328B	H8S/2321	HD6412321
H8S/2327	HD6432327	H8S/2320	HD6412320
H8S/2326	HD64F2326		

Renesas Electronics

Rev.6.00 2007.09

	17.2.3	Module Stop Control Register (MSTPCR)	728
17.3		on	
	1		
Secti	on 18	RAM	731
18.1	Overvie	PW	731
	18.1.1	Block Diagram	731
	18.1.2	Register Configuration	732
18.2		r Descriptions	
		System Control Register (SYSCR)	
18.3		on	
18.4	-	Note	
	U		
Secti	on 19	ROM	735
19.1	Overvie	ew	735
	19.1.1	Block Diagram	735
	19.1.2	Register Configuration	736
19.2	Registe	r Descriptions	736
	19.2.1	Mode Control Register (MDCR)	736
	19.2.2	Bus Control Register L (BCRL)	737
19.3	Operati	on	737
19.4	Overvie	ew of Flash Memory (H8S/2329B F-ZTAT)	740
	19.4.1	Features	740
	19.4.2	Overview	741
	19.4.3	Flash Memory Operating Modes	742
		On-Board Programming Modes	
	19.4.5	Flash Memory Emulation in RAM	745
		Differences between Boot Mode and User Program Mode	
	19.4.7	Block Configuration	747
	19.4.8	Pin Configuration	748
	19.4.9	Register Configuration	749
19.5	Registe	r Descriptions	750
	19.5.1	Flash Memory Control Register 1 (FLMCR1)	750
	19.5.2	Flash Memory Control Register 2 (FLMCR2)	753
	19.5.3	Erase Block Register 1 (EBR1)	754
	19.5.4	Erase Block Registers 2 (EBR2)	754
	19.5.5	System Control Register 2 (SYSCR2)	755
	19.5.6	RAM Emulation Register (RAMER)	756
19.6		ard Programming Modes	
	19.6.1	Boot Mode	759
	19.6.2	User Program Mode	763

6.2.8 Refresh Timer Counter (RTCNT)

Bit	:	7	6	5	4	3	2	1	0
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

RTCNT is an 8-bit readable/writable up-counter.

RTCNT counts up using the internal clock selected by bits CKS2 to CKS0 in DRAMCR.

When RTCNT matches RTCOR (compare match), the CMF flag in DRAMCR is set to 1 and RTCNT is cleared to H'00. If the RFSHE bit in DRAMCR is set to 1 at this time, a refresh cycle is started. Also, if the CMIE bit in DRAMCR is set to 1, a compare match interrupt (CMI) is generated.

RTCNT is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Note: In the H8S/2321 this register is reserved and must not be accessed.

6.2.9 Refresh Time Constant Register (RTCOR)

Bit	:	7	6	5	4	3	2	1	0
Initial va	lue :	1	1	1	1	1	1	1	1
R/W	:	R/W							

RTCOR is an 8-bit readable/writable register that sets the period for compare match operations with RTCNT.

The values of RTCOR and RTCNT are constantly compared, and if they match, the CMF flag in DRAMCR is set to 1 and RTCNT is cleared to H'00.

RTCOR is initialized to H'FF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Note: In the H8S/2321 this register is reserved and must not be accessed.

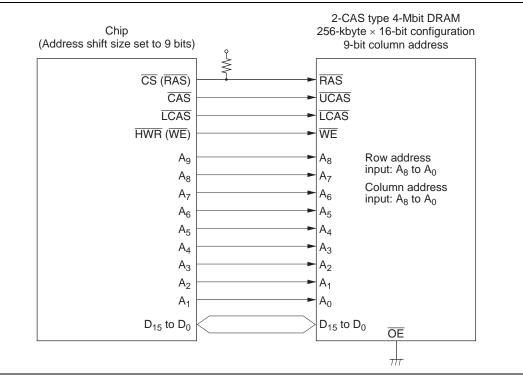


Figure 6.19 Example of 2-CAS DRAM Connection

7.3.3 Execute Transfer Count Register (ETCR)

ETCR is a 16-bit readable/writable register that specifies the number of transfers. The function of this register is different in normal mode and in block transfer mode.

