

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

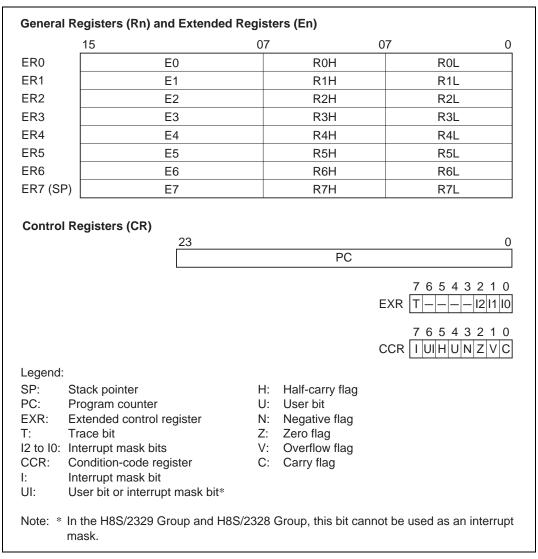
Details

E·XFl

Product Status	Obsolete
Core Processor	H8S/2000
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	86
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	120-TQFP
Supplier Device Package	120-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2329evte25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


	17.2.3	Module Stop Control Register (MSTPCR)	728
17.3		on	
	1		
Secti	on 18	RAM	731
18.1	Overvie	PW	731
	18.1.1	Block Diagram	731
	18.1.2	Register Configuration	732
18.2		r Descriptions	
		System Control Register (SYSCR)	
18.3		on	
18.4	-	Note	
	U		
Secti	on 19	ROM	735
19.1	Overvie	ew	735
	19.1.1	Block Diagram	735
	19.1.2	Register Configuration	736
19.2	Registe	r Descriptions	736
	19.2.1	Mode Control Register (MDCR)	736
	19.2.2	Bus Control Register L (BCRL)	737
19.3	Operati	on	737
19.4	Overvie	ew of Flash Memory (H8S/2329B F-ZTAT)	740
	19.4.1	Features	740
	19.4.2	Overview	741
	19.4.3	Flash Memory Operating Modes	742
		On-Board Programming Modes	
	19.4.5	Flash Memory Emulation in RAM	745
		Differences between Boot Mode and User Program Mode	
	19.4.7	Block Configuration	747
	19.4.8	Pin Configuration	748
	19.4.9	Register Configuration	749
19.5	Registe	r Descriptions	750
	19.5.1	Flash Memory Control Register 1 (FLMCR1)	750
	19.5.2	Flash Memory Control Register 2 (FLMCR2)	753
	19.5.3	Erase Block Register 1 (EBR1)	754
	19.5.4	Erase Block Registers 2 (EBR2)	754
	19.5.5	System Control Register 2 (SYSCR2)	755
	19.5.6	RAM Emulation Register (RAMER)	756
19.6		ard Programming Modes	
	19.6.1	Boot Mode	759
	19.6.2	User Program Mode	763

Section 2 CPU

2.4 Register Configuration

2.4.1 Overview

The CPU has the internal registers shown in figure 2.4. There are two types of registers: general registers and control registers.

Figure 2.4 CPU Registers

The CPU's architecture allows for 4 Gbytes of address space, but the H8S/2328B F-ZTAT and H8S/2326 F-ZTAT actually accesses a maximum of 16 Mbytes.

Modes 4 to 6 are externally expanded modes that allow access to external memory and peripheral devices.

The external expansion modes allow switching between 8-bit and 16-bit bus modes. After program execution starts, an 8-bit or 16-bit address space can be set for each area, depending on the bus controller setting. If 16-bit access is selected for any one area, 16-bit bus mode is set; if 8-bit access is selected for all areas, 8-bit bus mode is set. Note that the functions of each pin depend on the operating mode.

Modes 10, 11, 14, and 15 are boot modes and user program modes in which the flash memory can be programmed and erased. For details, see section 19, ROM.

