

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	H8S/2000
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	86
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-BFQFP
Supplier Device Package	128-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2328bvf25wvtr

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

19.14.5 System Control Register 2 (SYSCR2)	
19.14.6 RAM Emulation Register (RAMER)	
19.15 On-Board Programming Modes	
19.15.1 Boot Mode	
19.15.2 User Program Mode	
19.16 Programming/Erasing Flash Memory	
19.16.1 Program Mode	
19.16.2 Program-Verify Mode	
19.16.3 Erase Mode	
19.16.4 Erase-Verify Mode	
19.17 Flash Memory Protection	
19.17.1 Hardware Protection	
19.17.2 Software Protection	
19.17.3 Error Protection	
19.18 Flash Memory Emulation in RAM	
19.18.1 Emulation in RAM	
19.18.2 RAM Overlap	
19.19 Interrupt Handling when Programming/Erasing Flash Memory	
19.20 Flash Memory PROM Mode	
19.20.1 PROM Mode Setting	
19.20.2 Socket Adapters and Memory Map	
19.20.3 PROM Mode Operation	
19.20.4 Memory Read Mode	
19.20.5 Auto-Program Mode	
19.20.6 Auto-Erase Mode	
19.20.7 Status Read Mode	
19.20.8 Status Polling	
19.20.9 PROM Mode Transition Time	
19.20.10 Notes on Memory Programming	
19.21 Flash Memory Programming and Erasing Precautions	
19.22 Overview of Flash Memory (H8S/2326 F-ZTAT)	
19.22.1 Features	
19.22.2 Overview	
19.22.3 Flash Memory Operating Modes	
19.22.4 On-Board Programming Modes	
19.22.5 Flash Memory Emulation in RAM	
19.22.6 Differences between Boot Mode and User Program Mode	
19.22.7 Block Configuration	
19.22.8 Pin Configuration	
19.22.9 Register Configuration	

Туре	Instruction	Size ^{*1}	Function
Arithmetic operations	DIVXS	B/W	Rd ÷ Rs → Rd Performs signed division on data in two general registers: either 16 bits ÷ 8 bits → 8-bit quotient and 8-bit remainder or 32 bits ÷ 16 bits → 16-bit quotient and 16- bit remainder.
	CMP	B/W/L	Rd – Rs, Rd – #IMM Compares data in a general register with data in another general register or with immediate data, and sets CCR bits according to the result.
	NEG	B/W/L	$0 - Rd \rightarrow Rd$ Takes the two's complement (arithmetic complement) of data in a general register.
	EXTU	W/L	Rd (zero extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by padding with zeros on the left.
	EXTS	W/L	Rd (sign extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by extending the sign bit.
	TAS	В	@ERd – 0, 1 → (<bit 7=""> of @Erd)^{*2} Tests memory contents, and sets the most significant bit (bit 7) to 1.</bit>

			Vector Address ^{*1}
Exception Source		Vector Number	Advanced Mode
Reset		0	H'0000 to H'0003
Reserved		1	H'0004 to H'0007
Reserved for syster	n use	2	H'0008 to H'000B
		3	H'000C to H'000F
		4	H'0010 to H'0013
Trace		5	H'0014 to H'0017
Reserved for syster	n use	6	H'0018 to H'001B
External interrupt	NMI	7	H'001C to H'001F
Trap instruction (4 s	sources)	8	H'0020 to H'0023
		9	H'0024 to H'0027
		10	H'0028 to H'002B
		11	H'002C to H'002F
Reserved for syster	n use	12	H'0030 to H'0033
		13	H'0034 to H'0037
		14	H'0038 to H'003B
		15	H'003C to H'003F
External interrupt	IRQ0	16	H'0040 to H'0043
	IRQ1	17	H'0044 to H'0047
	IRQ2	18	H'0048 to H'004B
	IRQ3	19	H'004C to H'004F
	IRQ4	20	H'0050 to H'0053
	IRQ5	21	H'0054 to H'0057
	IRQ6	22	H'0058 to H'005B
	IRQ7	23	H'005C to H'005F
Internal interrupt*2		24 	H'0060 to H'0063
		91	H'016C to H'016F

Exception Vector Table Table 4.2

Notes: 1. Lower 16 bits of the address.

