
Renesas Electronics America Inc - DF38602RFT4V Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor H8/300H

Core Size 16-Bit

Speed 4MHz

Connectivity I²C, IrDA, SCI, SSU

Peripherals POR, PWM, WDT

Number of I/O 13

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 6x10b

Oscillator Type Internal

Operating Temperature -20°C ~ 75°C (TA)

Mounting Type Surface Mount

Package / Case 32-VFQFN

Supplier Device Package 32-VQFN (5x6)

Purchase URL https://www.e-xfl.com/product-detail/renesas-electronics-america/df38602rft4v

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/df38602rft4v-4429496
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Section 2 CPU

 Rev. 3.00 May 15, 2007 Page 9 of 516

 REJ09B0152-0300

2.2 Register Configuration

The H8/300H CPU has the internal registers shown in figure 2.2. There are two types of registers;
general registers and control registers. The control registers are a 24-bit program counter (PC), and
an 8-bit condition-code register (CCR).

PC
23 0

15 0 7 0 7 0

E0

E1

E2

E3

E4

E5

E6

E7

R0H

R1H

R2H

R3H

R4H

R5H

R6H

R7H

R0L

R1L

R2L

R3L

R4L

R5L

R6L

R7L

SP:
PC:
CCR:
I:
UI:

Stack pointer
Program counter
Condition-code register
Interrupt mask bit
User bit

Half-carry flag
User bit
Negative flag
Zero flag
Overflow flag
Carry flag

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7

I UI H U N Z V CCCR

7 6 5 4 3 2 1 0

H:
U:
N:
Z:
V:
C:

General Registers (ERn)

Control Registers (CR)

[Legend]

 (SP)

Figure 2.2 CPU Registers

Section 2 CPU

 Rev. 3.00 May 15, 2007 Page 15 of 516

 REJ09B0152-0300

2.3.2 Memory Data Formats

Figure 2.6 shows the data formats in memory. The H8/300H CPU can access word data and
longword data in memory, however word or longword data must begin at an even address. If an
attempt is made to access word or longword data at an odd address, an address error does not
occur, however the least significant bit of the address is regarded as 0, so access begins the
preceding address. This also applies to instruction fetches.

When ER7 (SP) is used as an address register to access the stack area, the operand size should be
word or longword.

7 0

7 6 5 4 3 2 1 0

MSB LSB

MSB

MSB

LSB

LSB

Data Type Address

1-bit data

Byte data

Word data

Address L

Address L

Address 2M

Address 2M+1

Longword data Address 2N

Address 2N+1

Address 2N+2

Address 2N+3

Data Format

Figure 2.6 Memory Data Formats

Section 3 Exception Handling

 Rev. 3.00 May 15, 2007 Page 43 of 516

 REJ09B0152-0300

Source Origin

Exception Sources

Vector
Number

Vector Address

Priority

WDT WDT overflow (interval timer) 31 H'003E to H'003F High

Asynchronous
event counter

Asynchronous event counter
overflow

32 H'0040 to H'0041

Timer B1 Overflow 33 H'0042 to H'0043

Synchronous serial

communication unit

(SSU)/

IIC2*

Overrun error (SSU)

Transmit data empty (SSU)

Transmit end (SSU)
Receive data full (SSU)

Conflict error (SSU)/

Transmit data empty (IIC2)

Transmit end (IIC2)

Receive data full (IIC2)
NACK detection (IIC2)

Arbitration (IIC2)

Overrun error (IIC2)

34 H'0044 to H'0045

Timer W Input capture A/compare match A
Input capture B/compare match B

Input capture C/compare match C

Input capture D/compare match D
Overflow

35 H'0046 to H'0047

 Reserved for system use 36 H'0048 to H'0049

SCI3 Transmit end

Transmit data empty

Receive data full
Overrun error

Framing error

Parity error

37 H'004A to H'004B

A/D converter A/D conversion end 38 H'004C to H'004D

 Reserved for system use 39 H'004E to H'004F Low

Note: * The SSU and IIC share the same vector address. When using the IIC, shift the SSU to
standby mode using CKSTPR2.