The H8S/2328B F-ZTAT and H8S/2326 F-ZTAT can only be used in modes 4 to 7, 10, 11, 14, and 15. This means that the flash write enable pin and mode pins must be set to select one of these modes.

Do not change the inputs at the mode pins during operation.

3.1.2 Operating Mode Selection (Mask ROM and ROMless Versions, H8S/2329B F-ZTAT)

The ROMless and mask ROM versions have four operating modes (modes 4 to 7). H8S/2329B F-ZTAT has six operating modes (modes 2 to 7). The operating mode is determined by the mode pins (MD₂ to MD₀). The CPU operating mode, enabling or disabling of on-chip ROM, and the initial bus width setting can be selected as shown in table 3.2.

Table 3.2 lists the MCU operating modes.

3.2.2 System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
				INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME
Initial val	lue :	0	0	0	0	0	0	0	1
R/W	:	R/W	—	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7—Reserved: Only 0 should be written to this bit.

Bit 6—Reserved: This bit is always read as 0, and cannot be modified.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select the control mode of the interrupt controller. For details of the interrupt control modes, see section 5.4.1, Interrupt Control Modes and Interrupt Operation.

Bit 5 INTM1	Bit 4 INTM0	Interrupt Control Mode	Description	
0	0	0	Control of interrupts by I bit	(Initial value)
	1	—	Setting prohibited	
1	0	2	Control of interrupts by I2 to I0 bits	s and IPR
	1	—	Setting prohibited	

Bit 3-NMI Edge Select (NMIEG): Selects the valid edge of the NMI interrupt input.

Bit 3 NMIEG	Description	
0	An interrupt is requested at the falling edge of NMI input	(Initial value)
1	An interrupt is requested at the rising edge of NMI input	

Bit 2—LWR Output Disable (LWROD): Enables or disables LWR output.

Bit 2 LWROD	Description	
0	PF_3 is designated as \overline{LWR} output pin	(Initial value)
1	PF_3 is designated as I/O port, and does not function as \overline{LWR} output pin	

DREQ Pin Falling Edge Activation Timing: Set the DTA bit for the channel for which the DREQ pin is selected to 1.

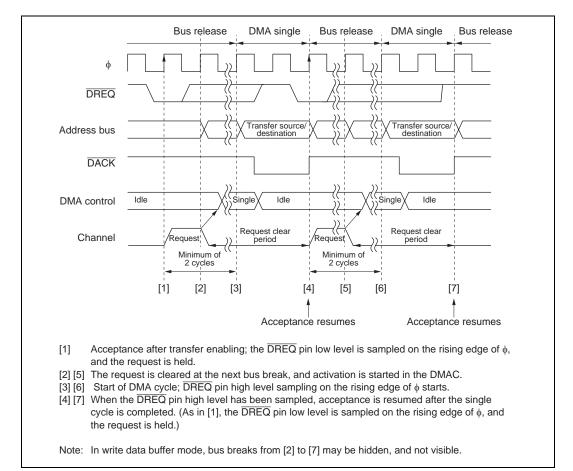


Figure 7.31 shows an example of $\overline{\text{DREQ}}$ pin falling edge activated single address mode transfer.

Figure 7.31 Example of DREQ Pin Falling Edge Activated Single Address Mode Transfer

 $\overline{\text{DREQ}}$ pin sampling is performed every cycle, with the rising edge of the next ϕ cycle after the end of the DMABCR write cycle for setting the transfer enabled state as the starting point.

When the $\overline{\text{DREQ}}$ pin low level is sampled while acceptance by means of the $\overline{\text{DREQ}}$ pin is possible, the request is held in the DMAC. Then, when activation is initiated in the DMAC, the request is cleared, and $\overline{\text{DREQ}}$ pin high level sampling for edge detection is started. If $\overline{\text{DREQ}}$ pin high level sampling has been completed by the time the DMA single cycle ends, acceptance

Renesas

Port A Data Register (PADR)

Bit	:	7	6	5	4	3	2	1	0
		PA7DR	PA6DR	PA5DR	PA4DR	PA3DR	PA2DR	PA1DR	PA0DR
Initial val	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

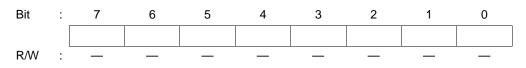
PADR is an 8-bit readable/writable register that stores output data for the port A pins (PA_7 to PA_0).