2. For details of internal interrupt vectors, see section 5.3.3, Interrupt Exception Vector Table.

5.4.2 Interrupt Control Mode 0

Enabling and disabling of IRQ interrupts and on-chip supporting module interrupts can be set by means of the I bit in the CPU's CCR. Interrupts are enabled when the I bit is cleared to 0, and disabled when set to 1.

Figure 5.5 shows a flowchart of the interrupt acceptance operation in this case.

- [1] If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, an interrupt request is sent to the interrupt controller.
- [2] The I bit is then referenced. If the I bit is cleared to 0, the interrupt request is accepted. If the I bit is set to 1, only an NMI interrupt is accepted, and other interrupt requests are held pending.
- [3] Interrupt requests are sent to the interrupt controller, the highest-ranked interrupt according to the priority system is accepted, and other interrupt requests are held pending.
- [4] When an interrupt request is accepted, interrupt exception handling starts after execution of the current instruction has been completed.
- [5] The PC and CCR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine.
- [6] Next, the I bit in CCR is set to 1. This masks all interrupts except NMI.
- [7] A vector address is generated for the accepted interrupt, and execution of the interrupt handling routine starts at the address indicated by the contents of that vector address.

Section 6 Bus Controller

6.1 Overview

The chip has an on-chip bus controller (BSC) that manages the external address space divided into eight areas. The bus specifications, such as bus width and number of access states, can be set independently for each area, enabling multiple memories to be connected easily.

The bus controller also has a bus arbitration function, and controls the operation of the internal bus masters: the CPU, DMA controller (DMAC)^{*}, and data transfer controller (DTC).

Note: * The DMAC is not supported in the H8S/2321.

6.1.1 Features

The features of the bus controller are listed below.

- Manages external address space in area units
 - In advanced mode, manages the external space as 8 areas of 2 Mbytes
 - Bus specifications can be set independently for each area
 - DRAM*/burst ROM interfaces can be set
- Basic bus interface
 - Chip select ($\overline{CS0}$ to $\overline{CS7}$) can be output for areas 0 to 7
 - 8-bit access or 16-bit access can be selected for each area
 - 2-state access or 3-state access can be selected for each area
 - Program wait states can be inserted for each area
- DRAM interface*
 - DRAM interface can be set for areas 2 to 5 (in advanced mode)
 - Row address/column address multiplexed output (8/9/10 bits)
 - 2-CAS access method
 - Burst operation (fast page mode)
 - T_P cycle insertion to secure RAS precharging time
 - Choice of CAS-before-RAS refreshing or self-refreshing
- Burst ROM interface
 - Burst ROM interface can be set for area 0
 - Choice of 1- or 2-state burst access

Renesas

Bit 7—TP Cycle Control (TPC): Selects whether a 1-state or 2-state precharge cycle (T_P) is to be used when areas 2 to 5 designated as DRAM space are accessed.

Bit 7		
TPC	Description	
0	1-state precharge cycle is inserted	(Initial value)
1	2-state precharge cycle is inserted	