ETCR is not initialized by a reset or in standby mode.

Normal Mode

ETCRA

Transfer Counter																	
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial va	lue :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
R/W	:	R/W	R/W														
															*:	Unde	fined

In normal mode, ETCRA functions as a 16-bit transfer counter. ETCRA is decremented by 1 each time a transfer is performed, and transfer ends when the count reaches H'0000. ETCRB is not used at this time.

ETCRB

ETCRB is not used in normal mode.

7.3.4 DMA Control Register (DMACR)

DMACR is a 16-bit readable/writable register that controls the operation of each DMAC channel. In full address mode, DMACRA and DMACRB have different functions.

DMACR is initialized to H'0000 by a reset, and in hardware standby mode.

DMACRA

Bit	:	15	14	13	12	11	10	9	8
		DTSZ	SAID	SAIDE	BLKDIR	BLKE	—	_	—
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

DMACRB

Bit	:	7	6	5	4	3	2	1	0
		_	DAID	DAIDE	_	DTF3	DTF2	DTF1	DTF0
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 15—Data Transfer Size (DTSZ): Selects the size of data to be transferred at one time.

Bit 15		
DTSZ	Description	
0	Byte-size transfer	(Initial value)
1	Word-size transfer	

9.13.3 **Pin Functions**

Port F pins also function as bus control signal input/output pins (\overline{AS} , \overline{RD} , \overline{HWR} , \overline{LWR} , \overline{LCAS}^* , \overline{WAIT} , \overline{BREQO} , \overline{BREQ} , and \overline{BACK}) and the system clock (ϕ) output pin. The pin functions differ between modes 4 to 6, and mode 7. Port F pin functions are shown in table 9.25.

Note: * The $\overline{\text{LCAS}}$ is not supported in the H8S/2321.

Table 9.25Port F Pin Functions

Pin PF ₇ / ϕ		Selection Method and Pin Functions The pin function is switched as shown below according to bit PF7DDR.									
ΓΓ //Ψ	PF7DDR		0		1						
	Pin function	PF ₇ input pin				nin					
	Pin function	PF	7 input pin		<pre></pre>	pin					
PF ₆ /AS		The pin function is switched as shown below according to the operating mode, bit PF6DDR, and bit ASOD in PFCR2.									
	Operating Mode		Modes 4 to 6	Mo	de 7						
	ASOD	0		1	-	_					
	PF6DDR	_	0	1	0	1					
	Pin function	AS output pin	PF ₆ input pin	PF ₆ output pin	PF ₆ input pin	PF ₆ output pin					
	The pin functior and bit PF5DDF Operating Mode			Mode 7							
	PF5DDR			0	1						
	Pin function	RD outpu	ut pin	PF ₅ input pin	PF ₅	output pin					
PF ₄ /HWR	The pin functior and bit PF4DDF		as shown be	low according	g to the oper	ating mode					
	Operating Mode	Modes 4	to 6		Mode 7						
	PF4DDR	_		0		1					
	Pin function	HWR outp	unt min	PF ₄ input pin	PF ₄ output pin						

Bits 5 and 4—Group 2 Compare Match Select 1 and 0 (G2CMS1, G2CMS0): These bits select the compare match that triggers pulse output group 2 (pins PO11 to PO8).

		Description						
Bit 5 G2CMS1	Bit 4 G2CMS0	Output Trigger for Pulse Output Group 2						
0	0	Compare match in TPU channel 0						
	1	Compare match in TPU channel 1						
1	0	Compare match in TPU channel 2						
	1	Compare match in TPU channel 3	(Initial value)					

Bits 3 and 2—Group 1 Compare Match Select 1 and 0 (G1CMS1, G1CMS0): These bits select the compare match that triggers pulse output group 1 (pins PO7 to PO4).