PADR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port A Register (PORTA)

Bit	:	7	6	5	4	3	2	1	0
	ſ	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Initial va	lue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PA7 to PA0.


PORTA is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port A pins (PA_7 to PA_0) must always be performed on PADR.

If a port A read is performed while PADDR bits are set to 1, the PADR values are read. If a port A read is performed while PADDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTA contents are determined by the pin states, as PADDR and PADR are initialized. PORTA retains its prior state in software standby mode.

14.2.3 Transmit Shift Register (TSR)

TSR is a register used to transmit serial data.

To perform serial data transmission, the SCI first transfers transmit data from TDR to TSR, then sends the data to the TxD pin starting with the LSB (bit 0).

When transmission of one byte is completed, the next transmit data is transferred from TDR to TSR, and transmission started, automatically. However, data transfer from TDR to TSR is not performed if the TDRE bit in SSR is set to 1.

TSR cannot be directly read or written to by the CPU.

14.2.4 Transmit Data Register (TDR)

Bit	:	7	6	5	4	3	2	1	0
Initial va	alue :	1	1	1	1	1	1	1	1
R/W	:	R/W							

TDR is an 8-bit register that stores data for serial transmission.

When the SCI detects that TSR is empty, it transfers the transmit data written in TDR to TSR and starts serial transmission. Continuous serial transmission can be carried out by writing the next transmit data to TDR during serial transmission of the data in TSR.

TDR can be read or written to by the CPU at all times.

TDR is initialized to H'FF by a reset, and in standby mode or module stop mode.

Renesas

15.3.4 Register Settings

Table 15.3 shows a bit map of the registers used by the smart card interface.

Bits indicated as 0 or 1 must be set to the value shown. The setting of other bits is described below.

	Bit							
Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SMR	GM	BLK	1	O/E	BCP1	BCP0	CKS1	CKS0
BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0
SCR	TIE	RIE	TE	RE	0	0	CKE1*	CKE0
TDR	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0
SSR	TDRE	RDRF	ORER	ERS	PER	TEND	0	0
RDR	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0
SCMR	_	_	_	_	SDIR	SINV	_	SMIF

 Table 15.3
 Smart Card Interface Register Settings

Notes: —: Unused bit.

* The CKE1 bit must be cleared to 0 when the GM bit in SMR is cleared to 0.

SMR Settings: The GM bit is cleared to 0 in normal smart card interface mode, and set to 1 in GSM mode. The O/\overline{E} bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

Bits CKS1 and CKS0 select the clock source of the built-in baud rate generator, and bits BCP1 and BCP0 select the number of base clock cycles during transfer of one bit. For details, see section 15.3.5, Clock.

The BLK bit is cleared to 0 when using the normal smart card interface mode, and set to 1 when using block transfer mode.

BRR Setting: BRR is used to set the bit rate. See section 15.3.5, Clock, for the method of calculating the value to be set.

SCR Settings: The function of the TIE, RIE, TE, and RE bits is the same as for the normal SCI. For details, see section 14, Serial Communication Interface (SCI).

Bits CKE1 and CKE0 specify the clock output. When the GM bit in SMR is cleared to 0, set these bits to B'00 if a clock is not to be output, or to B'01 if a clock is to be output. When the GM bit in SMR is set to 1, clock output is performed. The clock output can also be fixed high or low.