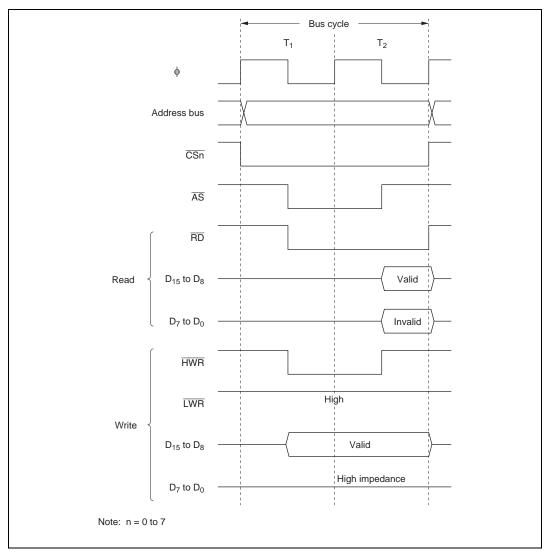
Bit 6—Burst Access Enable (BE): Selects enabling or disabling of burst access to areas 2 to 5 designated as DRAM space. DRAM space burst access is performed in fast page mode.

Bit 6		
BE	Description	
0	Burst disabled (always full access)	(Initial value)
1	For DRAM space access, access in fast page mode	

Bit 5—RAS Down Mode (RCDM): When areas 2 to 5 are designated as DRAM space and access to DRAM is interrupted, RCDM selects whether the next DRAM access is waited for with the \overline{RAS} signal held low (RAS down mode), or the \overline{RAS} signal is driven high again (RAS up mode).

Bit 5		
RCDM	Description	
0	DRAM interface: RAS up mode selected	(Initial value)
1	DRAM interface: RAS down mode selected	

Bit 4—Reserved: Only 0 should be written to this bit.


Bits 3 and 2—Multiplex Shift Count 1 and 0 (MXC1, MXC0): These bits select the size of the shift to the lower half of the row address in row address/column address multiplexing for the DRAM interface. In burst operation on the DRAM interface, these bits also select the row address to be used for comparison.

6.4.4 Basic Timing

8-Bit 2-State Access Space: Figure 6.6 shows the bus timing for an 8-bit 2-state access space. When an 8-bit access space is accessed, the upper half $(D_{15} \text{ to } D_8)$ of the data bus is used.

The \overline{LWR} pin is fixed high. Wait states cannot be inserted.

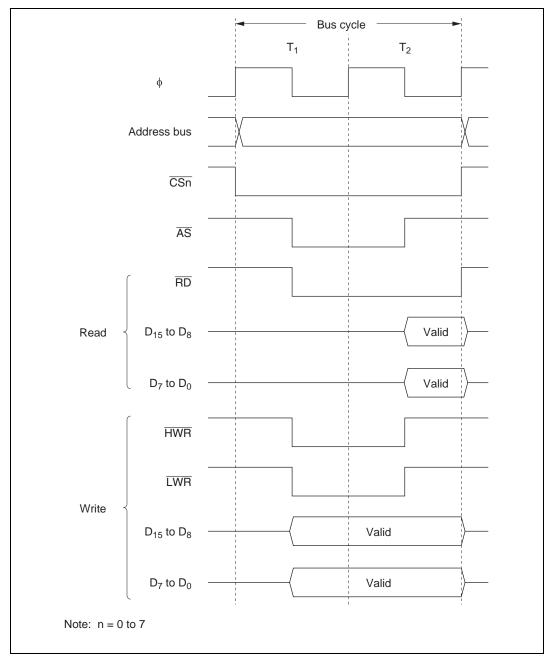


Figure 6.10 Bus Timing for 16-Bit 2-State Access Space (3) (Word Access)

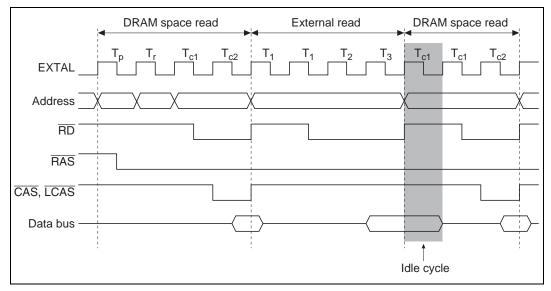


Figure 6.35 (a) Example of Idle Cycle Operation in RAS Down Mode (ICIS1 = 1)