Section 3 Exception Handling

 Rev. 3.00 May 15, 2007 Page 49 of 516

 REJ09B0152-0300

3.4.3 Interrupt Enable Register 2 (IENR2)

IENR2 enables the A/D converter, timer B1, and asynchronous event counter interrupts.

Bit Bit Name
Initial
Value R/W Description

7 0 Reserved

The write value should always be 0.

6 IENAD 0 R/W A/D Converter Interrupt Request Enable

The A/D converter interrupt request is enabled when this
bit is set to 1.

5 to 3 All 0 Reserved

The write value should always be 0.

2 IENTB1 0 R/W Timer B1 Interrupt Request Enable

The timer B1 interrupt request is enabled when this bit is
set to 1.

1 0 Reserved

The write value should always be 0.

0 IENEC 0 R/W Asynchronous Event Counter Interrupt Request Enable

The asynchronous event counter interrupt request is
enabled when this bit is set to 1.

Section 5 Power-Down Modes

 Rev. 3.00 May 15, 2007 Page 83 of 516

 REJ09B0152-0300

5.2 Mode Transitions and States of LSI

Figure 5.1 shows the possible transitions among these operating modes. A transition is made from
the program execution state to the program halt state of the program by executing a SLEEP
instruction. Interrupts allow for returning from the program halt state to the program execution
state of the program. A direct transition between active mode and subactive mode, which are both
program execution states, can be made without halting the program. The operating frequency can
also be changed in the same modes by making a transition directly from active mode to active
mode, and from subactive mode to subactive mode. RES input enables transitions from a mode to
the reset state. Table 5.2 shows the transition conditions of each mode after the SLEEP instruction
is executed and a mode to return by an interrupt. Table 5.3 shows the internal states of the LSI in
each mode.

Section 6 ROM

 Rev. 3.00 May 15, 2007 Page 109 of 518

 REJ09B0152-0300

6.4 Flash Memory Programming/Erasure

A software method using the CPU is employed to program and erase flash memory in the on-
board programming modes. Depending on the FLMCR1 setting, the flash memory operates in one
of the following four modes: Programming mode, programming-verifying mode, erasing mode,
and erasing-verifying mode. The programming control program in boot mode and the user
programming/erasing control program in user program mode use these operating modes in
combination to perform programming/erasure. Flash memory programming and erasing should be
performed in accordance with the descriptions in section 6.4.1, Programming/Programming-
Verifying and section 6.4.2, Erasing/Erasing-Verifying, respectively.

6.4.1 Programming/Programming-Verifying

When writing data or programs to the flash memory, the programming/programming-verifying
flowchart shown in figure 6.3 should be followed. Performing programming operations according
to this flowchart will enable data or programs to be written to the flash memory without subjecting
the chip to voltage stress or sacrificing program data reliability.

1. Programming must be performed on an erased area. Do not reprogram an address to which
data has already been programmed.

2. Programming should be carried out 128 bytes at a time. A 128-byte data transfer must be
performed even if programming fewer than 128 bytes. In this case, the remaining area must be
filled with H'FF.

3. Prepare the following data storage areas in RAM: A 128-byte programming data area, a 128-
byte reprogramming data area, and a 128-byte additional-programming data area. Perform
reprogramming data computation according to table 6.4, and additional programming data
computation according to table 6.5.

4. Consecutively transfer 128 bytes of data in bytes from the reprogramming data area or
additional-programming data area to the flash memory. The programming address and 128-
byte data are latched in the flash memory. The lower eight bits of the start address in the flash
memory destination area must be H'00 or H'80.

5. The time during which the P bit is set to 1 is the programming time. Table 6.6 shows the
allowable programming times.

6. The watchdog timer (WDT) is set to prevent overprogramming due to program runaway, etc.
An overflow cycle of approximately 6.6 ms is allowed.

7. For a dummy write to a verifying address, write 1-byte of data H'FF to an address whose lower
two bits are B'00. Verifying data can be read in words or in longwords from the address to
which a dummy write was performed.