H	3S/2329B F-ZTAT		Socket Adapter	HN27C4096	6HG (40 Pins)
TFP-120	FP-128B	Pin Name	(40-Pin Conversion)	Pin No.	Pin Name
2	6	A ₀		21	A ₀
3	7	A ₁		22	A ₁
4	8	A ₂		23	A ₂
5	9	A3		24	A ₃
7	11	A ₄		25	A ₄
8	12	A ₅		26	A ₅
9	13	A ₆		27	A ₆
10	14	A ₇		28	A ₇
11	15	A ₈		29	A ₈
12	16	A ₉		31	A ₉
13	17	A ₁₀		32	A ₁₀
14	18	A ₁₁		33	A ₁₁
16	20	A ₁₂		34	A ₁₂
17	20	A ₁₂		35	A ₁₃
18	22	A ₁₃ A ₁₄			A ₁₄
19	23	A ₁₄		37	A ₁₅
20	23	A ₁₅		38	A ₁₆
20	25			39	A ₁₇
22	26	A ₁₇ A ₁₈		10	A ₁₈
43	49	D ₈		19	I/O ₀
44	50	D ₈		18	I/O ₁
45	51	D ₉ D ₁₀		17	I/O ₂
45	52			16	1/O ₂
48	54	D ₁₁		10	1/O ₃
48	55	D ₁₂		- 14	1/O ₄
		D ₁₃		14	
50 51	56 57	D ₁₄		13	I/O ₆ I/O ₇
	76	D ₁₅		2	
68	_			2	<u> </u>
69	77	OE		3	WE
67	75	WE			FWE
72	80	EMLE*3		- 4 - 1, 40	V _{CC}
1, 30, 33, 52, 55,74, 75, 76, 81, 93, 94	5, 34, 39, 58, 61, 82, 83, 84, 89, 103, 104	V _{cc}		1, 40	
-, -, - ,, -				5, 6, 7	V _{SS} NC
6, 15, 24, 31, 32, 38,	3, 10, 19, 28, 35, 36,			5, 6, 7	
47, 59, 66, 79, 103, 104, 113, 114, 115	37, 38, 44, 53, 65, 67, 68, 74, 87, 99,	V _{SS}		9	A ₂₀
104, 113, 114, 115	100, 113, 114, 123,	00			A ₁₉
	124, 125		*1	Legend: EMLE: En	nulation enable
73	81	RES	Reset circuit	I/O ₇ to I/O ₀ : Da	
77	85	XTAL	*2		dress input
78	86	EXTAL	Oscillation circuit	CE: Ch	ip enable
Othe	rpins	NC (OPEN)		OE: Ou	Itput enable

Notes: 1. A reset oscillation stabilization time (t_{osc1}) of at least 10 ms is required.

2. A 12 MHz crystal resonator should be used.

3. As the FWE pin becomes VCC in the H8S/2329B F-ZTAT, the EMLE pin is ignored in PROM mode.

This figure shows pin assignments, and does not show the entire socket adapter circuit.

Figure 19.20 H8S/2329B F-ZTAT Socket Adapter Pin Assignments

Error protection is released only by a reset and in hardware standby mode.

Figure 19.43 shows the flash memory state transition diagram.