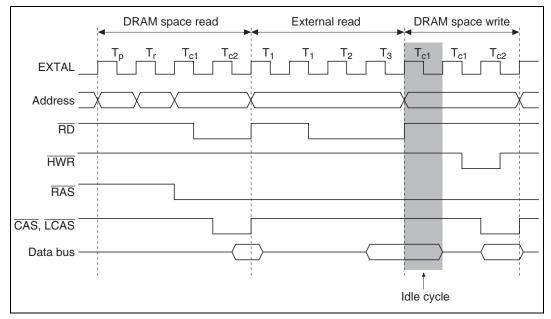


Figure 6.35 (b) Example of Idle Cycle Operation in RAS Down Mode (ICIS0 = 1)

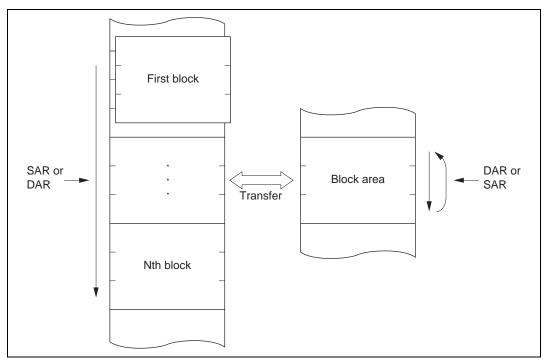


Figure 8.8 Memory Map in Block Transfer Mode

Pin Selection Method and Pin Functions

P2₁/PO₁/TIOCB₃ The pin function is switched as shown below according to the combination of the TPU channel 3 setting (by bits MD3 to MD0 in TMDR3, bits IOB3 to IOB0 in TIOR3H, and bits CCLR2 to CCLR0 in TCR3), bit NDER1 in NDERL, and bit P21DDR.

TPU Channel 3 Setting	Table Below (1)	Та	ble Below	(2)
P21DDR	—	0	1	1
NDER1	—	—	0	1
Pin function	TIOCB ₃ output	P2 ₁ input	P2 ₁ output	PO ₁ output
		Т	IOCB₃ inpu	ıt*

Note: *TIOCB₃ input when MD3 to MD0 = B'0000, and IOB3 to IOB0 = B'10xx.

TPU Channel						
3 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000		B'0010		B'0011	
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_	B'xx00	Other tha	an B'xx00
CCLR2 to CCLR0			—		Other than B'010	B'010
Output function		Output compare output	_		PWM mode 2 output	

x: Don't care

P3 ₃ /RxD ₁	The pin function is switched as shown below according to the combination of bit RE in the SCI1 SCR, and bit P33DDR.					
	RE	0		1		
	P33DDR	0	1			
	Pin function	P33 input pin	P3 ₃ output pin*	RxD₁ input pin		
	Note: * When	P33ODR = 1, the pin	becomes an NMOS of	open-drain output.		
P3 ₂ /RxD ₀		is switched as show 10 SCR, and bit P32		the combination of		
	RE		0	1		
	P32DDR	0	1			
	Pin function	P32 input pin	P3 ₂ output pin*	RxD ₀ input pin		
		, 1		open-drain output.		
P3 ₁ /TxD ₁		is switched as show I1 SCR, and bit P31D	n below according to	· · ·		
P3 ₁ /TxD ₁		is switched as show I1 SCR, and bit P31D	n below according to	· · ·		
P3 ₁ /TxD ₁	bit TE in the SC	is switched as show I1 SCR, and bit P31D	n below according to DR.	the combination o		
P3 ₁ /TxD ₁	bit TE in the SC TE	is switched as show I1 SCR, and bit P31E	n below according to DDR. 0	the combination of		
P3 ₁ /TxD ₁	bit TE in the SC TE P31DDR Pin function	is switched as show I1 SCR, and bit P31D 0	n below according to DDR. 0 1 P31 output pin*	the combination of 1 — TxD1 output pin		
P3 ₁ /TxD ₁	bit TE in the SC TE P31DDR Pin function Note: * When The pin function	is switched as show I1 SCR, and bit P31E 0 P31 input pin	n below according to DDR. 0 1 P31 output pin* becomes an NMOS o	the combination o 1 — TxD1 output pir open-drain output.		
	bit TE in the SC TE P31DDR Pin function Note: * When The pin function	is switched as show I1 SCR, and bit P31E 0 P31 input pin P310DR = 1, the pin is switched as show I0 SCR, and bit P30E	n below according to DDR. 0 1 P31 output pin* becomes an NMOS o	the combination of 1 — TxD1 output pin open-drain output.		
	bit TE in the SC TE P31DDR Pin function Note: * When The pin function bit TE in the SC	is switched as show I1 SCR, and bit P31E 0 P31 input pin P310DR = 1, the pin is switched as show I0 SCR, and bit P30E	n below according to DDR. 0 1 P31 output pin* becomes an NMOS o n below according to DDR.	the combination o 1 TxD1 output pir ppen-drain output. the combination o		

