

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Н8/300Н
Core Size	16-Bit
Speed	4MHz
Connectivity	I ² C, IrDA, SCI, SSU
Peripherals	POR, PWM, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN
Supplier Device Package	32-VQFN (5x6)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df38602rft4wv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Tables

Section 1	Overview	
Table 1.1	Pin Functions	4
Section 2	СРИ	
Table 2.1	Operation Notation	16
Table 2.2	Data Transfer Instructions	17
Table 2.3	Arithmetic Operations Instructions (1)	18
Table 2.3	Arithmetic Operations Instructions (2)	19
Table 2.4	Logic Operations Instructions	20
Table 2.5	Shift Instructions	20
Table 2.6	Bit Manipulation Instructions (1)	21
Table 2.6	Bit Manipulation Instructions (2)	22
Table 2.7	Branch Instructions	23
Table 2.8	System Control Instructions	24
Table 2.9	Block Data Transfer Instructions	25
Table 2.10	Addressing Modes	27
Table 2.11	Absolute Address Access Ranges	29
Table 2.12	Effective Address Calculation (1)	30
Table 2.12	Effective Address Calculation (2)	31
Section 3	Exception Handling	
Table 3.1	Exception Sources and Vector Address	42
Table 3.2	Reset Sources	44
Table 3.3	Pin Configuration	46
Table 3.4	Interrupt Wait States	57
Section 4	Clock Pulse Generators	
Table 4.1	Methods for Selecting System Clock Oscillator and On-Chip Oscillator	67
Section 5	Power-Down Modes	
Table 5.1	Operating Frequency and Waiting Time	79
Table 5.2	Transition Mode after SLEEP Instruction Execution and Interrupt Handling	85
Table 5.3	Internal State in Each Operating Mode	86
Section 6	ROM	
Table 6.1	Setting Programming Modes	104
Table 6.2	Boot Mode Operation	107
Table 6.3	System Clock Frequencies for which Automatic Adjustment of	
	LSI Bit Rate is Possible	108
Table 6.4	Reprogramming Data Computation Table	111

Rev. 3.00 May 15, 2007 Page xxix of xxxii

Table 14.3	Examples of BRR Settings for Various Bit Rates	
	(Asynchronous Mode and ABCS Bit is 1) (4)	
Table 14.4	Relation between n and Clock	
Table 14.5	Maximum Bit Rate for Each Frequency (Asynchronous Mode)	
Table 14.6	BRR Settings for Various Bit Rates (Clock Synchronous Mode) (1)	
Table 14.6	BRR Settings for Various Bit Rates (Clock Synchronous Mode) (2)	
Table 14.7	Relation between n and Clock	
Table 14.8	Data Transfer Formats (Asynchronous Mode)	
Table 14.9	SMR Settings and Corresponding Data Transfer Formats	
Table 14.10	SMR and SCR Settings and Clock Source Selection	
Table 14.11	SSR Status Flags and Receive Data Handling	
Table 14.12	IrCKS2 to IrCKS0 Bit Settings	
Table 14.13	SCI3 Interrupt Requests	
Table 14.14	Transmit/Receive Interrupts	
Section 15	Synchronous Serial Communication Unit (SSU)	
Table 15.1	Pin Configuration	
Table 15.2	Relationship between Communication Modes and Input/Output Pins	
Table 15.3	Interrupt Requests	
Section 10	$I^2 C$ Due Latende es 2 (IIC2)	
Section 10	Din Configuration	212
Table 16.1	Fill Collingulation	
Table 16.2	Interrupt Dequests	
Table 16.4	Time for Monitoring SCI	346
1 4010 10.4		
Section 17	A/D Converter	
Table 17.1	Pin Configuration	
Table 17.2	Operating States of A/D Converter	
Section 18	Comparators	
Table 18.1	Pin Configuration	
Table 18.2	Combination of CMR and CMLS Bits	
Section 21	Electrical Characteristics	
Table 21.1	Absolute Maximum Ratings	
Table 21.2	DC Characteristics	
Table 21.3	Control Signal Timing	
Table 21.4	Serial Interface Timing	
Table 21.5	Synchronous Serial Communication Unit (SSU) Timing	
Table 21.6	I ² C Bus Interface Timing	
Table 21.7	A/D Converter Characteristics	
Table 21.8	Comparator Characteristics	