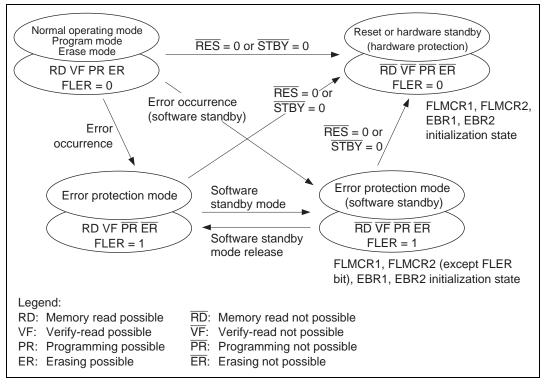


Figure 19.43 Flash Memory State Transitions

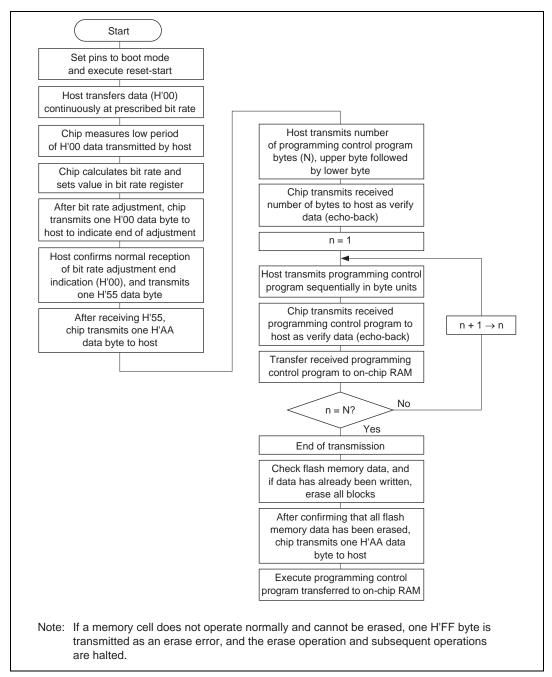


Figure 19.67 Boot Mode Execution Procedure

19.27.2 RAM Overlap

		This area can be accessed from both the RAM area and flash memory area
H'000000	EB0	
H'001000	EB1	
H'002000	EB2	
H'030000	EB3	
H'004000	EB4	
H'005000	EB5	
H'006000	EB6	
H'007000	EB7	
H'008000		
	Flash memory EB8 to EB15	H'FFDC00 H'FFEBFF
		On-chip RAM
H'07FFFF		H'FFFBFF

An example in which flash memory block area EB1 is overlapped is shown below.

Figure 19.75 Example of RAM Overlap Operation

Example in which Flash Memory Block Area EB1 is Overlapped

- 1. Set bits RAMS, RAM2, RAM1, and RAM0 in RAMER to 1, 0, 0, 1, to overlap part of RAM onto the area (EB1) for which real-time programming is required.
- 2. Real-time programming is performed using the overlapping RAM.
- 3. After the program data has been confirmed, the RAMS bit is cleared, releasing RAM overlap.
- 4. The data written in the overlapping RAM is written into the flash memory space (EB1).
- Notes: 1. When the RAMS bit is set to 1, program/erase protection is enabled for all blocks regardless of the value of RAM2, RAM1, and RAM0 (emulation protection). In this state, setting the P1 or E1 bit in flash memory control register 1 (FLMCR1), or setting

20.1.2 Register Configuration

The clock pulse generator is controlled by SCKCR. Table 20.1 shows the register configuration.

Table 20.1 Clock Pulse Generator Register

Name	Abbreviation	R/W	Initial Value	Address*
System clock control register	SCKCR	R/W	H'00	H'FF3A
Noto: *1 ower 16 bits of the odd	r000			

Note: * Lower 16 bits of the address.

20.2 Register Descriptions

20.2.1 System Clock Control Register (SCKCR)

Bit	:	7	6	5	4	3	2	1	0
		PSTOP	_	DIV		_	SCK2	SCK1	SCK0
Initial va	alue :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	—	—	R/W	R/W	R/W

SCKCR is an 8-bit readable/writable register that controls ϕ clock output, the medium-speed mode in which the bus master runs on a medium-speed clock and the other supporting modules run on the high-speed clock, and a function that allows the medium-speed mode to be disabled and the clock division ratio to be changed for the entire chip.

SCKCR is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

		Des	cription	
Bit 7 PSTOP	Normal Operation	Sleep Mode	Software Standby Mode	Hardware Standby Mode
0	ϕ output (Initial value)	<pre></pre>	Fixed high	High impedance
1	Fixed high	Fixed high	Fixed high	High impedance

Bit 6—Reserved: This bit can be read or written to, but only 0 should be written.