11.1.3 Pin Configuration

Table 11.1 summarizes the PPG pins.

Table 11.1 PPG Pins

Name	Symbol	I/O	Function
Pulse output 0	PO0	Output	Group 0 pulse output
Pulse output 1	PO1	Output	
Pulse output 2	PO2	Output	
Pulse output 3	PO3	Output	
Pulse output 4	PO4	Output	Group 1 pulse output
Pulse output 5	PO5	Output	
Pulse output 6	PO6	Output	
Pulse output 7	PO7	Output	
Pulse output 8	PO8	Output	Group 2 pulse output
Pulse output 9	PO9	Output	
Pulse output 10	PO10	Output	
Pulse output 11	PO11	Output	
Pulse output 12	PO12	Output	Group 3 pulse output
Pulse output 13	PO13	Output	
Pulse output 14	PO14	Output	
Pulse output 15	PO15	Output	

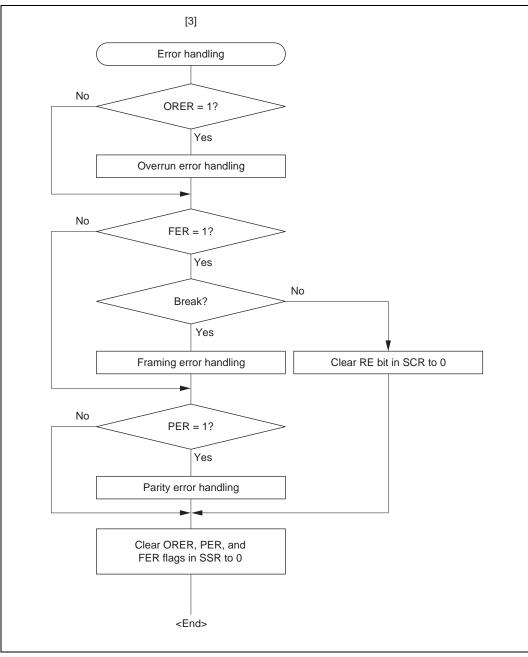


Figure 14.7 Sample Serial Reception Flowchart (cont)

Restrictions on Use of $\ensuremath{\mathsf{DMAC}}^*$ or $\ensuremath{\mathsf{DTC}}$

- When an external clock source is used as the serial clock, the transmit clock should not be input until at least 5 φ clock cycles after TDR is updated by the DMAC* or DTC. Misoperation may occur if the transmit clock is input within 4 φ clocks after TDR is updated. (Figure 14.22)
- When RDR is read by the DMAC^{*} or DTC, be sure to set the activation source to the relevant SCI receive-data-full interrupt (RXI).