Section 7 RAM

RAM0500A_000120030300 Rev. 3.00 May 15, 2007 Page 117 of 516

 REJ09B0152-0300

Section 7 RAM

This LSI has an on-chip high-speed static RAM. The RAM is connected to the CPU by a 16-bit
data bus, enabling two-state access by the CPU to both byte data and word data.

Product Classification RAM Size RAM Address

Flash memory version H8/38602RF 1 Kbyte H'FB80 to H'FF7F

Masked ROM version H8/38602R 1 Kbyte H'FB80 to H'FF7F

 H8/38600R 512 bytes H'FD80 to H'FF7F

Section 8 I/O Ports

Rev. 3.00 May 15, 2007 Page 128 of 516

REJ09B0152-0300

8.2.6 Input Pull-Up MOS

Port 3 has an on-chip input pull-up MOS function that can be controlled by software. When a
PCR3 bit is cleared to 0, setting the corresponding PUCR3 bit to 1 turns on the input pull-up MOS
for that pin. The input pull-up MOS function is in the off state after a reset.

(n = 2 to 0)

PCR3n 0 1

PUCR3n 0 1 x

Input Pull-Up MOS Off On Off

[Legend] x: Don't care.

8.3 Port 8

Port 8 is an I/O port also functioning as a timer W I/O pin. Figure 8.3 shows its pin configuration.

P
or

t 8

P84/FTIOD

P83/FTIOC

P82/FTIOB

Figure 8.3 Port 8 Pin Configuration

Port 8 has the following registers.

• Port data register 8 (PDR8)

• Port control register 8 (PCR8)

• Port pull-up control register 8 (PUCR8)

Section 10 Timer W

Rev. 3.00 May 15, 2007 Page 174 of 516

REJ09B0152-0300

TCNT value

GRA

H'0000

FTIOB

Time

GRB

Duty 100%

Write to GRB

TCNT value

GRA

H'0000

FTIOB

Time

GRB

Duty 0%

Write to GRB

Write to GRB

Output does not change when cycle register
and duty register compare matches occur
simultaneously.

TCNT value

GRA

H'0000

FTIOB

Time

GRB

Duty 0%

Write to GRB

Write to GRB

Output does not change when cycle register
and duty register compare matches occur
simultaneously.

Duty 100%

Write to GRB

Write to GRB

Write to GRB

Figure 10.13 PWM Mode Example
(TOB, TOC, and TOD = 1: initial output values are set to 1)

Section 11 Realtime Clock (RTC)

 Rev. 3.00 May 15, 2007 Page 197 of 518

 REJ09B0152-0300

11.4.3 Data Reading Procedure

When the seconds, minutes, hours, or day-of-week datum is updated while time data is being read,
the data obtained may not be correct, and so the time data must be read again. Figure 11.4 shows
an example in which correct data is not obtained. In this example, since only RSECDR is read
after data update, about 1-minute inconsistency occurs.

To avoid reading in this timing, the following processing must be performed.

1. Check the setting of the BSY bit, and when the BSY bit changes from 1 to 0, read from the
second, minute, hour, and day-of-week registers. When about 62.5 ms is passed after the BSY
bit is set to 1, the registers are updated, and the BSY bit is cleared to 0.

2. When INT in RTCCR1 is cleared to 0 and an interrupt is used, read from the second, minute,
hour, and day-of-week registers after the relevant flag in RTCFLG is set to 1 and the BSY bit
is confirmed to be 0.

When INT in RTCCR1 is set to 1 and an interrupt is used, read from the second, minute, hour,
and day-of-week registers after the relevant flag in RTCFLG is set to 1.

3. Read from the second, minute, hour, and day-of-week registers twice in a row, and if there is
no change in the read data, the read data is used.