		Description						
Bit 3 G1CMS1	Bit 2 G1CMS0	Output Trigger for Pulse Output Group 1						
0	0	Compare match in TPU channel 0						
	1	Compare match in TPU channel 1						
1	0	Compare match in TPU channel 2						
	1	Compare match in TPU channel 3	(Initial value)					

Bits 1 and 0—Group 0 Compare Match Select 1 and 0 (G0CMS1, G0CMS0): These bits select the compare match that triggers pulse output group 0 (pins PO3 to PO0).

		Description	
Bit 1 G0CMS1	Bit 0 G0CMS0	Output Trigger for Pulse Output Group 0	
0	0	Compare match in TPU channel 0	
	1	Compare match in TPU channel 1	
1	0	Compare match in TPU channel 2	
	1	Compare match in TPU channel 3	(Initial value)

Section 16	A/D Converter	(8 Analog Inpu	t Channel Version)
------------	---------------	----------------	--------------------

Group Selection	Channel Selection		Description				
CH2	CH1	CH0	Single Mode (SCAN = 0)	Scan Mode (SCAN = 1)			
0	0	0	AN0 (Initial value)	AN0			
		1	AN1	AN0, AN1			
	1	0	AN2	AN0 to AN2			
		1	AN3	AN0 to AN3			
1	0	0	AN4	AN4			
		1	AN5	AN4, AN5			
	1	0	AN6	AN4 to AN6			
		1	AN7	AN4 to AN7			

16.2.3 A/D Control Register (ADCR)

Bit	:	7	6	5	4	3	2	1	0
		TRGS1	TRGS0	_	_	CKS1	CH3		
Initial va	lue :	0	0	1	1	1	1	1	1
R/W	:	R/W	R/W	—	—	R/W	R/W	—	—

ADCR is an 8-bit readable/writable register that enables or disables external triggering of A/D conversion operations.

ADCR is initialized to H'3F by a reset, and in standby mode or module stop mode.

Bits 7 and 6—Timer Trigger Select 1 and 0 (TRGS1, TRGS0): These bits select enabling or disabling of the start of A/D conversion by a trigger signal. Only set bits TRGS1 and TRGS0 while conversion is stopped (ADST = 0).

Bit 7 TRGS1	Bit 6 TRGS0	Description
0	0	A/D conversion start by external trigger is disabled (Initial value
	1	A/D conversion start by external trigger (TPU) is enabled
1	0	A/D conversion start by external trigger (8-bit timer) is enabled
	1	A/D conversion start by external trigger pin $(\overline{\text{ADTRG}})$ is enabled

[2] Set the DAOE0 bit in DACR01 to 1. D/A conversion is started and the DA0 pin becomes an output pin. The conversion result is output after the conversion time has elapsed. The output value is expressed by the following formula:

 $\frac{\text{DADR contents}}{256} \times V_{ref}$

The conversion results are output continuously until DADR0 is written to again or the DAOE0 bit is cleared to 0.

- [3] If DADR0 is written to again, the new data is immediately converted. The new conversion result is output after the conversion time has elapsed.
- [4] If the DAOE0 bit is cleared to 0, the DA0 pin becomes an input pin.