Note: * The DMAC is not supported in the H8S/2321.

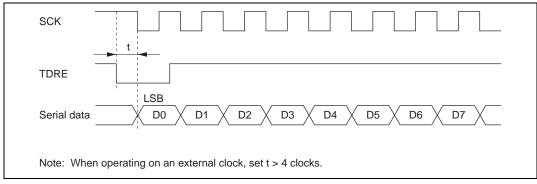


Figure 14.22 Example of Synchronous Transmission Using DTC

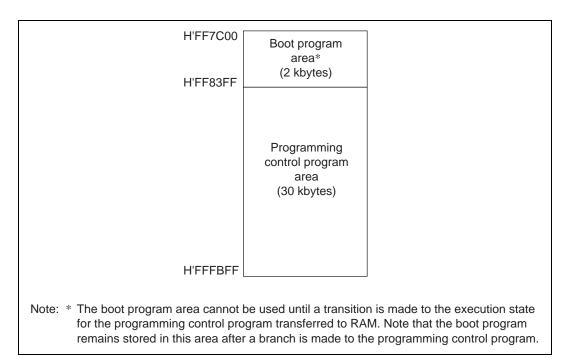


Figure 19.12 RAM Areas in Boot Mode

Notes on Use of Boot Mode

- When the chip comes out of reset in boot mode, it measures the low-level period of the input at the SCI's RxD1 pin. The reset should end with RxD1 high. After the reset ends, it takes approximately 100 states before the chip is ready to measure the low-level period of the RxD1 pin.
- In boot mode, if any data has been programmed into the flash memory (if all data is not 1), all flash memory blocks are erased. Boot mode is for use when user program mode is unavailable, such as the first time on-board programming is performed, or if the program activated in user program mode is accidentally erased.
- Interrupts cannot be used while the flash memory is being programmed or erased.
- The RxD1 and TxD1 pins should be pulled up on the board.
- Before branching to the programming control program (RAM area H'FF8400 to H'FFFBFF), the chip terminates transmit and receive operations by the on-chip SCI (channel 1) (by clearing the RE and TE bits in SCR to 0), but the adjusted bit rate value remains set in BRR. The transmit data output pin, TxD1, goes to the high-level output state (P31DDR = 1, P31DR = 1).

19.20.2 Socket Adapters and Memory Map

In PROM mode, a socket adapter is connected to the chip as shown in figure 19.47. Figure 19.46 shows the on-chip ROM memory map and figure 19.47 shows the socket adapter pin assignments.

MCU mode address		PROM mode address
H'0000000		H'00000
	On-chip ROM space 256 kbytes	
H'0003FFFF		H'3FFFF

Figure 19.46 Memory Map in PROM Mode

Bit 3—Flash Memory Control Register Enable (FLSHE): Controls CPU access to the flash memory control registers (FLMCR1, FLMCR2, EBR1, and EBR2). Writing 1 to the FLSHE bit enables the flash memory control registers to be read and written to. Clearing FLSHE to 0 designates these registers as unselected (the register contents are retained).

Bit 3 FLSHE	Description
0	Flash control registers are not selected for addresses H'FFFFC8 to H'FFFFCB (Initial value)
1	Flash control registers are selected for addresses H'FFFFC8 to H'FFFFCB

Bits 2 to 0—Reserved: These bits cannot be modified and are always read as 0.

19.23.6 RAM Emulation Register (RAMER)

Bit	:	7	6	5	4	3	2	1	0
		_	_	—	—	RAMS	RAM2	RAM1	RAM0
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	—	—	—	—	R/W	R/W	R/W	R/W

RAMER specifies the area of flash memory to be overlapped with part of RAM when emulating real-time flash memory programming. RAMER is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode. RAMER settings should be made in user mode or user program mode.

Flash memory area divisions are shown in table 19.50. To ensure correct operation of the emulation function, the ROM for which RAM emulation is performed should not be accessed immediately after this register has been modified. Normal execution of an access immediately after register modification is not guaranteed.