Before update RWKDR = H'03, RHDDR = H'13, RMINDR = H'46, RSECDR = H'59

 BSY bit = 0

 (1) Day-of-week data register read H'03

 (2) Hour data register read H'13

 (3) Minute data register read H'46

 BSY bit -> 1 (under data update)

After update RWKDR = H'03, RHDDR = H'13, RMINDR = H'47, RSECDR = H'00

 BSY bit -> 0

 (4) Second data register read H'00

P
ro

ce
ss

in
g

flo
w

Figure 11.4 Example: Reading of Inaccurate Time Data

Section 14 Serial Communication Interface 3 (SCI3, IrDA)

SCI0012A_000020020900 Rev. 3.00 May 15, 2007 Page 231 of 516

 REJ09B0152-0300

Section 14 Serial Communication Interface 3 (SCI3, IrDA)

The serial communication interface 3 (SCI3) can handle both asynchronous and clock
synchronous serial communication. In the asynchronous method, serial data communication can
be carried out using standard asynchronous communication chips such as a Universal
Asynchronous Receiver/Transmitter (UART) or an Asynchronous Communication Interface
Adapter (ACIA).

The SCI3 can transmit and receive IrDA communication waveforms based on the Infrared Data
Association (IrDA) standard version 1.0.

14.1 Features

• Choice of asynchronous or clock synchronous serial communication mode

• Full-duplex communication capability

The transmitter and receiver are mutually independent, enabling transmission and reception to
be executed simultaneously.

Double-buffering is used in both the transmitter and the receiver, enabling continuous
transmission and continuous reception of serial data.

• On-chip baud rate generator allows any bit rate to be selected

• On-chip baud rate generator, internal clock, or external clock can be selected as a transfer
clock source.

• Six interrupt sources

Transmit-end, transmit-data-empty, receive-data-full, overrun error, framing error, and parity
error.

• Use of module standby mode enables this module to be placed in standby mode independently
when not used. (The SCI3 is halted as the initial value. For details, refer to section 5.4, Module
Standby Function.)

Asynchronous mode

• Data length: 7, 8, or 5 bits

• Stop bit length: 1 or 2 bits

• Parity: Even, odd, or none

• Receive error detection: Parity, overrun, and framing errors

• Break detection: Break can be detected by reading the RXD3 pin level directly in the case of a
framing error

Section 14 Serial Communication Interface 3 (SCI3, IrDA)

Rev. 3.00 May 15, 2007 Page 258 of 516

REJ09B0152-0300

14.4.2 SCI3 Initialization

Follow the flowchart as shown in figure 14.4 to initialize the SCI3. When the TE bit is cleared to
0, the TDRE flag is set to 1. Note that clearing the RE bit to 0 does not initialize the contents of
the RDRF, PER, FER, and OER flags, or the contents of RDR. When the external clock is used in
asynchronous mode, the clock must be supplied even during initialization. When the external
clock is used in clock synchronous mode, the clock must not be supplied during initialization.

Wait

<Initialization completion>

Start initialization

Set data transfer format in SMR

[1]Set CKE1 and CKE0 bits in SCR3

No

Yes

Set value in BRR

Clear TE and RE bits in SCR to 0

[2]

[3]

Set TE and RE bits in
SCR to 1, and set RIE, TIE

and TEIE bits.

Set SPC3 bit in SPCR to 1

[4]

1-bit interval elapsed?

[1] Set the clock selection in SCR.
 Be sure to clear bits RIE, TIE, TEIE, and

MPIE, and bits TE and RE, to 0.

 When the clock output is selected in
asynchronous mode, clock is output
immediately after CKE1 and CKE0
settings are made. When the clock
output is selected at reception in clock
synchronous mode, clock is output
immediately after CKE1, CKE0, and RE
are set to 1.

[2] Set the data transfer format in SMR.

[3] Write a value corresponding to the bit
rate to BRR. Not necessary if an
external clock is used.

[4] Wait at least one bit interval, then set the
TE bit or RE bit in SCR to 1. Setting bits
TE and RE enables the TXD3 and RXD3
pins to be used. Also set the RIE, TIE,
and TEIE bits, depending on whether
interrupts are required. In asynchronous
mode, the bits are marked at
transmission and idled at reception to
wait for the start bit.