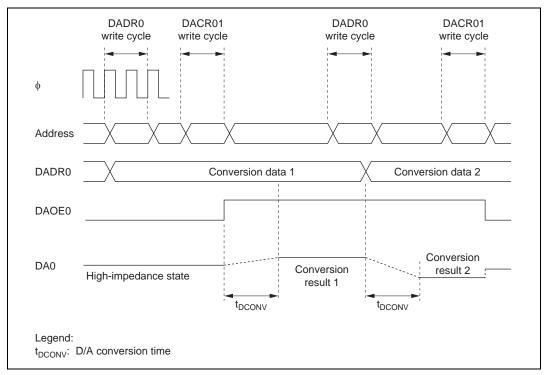


Figure 17.2 Example of D/A Converter Operation

Renesas

Block (Size)	Address
EB0 (4 kbytes)	H'000000 to H'000FFF
EB1 (4 kbytes)	H'001000 to H'001FFF
EB2 (4 kbytes)	H'002000 to H'002FFF
EB3 (4 kbytes)	H'003000 to H'003FFF
EB4 (4 kbytes)	H'004000 to H'004FFF
EB5 (4 kbytes)	H'005000 to H'005FFF
EB6 (4 kbytes)	H'006000 to H'006FFF
EB7 (4 kbytes)	H'007000 to H'007FFF
EB8 (32 kbytes)	H'008000 to H'00FFFF
EB9 (64 kbytes)	H'010000 to H'01FFFF
EB10 (64 kbytes)	H'020000 to H'02FFFF
EB11 (64 kbytes)	H'030000 to H'03FFFF
EB12 (64 kbytes)	H'040000 to H'04FFFF
EB13 (64 kbytes)	H'050000 to H'05FFFF

 Table 19.7
 Flash Memory Erase Blocks

19.5.5 System Control Register 2 (SYSCR2)

Bit	:	7	6	5	4	3	2	1	0
				_	_	FLSHE	_	_	—
Initial va	alue :	0	0	0	0	0	0	0	0
R/W	:	_	_	_	_	R/W	_	_	R/W

SYSCR2 is an 8-bit readable/writable register that performs on-chip flash memory control.

SYSCR2 is initialized to H'00 by a reset and in hardware standby mode.

SYSCR2 can only be used in the F-ZTAT version. In the mask ROM version this register will return an undefined value if read, and cannot be modified.

Bits 7 to 4—Reserved: These bits cannot be modified and are always read as 0.

Renesas

19.13.3 Flash Memory Operating Modes

Mode Transitions: When the mode pins and the FWE pin are set in the reset state and a resetstart is executed, the chip enters one of the operating modes shown in figure 19.30. In user mode, flash memory can be read but not programmed or erased.

Flash memory can be programmed and erased in boot mode, user program mode, and PROM mode.

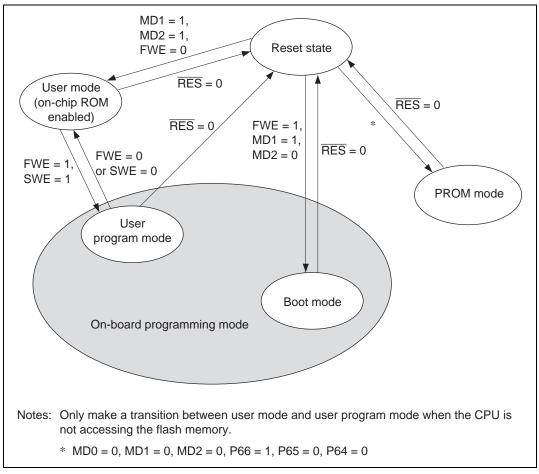


Figure 19.30 Flash Memory Mode Transitions

Bit 3—RAM Select (RAMS): Specifies selection or non-selection of flash memory emulation in RAM. When RAMS = 1, all flash memory blocks are program/erase-protected.

Bit 3 RAMS	Description	
0	Emulation not selected	(Initial value)
	Program/erase-protection of all flash memory blocks is disabled	
1	Emulation selected	
	Program/erase-protection of all flash memory blocks is enabled	

Bits 2 to 0—Flash Memory Area Selection (RAM2 to RAM0): These bits are used together with bit 3 to select the flash memory area to be overlapped with RAM (see table 19.29).

Table 19.29 Flash Memory Area Divisions

RAM Area	Block Name	RAMS	RAM2	RAM1	RAM0
H'FFDC00 to H'FFEBFF	RAM area, 4 kbytes	0	*	*	*
H'000000 to H'000FFF	EB0 (4 kbytes)	1	0	0	0
H'001000 to H'001FFF	EB1 (4 kbytes)	1	0	0	1
H'002000 to H'002FFF	EB2 (4 kbytes)	1	0	1	0
H'003000 to H'003FFF	EB3 (4 kbytes)	1	0	1	1
H'004000 to H'004FFF	EB4 (4 kbytes)	1	1	0	0
H'005000 to H'005FFF	EB5 (4 kbytes)	1	1	0	1
H'006000 to H'006FFF	EB6 (4 kbytes)	1	1	1	0
H'007000 to H'007FFF	EB7 (4 kbytes)	1	1	1	1
					*. Dan't an