Table 22.3 DC Characteristics (H8S/2324S, H8S/2322R, H8S/2321, H8S/2320)

Conditions: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}^{*1}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (widerange specifications)

Item		Symbol	Min	Тур	Мах	Unit	Test Conditions
Schmitt	Ports 1, 2,	V _T ⁻	$V_{CC} \times 0.2$	_	_	V	
trigger input voltage	P64 to P67	V _T ⁺	_	_	$V_{\text{CC}} \times 0.7$	V	
vollage	PA ₄ to PA ₇	$\overline{V_T}^+ - \overline{V_T}^-$	$V_{\text{CC}} \times 0.06$	_	_	V	_
	Port 5 (when using IRQ)						
Input high voltage	$\begin{tabular}{l} \hline RES, \end{tabular} \overline{STBY}, \end{tabular} NMI, \\ MD_2 \mbox{ to } MD_0 \end{tabular}$	VIH	$V_{CC} \times 0.9$	—	V _{CC} + 0.3	V	
	EXTAL	_	$V_{CC} \times 0.7$	_	V _{CC} + 0.3	V	
	Ports 3, 5, B to G, $P6_0$ to $P6_3$, PA_0 to PA_3	_	2.2	_	V _{CC} + 0.3	V	_
	Port 4	-	2.2	_	$AV_{CC} + 0.3$	3V	
Input low voltage	$\overline{\text{RES}}, \overline{\text{STBY}}, \\ \text{MD}_2 \text{ to } \text{MD}_0$	VIL	-0.3		$V_{CC} \times 0.1$	V	
	$\label{eq:NMI} \begin{array}{l} NMI, EXTAL, \\ Ports \ 3 \ to \ 5, \\ B \ to \ G, \ P6_0 \ to \ P6_3, \\ PA_0 \ to \ PA_3 \end{array}$	_	-0.3	_	$V_{CC} imes 0.2$	V	_
Output high	All output pins	V _{OH}	$V_{CC}-0.5$	_	_	V	I _{OH} = -200 μA
voltage			$V_{CC} - 1.0$	—	_	V	$I_{OH} = -1 \text{ mA}$
Output low voltage	All output pins	V _{OL}	—	—	0.4	V	I _{OL} = 1.6 mA
Input	RES	I _{in}	_	_	10.0	μA	$V_{in} = 0.5 V to$
leakage current	STBY, NMI, MD ₂ to MD ₀	_	_	—	1.0	μΑ	V _{CC} 0.5 V
	Port 4	_			1.0 μA		$\begin{array}{l} V_{in} = 0.5 \ V \ to \\ AV_{CC} - 0.5 \ V \end{array}$
Three-state leakage current (off state)	Ports 1, 2, 3, 5, 6, <i>A</i> to G	A I _{TSI}			1.0	μA	$V_{in} = 0.5 \text{ V to}$ $V_{CC} - 0.5 \text{ V}$

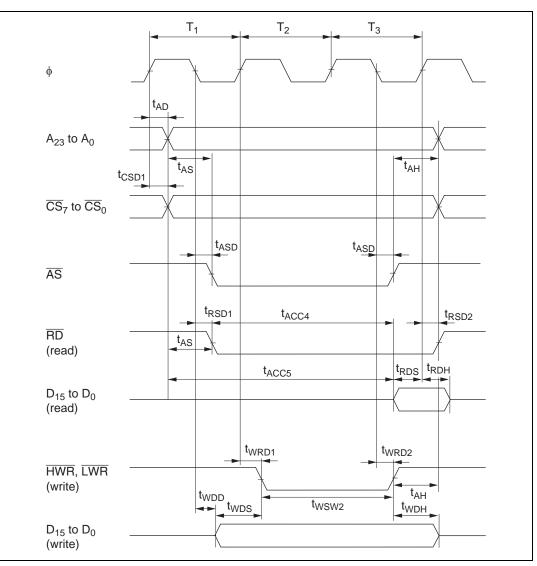


Figure 22.7 Basic Bus Timing (3-State Access)