Bits 7 to 4—Reserved: These bits cannot be modified and are always read as 0.

BCRH—Bus Control Register H

H'FED4

Bus Controller

Bit :	7	6	5	4	3	2		1	0	
	ICIS1	ICIS0	BRSTRM	BRSTS1	BRSTS0	RMTS2	2 RM	ITS1	RMTS0	
nitial value :	1	1	0	1	0	0		0	0	
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R	./W	R/W	
					RA	М Туре S	Select			
						TS2 RMTS1		Area 5	Area 4 Area	3 Area 2
							0	/	Normal space	
							1	No	ormal space	DRAM
						1	0	Normal		space M space
							1		DRAM space	
					1		_		_	
							hen are	eas sel	ected in DR	AM
				Ви	rst Cycle Se	sp pir BF us H& DF ass mo se arc RMTS2 0 2. In an	ace and n can b REQO, ed as t SS/232; RAM sg 16-bit- ode can tting is e show	e all 8-le e used or WA he WA 3, norm bace sh bus sp nnot be made. n below <u>MTSO Area</u> 0 1 1 5/2321	bit space, th I as an I/O p IT. When PI IT. When PI IT. pin in the hal space of hould be de: bace. RAS d e used when Sample se w. Normal space (16-bit bus) Inal space Rest bus) DRAM spa (8-bit bus)	he PF2 port, F2 is ther than signated lown this things Area 2 ace DRAM space (8-bit bus) AM space bit bus) ace DRAM space bit bus) are reserved
				Бu		words in t	ourst a	ccess		
						words in t				
			Bur	st Cycle Se	elect 1					
			0	,	cle compris					
		0.5	1 ea 0 Burst F		cle compris	ses 2 state	es			
				ous interface						
				OM interfa						
	Idle	e Cycle Ins	sert 0							
	0		cle not inser							-
1.		,	cle inserted	in case of s	successive e	external re	ead an	d exter	nal write cy	cles
_	dle Cycle Ins		erted in case	e of succes	sive externa	al read cv	cles in	differe	nt areas	_
	,		d in case of							
		-								

NDRH—Next Data Register H

H'FF4C (FF4E)

(1) When pulse output group output triggers are the same

(a) Address: H'FF4C

Bit :	7	6	5	4	3	2	1	0	
	NDR15	NDR14	NDR13	NDR12	NDR11	NDR10	NDR9	NDR8	
Initial value :	0	0	0	0	0	0	0	0	
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		Sto	res the next	t data for pu	Ise output o	groups 3 an	d 2		
Stores the next data for pulse output groups 3 and 2 (b) Address: H'FF4E									
(b) Address. HFF4E									
Bit :	7	6	5	4	3	2	1	0	
		_							
Initial value :	1	1	1	1	1	1	1	1	
Read/Write :	_	_	_	_	_	_	_	_	
(2) When pulse out	tout aroup	output trio	iders are d	lifferent					
(2) When palee ea	iput group	output thg	igoro aro c						
(a) Address	SEH FF4C								
Bit :	7	C	F	4	2	2	4	0	
Dit .		6	5	4	3	2	1	0	
la tial contra	NDR15	NDR14	NDR13	NDR12			_		
Initial value :	0	0	0	0	1	1	1	1	
Read/Write :	R/W	R/W	R/W	R/W		—	—	—	
	Stores the	next data fo	or pulse out	put group 3					
(b) Address	: H'FF4E								
Bit :	7	6	5	4	3	2	1	0	
		_			NDR11	NDR10	NDR9	NDR8	
Initial value :	1	1	1	1	0	0	0	0	
Read/Write :	_	_	_	_	R/W	R/W	R/W	R/W	
	Stores the next data for pulse output group 2								
					SIGLES THE	וופגו טמומ ונ		out group 2	