*: Don't care

		Cor			
Item	Symbol	Min	Max	Unit	Test Conditions
CAS setup time	t _{CSR}	$0.5\times t_{\text{cyc}}-8$	_	ns	Figure 22.10
WAIT setup time	t _{WTS}	25	_	ns	Figure 22.8
WAIT hold time	t _{WTH}	5	_	ns	
BREQ setup time	t _{BRQS}	30	_	ns	Figure 22.14
BACK delay time	t _{BACD}	_	15	ns	
Bus floating time	t _{BZD}	_	40	ns	
BREQO delay time	t _{BRQOD}	_	25	ns	Figure 22.15

(4) DMAC Timing

Table 22.18 DMAC Timing

 $\begin{array}{ll} \mbox{Condition B:} & V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V}, \mbox{ AV}_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V}, \mbox{ V}_{ref} = 2.7 \mbox{ V to } AV_{CC}, \mbox{ V}_{SS} = AV_{SS} = 0 \mbox{ V}, \mbox{ } \phi = 2 \mbox{ MHz to } 25 \mbox{ MHz}, \mbox{ } T_a = -20^{\circ}\mbox{C to } 75^{\circ}\mbox{C} \mbox{ (regular specifications)}, \\ & T_a = -40^{\circ}\mbox{C to } 85^{\circ}\mbox{C} \mbox{ (wide-range specifications)} \end{array}$

		Co	ndition B		
Item	Symbol	Min	Max	Unit	Test Conditions
DREQ setup time	t _{DRQS}	25	_	ns	Figure 22.19
DREQ hold time	t _{DRQH}	10	_		
TEND delay time	t _{TED}	_	18		Figure 22.18
DACK delay time 1	t _{DACD1}	_	18	ns	Figures 22.16 and 22.17
DACK delay time 2	t _{DACD2}	_	18		

TIOR4—Timer I/O Control Register 4

H'FE92

TPU4

Initial value : 0 0 0 0 0 0 0 0	Bit	:	7	6	5	4	3	2	1	0
			IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
Read/Write · R/W R/W R/W R/W R/W R/W R/W R/W	Initial va	lue :	0	0	0	0	0	0	0	0
	Read/W	rite :	R/W							

TGR4A I/O Control

		0	0	0	0	TGR4A is output compare	Output disabled					
					1		Initial output is 0	0 output at compare match				
				1	0	register	output 1 outpu	1 output at compare match				
					1	-		Toggle output at compare match				
			1	0	0		Output disabled					
					1		Initial output is 1	0 output at compare match				
				1 0		output	1 output at compare match					
					1			Toggle output at compare match				
		1	0	0	0	TGR4A	Capture input	Input capture at rising edge				
					1	is input capture	source is TIOCA₄ pin	Input capture at falling edge				
				1	*	register		Input capture at both edges				
			1	*	*		Capture input source is TGR3A compare match/ input capture	Input capture at generation of TGR3A compare match/input capture				

* : Don't care

TGR4B I/O Control

0	0	0	0	TGR4B	Output disabled					
			1	is output compare	Initial output is 0 output	0 output at compare match				
		1	0	register	ouipui	1 output at compare match				
			1			Toggle output at compare match				
	1 0 0 1 1 0		Output disabled							
			1		Initial output is 1	0 output at compare match				
			output	1 output at compare match						
			1			Toggle output at compare match				
1	1 0	0	0	TGR4B	Capture input	Input capture at rising edge				
			1	is input capture	source is TIOCB ₄ pin	Input capture at falling edge				
		1	*	register		Input capture at both edges				
	1	*	*		Capture input source is TGR3C compare match/ input capture	Input capture at generation of TGR3C compare match/input capture				