Figure 14.4 Sample SCI3 Initialization Flowchart

Section 15 Synchronous Serial Communication Unit (SSU)

Rev. 3.00 May 15, 2007 Page 294 of 516

REJ09B0152-0300

15.4.2 Relationship between Clock Polarity and Phase, and Data

Relationship between clock polarity and phase, and transfer data changes according to a
combination of the SSUMS bit in SSCRL and the CPOS and CPHS bits in SSMR. Figure 15.2
shows the relationship.

MSB-first transfer or LSB first transfer can be selected by the setting of the MLS bit in SSMR.
When the MLS bit is 0, transfer is started from LSB to MSB. When the MLS bit is 1, transfer is
started from MSB to LSB.

SSCK

(1) When CPHS = 0, CPOS =0, and SSUMS = 0:

(2) When CPHS = 0 and SSUMS = 1:

(3) When CPHS = 1 and SSUMS = 1:

SSCK
(CPOS = 0)
SSCK
(CPOS = 1)

SSO, SSI

SSO, SSI

SSCK
(CPOS = 0)
SSCK
(CPOS = 1)

SSO, SSI

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

SCS

SCS

Figure 15.2 Relationship between Clock Polarity and Phase, and Data

Section 16 I2C Bus Interface 2 (IIC2)

Rev. 3.00 May 15, 2007 Page 338 of 516

REJ09B0152-0300

(2) Transmit Operation

In transmit mode, transmit data is output from SDA, in synchronization with the fall of the transfer
clock. The transfer clock is output when MST in ICCR1 is 1, and is input when MST is 0. For
transmit mode operation timing, refer to figure 16.14. The transmission procedure and operations
in transmit mode are described below.

1. Set the ICE bit in ICCR1 to 1. Set the MST and CKS3 to CKS0 bits in ICCR1 to 1. (Initial
setting)

2. Set the TRS bit in ICCR1 to select the transmit mode. Then, TDRE in ICSR is set.

3. Confirm that TDRE has been set. Then, write the transmit data to ICDRT. The data is
transferred from ICDRT to ICDRS, and TDRE is set automatically. The continuous
transmission is performed by writing data to ICDRT every time TDRE is set. When changing
from transmit mode to receive mode, clear TRS while TDRE is 1.

1 2 7 8 1 7 8 1SCL

TRS

Bit 0

Data 1

Data 1

Data 2 Data 3

Data 2 Data 3

Bit 6 Bit 7 Bit 0 Bit 6 Bit 7 Bit 0Bit 1SDA
(Output)

TDRE

ICDRT

ICDRS

User
processing [3] Write data

 to ICDRT
[3] Write data
 to ICDRT

[3] Write data
 to ICDRT

[3] Write data
 to ICDRT

[2] Set TRS

Figure 16.14 Transmit Mode Operation Timing

Section 21 Electrical Characteristics

Rev. 3.00 May 15, 2007 Page 392 of 516

REJ09B0152-0300

• All operating modes

81.25

1.8 3.62.7 AVcc (V)

φ S
U

B
 (

kH
z)

9.375

Rosc/32 used (reference value)

• All operating modes

38.4

1.8 3.62.7 AVcc (V)

φ S
U

B
 (

kH
z)

32.768

0.3

2.6

2.71.8 3.6 AVcc (V)

φ
(M

H
z)

• Active (high-speed) mode
• Sleep (high-speed) mode

Rosc used (reference value)

(3) On-chip oscillator selected

Figure 21.7 Analog Power Supply Voltage and Operating Frequency Range of
A/D Converter (2)

Section 21 Electrical Characteristics

Rev. 3.00 May 15, 2007 Page 398 of 516

REJ09B0152-0300

 Values

Item Symbol Applicable Pins Test Condition Min. Typ. Max. Unit Notes

–IOH All output pins VCC = 2.7 V to 3.6 V — — 2.0 mA Permissible
output high
current
(per pin)

 Other than above — — 0.2

Permissible
output high
current (total)

∑ – IOH All output pins — — 10.0 mA

Notes: 1. Pin states during current measurement.