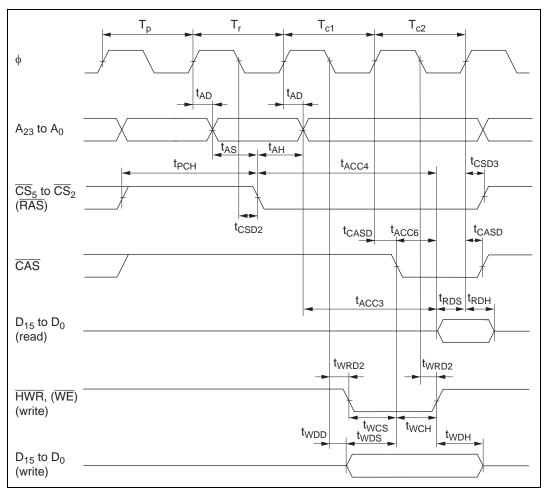


Figure 22.9 DRAM Bus Timing (Not Supported in the H8S/2321)

22.2.6 Flash Memory Characteristics

Table 22.22 Flash Memory Characteristics

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = 0^{\circ}$ C to $+75^{\circ}$ C (program/erase operating temperature range: regular specifications), $T_a = 0^{\circ}$ C to $+85^{\circ}$ C (program/erase operating temperature range: wide-range specifications)

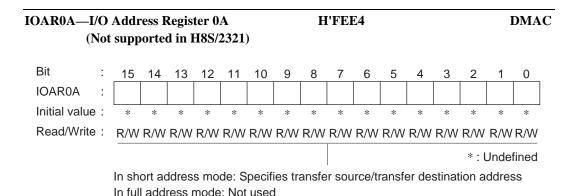
Item		Sym	nbol	Min	Тур	Мах	Unit	Test Conditions
Programming		t₽		—	10	200	ms/ 128 bytes	
Erase time ^{*1 *}	3 *6	t _E		_	50	1000	ms/block	
Rewrite times		N_{WE}	с	100 ^{*7}	10000*8	_	Times	
Data hold time		t _{DRP}	*9	10	_	_	year	
Programming	Wait time after SWE bit setting ^{*1}	х		1	—	_	μS	
	Wait time after PSU bit setting ^{*1}	у		50	—	_	μS	
	Wait time after P bit setting ^{*1 *4}	Z	(z1)	—	_	30	μS	$1 \le n \le 6$
			(z2)	_	—	200	μS	$7 \le n \le 1000$
			(z3)	—	_	10	μS	Wait time for additional writing
	Wait time after P bit clearing ^{*1}	α		5	—	_	μS	
	Wait time after PSU bit clearing ^{*1}	β		5	_	—	μS	
	Wait time after PV bit setting ^{*1}	γ		4	—	_	μS	
	Wait time after H'FF dummy write ^{*1}	з		2	—	—	μS	
	Wait time after PV bit clearing ^{*1}			2	_	_	μS	
	Wait time after SWE bit clearing ^{*1}			100	—	—	μS	
	Maximum number of writes *1 *4	Ν		—	—	1000*5	³ Times	
Erasing	Wait time after SWE bit setting *1	х		1	—	_	μS	
	Wait time after ESU bit setting ^{*1}	у		100	—	—	μS	
	Wait time after E bit setting ^{*1 *6}	z		—	_	10	ms	Wait time for erase time
	Wait time after E bit clearing ^{*1}	α		10	—	_	μS	
	Wait time after ESU bit clearing ^{*1}	β		10	_	_	μS	
	Wait time after EV bit setting ^{*1}	γ		20	—	_	μS	
	Wait time after H'FF dummy write ^{*1}	3		2	_	—	μS	
	Wait time after EV bit clearing ^{*1}	η		4	_	—	μS	
	Wait time after SWE bit clearing ^{*1}	θ		100	_	_	μS	
	Maximum number of erases ^{*1 *6}	Ν		_	_	100	Times	