WCRL—Wait Control Register L

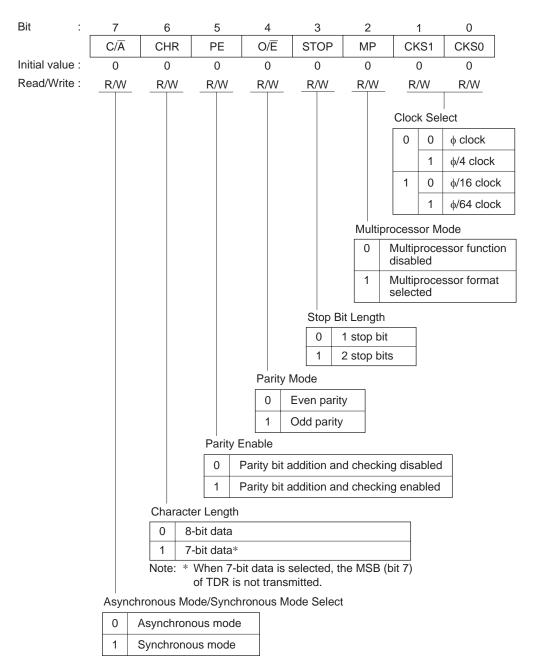
H'FED3

Bus Controller

Bit	:	7	6		5	4		3	2		1	0			
		W31	W30		W21	W20		W11	W1	o	W01 W0				
Initial value	:	1	1		1	1		1	1		1	1			
Read/Write	:	R/W	R/W		R/W	R/W		R/W	R/V	/ R/W		R/W			
									Are	Area 0 Wait Control					
									0	0 Program wait not inserted					
										1 1 program wait state inserted					
									1	0	2 program wait states inserted				
									1	3 program wait states inserted					
						Area 1 Wait Control									
						0 0 Program wait not inse									
							1	1 progr							
						1	0	2 progr	am wa	ait sta	ted				
							1	3 progr	am wa	wait states inserted					
			Area	2 W	ait Conti	rol		1							
			0	0		-	not i	earted							
				-	-	rogram wait not inserted									
				1											
			1	0	2 progr	rogram wait states inserted									
				1	3 prog	ram wai	t sta	tes inser	ted						

Area 3 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted


ETCR0A—Tra (Not	nsfer t supj			~		H	['FE]	E6]	DMAC		
Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETCR0A :																
Initial value :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Sequential mode Idle mode Normal mode		Transfer counter														
Repeat mode	Tra	insfe	r num	nber s	storaç	ge reç	gister				Tr	ansf	er co	unter		
Block transfer mode		Blocl	k size	stor	age r	egiste	ər				Blo	ock s	ize c	ounte	r	
														*:	Unde	fined
MAR0BH—Me	•			0	·		[H	['FE]	E8]	DMAC
MAR0BL—Me	t sup mory t sup	y Ado	lress	Reg	ister	OBL		H	['FE]	EA]	DMAC
Bit :	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MAR0BH :	_	_	_	_	_	_	_	_								
Initial value :	0	0	0	0	0	0	0	0	*	*	*	*	*	*	*	*
Read/Write :	_	_	_	_	_	_	_	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MAR0BL :																
Initial value :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W	

In short address mode: Specifies transfer source/transfer destination address In full address mode: Specifies transfer destination address

SMR0—Serial Mode Register 0

H'FF78

SCI0

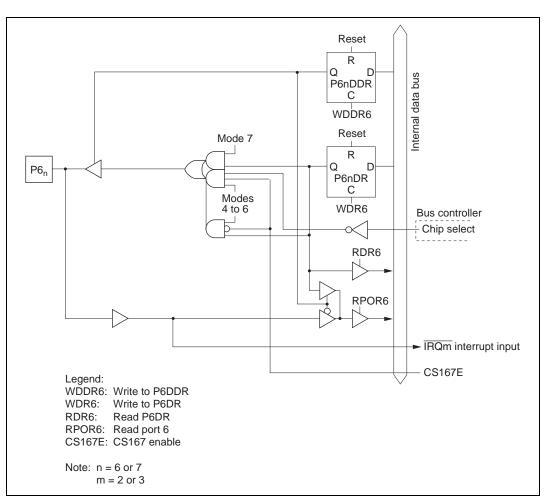


Figure C.6 (f) Port 6 Block Diagram (Pins P6₆ and P6₇)