Mode RES Pin Internal State Other Pins Oscillator Pins

Active (high-speed)
mode (IOPE1)

VCC Only CPU operates VCC

Active (medium-speed)
mode (IOPE2)

Sleep mode VCC Only on-chip timers
operate

VCC

System clock
oscillator: Crystal
resonator

Subclock oscillator:
Pin X1 = GND

Subactive mode VCC Only CPU operates VCC

Subsleep mode VCC Only on-chip timers
operate, CPU stops

VCC

Watch mode VCC Only timer base
operates, CPU stops

VCC

System clock
oscillator: Crystal
resonator

Subclock oscillator:
Crystal resonator

Standby mode VCC CPU and timers both
stop, SUBSTP = 1

VCC System clock
oscillator: Crystal
resonator

Subclock oscillator:
Pin X1 = Crystal
resonator

 2. Excludes current in pull-up MOS transistors and output buffers.

 3. Used for the determination of user mode or boot mode when the reset is released.
 4. When bits IRQ0S1 and IRQ0S0 are set to B'01 or B'10, and bits IRQ1S1 and IRQ1S0

are set to B'01 or B'10, the maximum value is given VCC + 0.3 (V).

Appendix

 Rev. 3.00 May 15, 2007 Page 449 of 516

 REJ09B0152-0300

Mnemonic Operation

O
p

er
an

d
 S

iz
e

Addressing Mode and
Instruction Length (bytes)

No. of
States*1

 Condition Code

I H N Z V C#x
x

R
n

@
E

R
n

@
(d

, E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

, P
C

)

@
@

aa

—

NEG.B Rd

NEG.W Rd

NEG.L ERd

EXTU.W Rd

EXTU.L ERd

EXTS.W Rd

EXTS.L ERd

0–Rd8 → Rd8

0–Rd16 → Rd16

0–ERd32 → ERd32

0 → (<bits 15 to 8>

of Rd16)

0 → (<bits 31 to 16>

of ERd32)

(<bit 7> of Rd16) →
(<bits 15 to 8> of Rd16)

(<bit 15> of ERd32) →

(<bits 31 to 16> of

ERd32)

B

W

L

W

L

W

L

2

2

2

2

2

2

2

—

—

—

—

—

—

—

—

—

—

—

2

2

2

2

2

2

2

N
o

rm
al

A
d

va
n

ce
d

↔ ↔ ↔ ↔ ↔

↔ ↔ ↔ ↔ ↔

↔ ↔ ↔ ↔ ↔

0

0

0

0

0

0

—

—

—

—

↔
↔

↔
↔

↔
↔

NEG

EXTU

EXTS

Appendix

 Rev. 3.00 May 15, 2007 Page 451 of 516

 REJ09B0152-0300

4. Shift Instructions

Mnemonic

O
p

er
an

d
 S

iz
e

No. of
States*1

 Condition Code

I H N Z V C

SHAL.B Rd

SHAL.W Rd

SHAL.L ERd

SHAR.B Rd

SHAR.W Rd

SHAR.L ERd

SHLL.B Rd

SHLL.W Rd

SHLL.L ERd

SHLR.B Rd

SHLR.W Rd

SHLR.L ERd

ROTXL.B Rd

ROTXL.W Rd

ROTXL.L ERd

ROTXR.B Rd

ROTXR.W Rd

ROTXR.L ERd

ROTL.B Rd

ROTL.W Rd

ROTL.L ERd

ROTR.B Rd

ROTR.W Rd

ROTR.L ERd

B

W

L

B

W

L

B

W

L

B

W

L

B

W

L

B

W

L

B

W

L

B

W

L

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
N

o
rm

al

A
d

va
n

ce
d

↔ ↔ ↔ ↔

Addressing Mode and
Instruction Length (bytes)

#x
x

R
n

@
E

R
n

@
(d

, E
R

n
)

@
–E

R
n

/@
E

R
n

+

@
aa

@
(d

, P
C

)