Instruc-	Macmonic	6									Inst	ructior	Instruction Format				
tion		Size	1st byte	yte	2nd byte	yte	3rd byte	yte	4th	4th byte	5th byte	yte	6th byte	7th byte	8th byte	9th byte	10th byte
BIST	BIST #xx:3,Rd	ш	9	7	1 IMM	гq											
	BIST #xx:3,@ERd	В	7	D	0 erd	0	9	7	1 IMM	0							
	BIST #xx:3,@aa:8	ш	7	ш	abs	s	9	7	1 IMM	0							
	BIST #xx:3,@aa:16	ш	9	A	-	8		a	abs		9	7	1 IMM 0				
	BIST #xx:3,@aa:32	۵	9	A	e	8				abs	SC			6 7	1 IMM 0		
BIXOR	BIXOR #xx:3,Rd	В	7	5	1 IMM	rd											
	BIXOR #xx:3,@ERd	m	7	ပ	0 erd	0	7	5	1 IMM	0							
	BIXOR #xx:3,@aa:8	В	7	ш	abs	s	7	5	1 IMM	0							
	BIXOR #xx:3,@aa:16	۵	9	A	-	0		a	abs		~	5	1 IMM 0				
	BIXOR #xx:3,@aa:32	ш	9	A	ę	0				abs	s			7 5	1 IMM 0		
BLD	BLD #xx:3,Rd	ш	~	7	0 IMM	rd											
	BLD #xx:3,@ERd	В	7	c	0 erd	0	7	7	0 IMM	0							
	BLD #xx:3,@aa:8	в	7	ш	abs	s	7	7	0 IMM	0							
	BLD #xx:3,@aa:16	В	9	А	+	0		a	abs		7	7 0	0 IMM 0				
	BLD #xx:3,@aa:32	В	9	А	3	0				abs	S			7 7	0 MMM 0		
BNOT	BNOT #xx:3,Rd	в	7	-	0 IMM	rd											
	BNOT #xx:3,@ERd	В	7	D	0 erd	0	7	-	0 IMM	0							
	BNOT #xx:3,@aa:8	В	7	ш	abs	s	7	-	0 IMM	0							
	BNOT #xx:3,@aa:16	В	9	A	-	8		a	abs		7	1	0 IMM 0				
	BNOT #xx:3,@aa:32	ш	9	A	e	8				abs	S			7 1	0 IMM 0		
	BNOT Rn,Rd	в	9	-	E	p											
	BNOT Rn, @ERd	В	7	D	0 erd	0	9	٢	E	0							
	BNOT Rn, @aa:8	ш	7	ш	abs	s	9	~	E	0							
	BNOT Rn, @aa:16	В	9	А	+	8		a	abs		9	-	rn 0				
	BNOT Rn, @aa:32	ш	9	A	ε	8				abs	S			6 1	0 E		

PFDDR—Port F Data Direction Register

Bit	:	7	6	5	4	3	2	1	0
		PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR
Modes 4 to 6									
Initial value	:	1	0	0	0	0	0	0	0
Read/Write	:	W	W	W	W	W	W	W	W
Mode 7									
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	W	W	W	W	W	W	W	W

Specify input or output for individual port F pins


H'FEBE

PGDDR—Por	t G	a Data Dir	ection Re	egister	H	FEBF			Port G
Bit	:	7	6	5	4	3	2	1	0
		_	_	_	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PG0DDR
Modes 4 and	5			1		1	I	1	
Initial value	:	Undefined	Undefined	Undefined	1	0	0	0	0
Read/Write	:		_	_	W	W	W	W	W
Modes 6 and	7								
Initial value	:	Undefined	Undefined	Undefined	0	0	0	0	0
Read/Write	:	—	_	_	W	W	W	W	W

Specify input or output for individual port G pins

MAR0AH—M				-			I	ł	I'FE	EO						DMAC
MAR0AL—Mo	ot suj emory ot suj	y Ad	dress	Reg	ister	0AL	ı	I	I'FE	E2						DMAC
Bit :	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MAR0AH :	_	_	_	_	_	—	_	_								
Initial value :	0	0	0	0	0	0	0	0	*	*	*	*	*	*	*	*
Read/Write :	—	—	—	—	—	_	—	—	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MAR0AL :																
Initial value :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
														*:	Unde	efined

In short address mode: Specifies transfer source/transfer destination address In full address mode: Specifies transfer source address