@
@

aa

—

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Operation

MSB LSB

0C

MSB LSB

0C

C

MSB LSB

0 C

MSB LSB

C

MSB LSB

C

MSB LSB

C

MSB LSB

C

MSB LSB

↔ ↔ ↔ ↔

↔ ↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

↔ ↔ ↔

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

SHAL

SHAR

SHLL

SHLR

ROTXL

ROTXR

ROTL

ROTR

Appendix

Rev. 3.00 May 15, 2007 Page 458 of 516

REJ09B0152-0300

A.2 Operation Code Map

Table A.2 Operation Code Map (1)

A
H

A
L

0
1

2
3

4
5

6
7

8
9

A
B

C
D

E
F

0 1 2 3 4 5 6 7 8 9 A B C D E F

N
O

P

B
R

A

M
U

LX
U

B
S

E
T

B
R

N

D
IV

X
U

B
N

O
T

S
T

C

B
H

I

M
U

LX
U

B
C

LR

LD
C

B
LS

D
IV

X
U

B
T

S
T

O
R

C

O
R

.B

B
C

C

R
T

S

O
R

X
O

R
C

X
O

R
.B

B
C

S

B
S

R

X
O

R

B
O

R B
IO

R

B
X

O
R

B
IX

O
R

B
A

N
D B
IA

N
D

A
N

D
C

A
N

D
.B

B
N

E

R
T

E

A
N

D

LD
C

B
E

Q

T
R

A
P

A

B
LD

B
IL

D

B
S

T B
IS

T

B
V

C

M
O

V

B
P

L

JM
P

B
M

I

E
E

P
M

O
V

A
D

D
X

S
U

B
X

B
G

T

JS
R

B
LE

M
O

V

A
D

D

A
D

D
X

C
M

P

S
U

B
X

O
R

X
O

R

A
N

D

M
O

V

In
st

ru
ct

io
n

w
he

n
m

os
t s

ig
ni

fi
ca

nt
 b

it
of

 B
H

 is
 0

.

In
st

ru
ct

io
n

w
he

n
m

os
t s

ig
ni

fi
ca

nt
 b

it
of

 B
H

 is
 1

.

In
st

ru
ct

io
n

co
de

:

T
ab

le
 A

-2
(2

)
T

ab
le

 A
-2

(2
)

T
ab

le
 A

-2
(2

)
T

ab
le

 A
-2

(2
)

T
ab

le
 A

-2
(2

)

B
V

S
B

LT
B

G
E

B
S

R

T
ab

le
 A

-2
(2

)

T
ab

le
 A

-2
(2

)

T
ab

le
 A

-2
(2

)

T
ab

le
 A

-2
(2

)

T
ab

le
 A

-2
(2

)

T
ab

le
 A

-2
(2

)

T
ab

le
 A

-2
(2

)

T
ab

le
 A

-2
(2

)

T
ab

le
 A

-2
(2

)
T

ab
le

 A
-2

(2
)

T
ab

le
 A

-2
(3

)

1s
t b

yt
e

2n
d

by
te

A
H

B
H

A
L

B
L

A
D

D

S
U

B

M
O

V

C
M

P

 M
O

V
.B

Appendix

 Rev. 3.00 May 15, 2007 Page 461 of 516

 REJ09B0152-0300

A.3 Number of Execution States

The status of execution for each instruction of the H8/300H CPU and the method of calculating
the number of states required for instruction execution are shown below. Table A.4 shows the
number of cycles of each type occurring in each instruction, such as instruction fetch and data
read/write. Table A.3 shows the number of states required for each cycle. The total number of
states required for execution of an instruction can be calculated by the following expression:

Execution states = I × SI + J × SJ + K × SK + L × SL + M × SM + N × SN

Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is accessed.

 BSET #0, @FF00

From table A.4:
I = L = 2, J = K = M = N= 0

From table A.3:
SI = 2, SL = 2

Number of states required for execution = 2 × 2 + 2 × 2 = 8

When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM, and
on-chip RAM is used for stack area.

 JSR @@ 30

From table A.4:
I = 2, J = K = 1, L = M = N = 0

From table A.3:
SI = SJ = SK = 2

Number of states required for execution = 2 × 2 + 1 × 2+ 1 × 2 = 8