Rev. 3.00 May 15, 2007 Page xxxi of xxxii

• Power-down state

Transition to power-down state by SLEEP instruction

2.1 Address Space and Memory Map

The address space of this LSI is 64 Kbytes, which includes the program area and the data area. Figure 2.1 shows the memory map.

Figure 2.1 Memory Map

3.8 Usage Notes

3.8.1 Notes on Stack Area Use

When word data is accessed in this LSI, the least significant bit of the address is regarded as 0. Access to the stack always takes place in word size, so the stack pointer (SP: R7) should never indicate an odd address. To save register values, use PUSH.W Rn (MOV.W Rn, @–SP) or PUSH.L ERn (MOV.L ERn, @–SP). To restore register values, use POP.W Rn (MOV.W @SP+, Rn) or POP.L ERn (MOV.L @SP+, ERn).

Setting an odd address in SP may cause a program to crash. An example is shown in figure 3.6.

Figure 3.6 Operation when Odd Address is Set in SP

When CCR contents are saved to the stack during interrupt exception handling or restored when an RTE instruction is executed, this also takes place in word size. Both the upper and lower bytes of word data are saved to the stack; on return, the even address contents are restored to CCR while the odd address contents are ignored.

6.2.3 Erase Block Register 1 (EBR1)

EBR1 specifies the erase block of flash memory. EBR1 is initialized to H'00 when the SWE bit in FLMCR1 is 0. Do not set more than one bit at a time, as this will cause all the bits in EBR1 to be automatically cleared to 0.

Bit	Bit Name	Initial Value	R/W	Description
7 to 5	_	All 0	_	Reserved
				Although these bits are readable/writable, only 0 should be written to.
4	EB4	0	R/W	When this bit is set to 1, a12-Kbyte area of H'1000 to H'3FFF will be erased.
3	EB3	0	R/W	When this bit is set to 1, a 1-Kbyte area of H'0C00 to H'0FFF will be erased.
2	EB2	0	R/W	When this bit is set to 1, a 1-Kbyte area of H'0800 to H'0BFF will be erased.
1	EB1	0	R/W	When this bit is set to 1, a 1-Kbyte area of H'0400 to H'07FF will be erased.
0	EB0	0	R/W	When this bit is set to 1, a 1-Kbyte area of H'0000 to H'03FF will be erased.

6.2.4 Flash Memory Power Control Register (FLPWCR)

FLPWCR enables or disables a transition to the flash memory power-down mode when this LSI enters the subactive mode. There are two modes: mode in which operation of the power supply circuit of flash memory is partly halted in power-down mode and flash memory can be read, and mode in which even if a transition is made to subactive mode, operation of the power supply circuit of flash memory is retained and flash memory can be read.

Bit	Bit Name	Initial Value	R/W	Description
7	PDWND	0	R/W	Power-Down Disable
				When this bit is 0 and a transition is made to subactive mode, the flash memory enters the power-down mode. When this bit is 1, the flash memory remains in the normal mode even after a transition is made to subactive mode.
6 to 0	_	All 0	_	Reserved
				These bits are always read as 0.

Table 6.2 Boot Mode Operation

E	Host Operation	Communication	LSI Operation	
Ť.	Processing Contents	Contents	Processing Contents	
Boot mode initiation			Branches to boot program after releasing reset state. Boot program initiation	
Bit rate adjustment	Continuously transmits data H'00 at specified bit rate Transmits data H'55 when data H'00 is received error-free	H'00, H'00 · · · · H'00 H'00 H'55	 Measures low-level period of receive data H'00. Calculates bit rate and sets BRR in SCI3. Transmits data H'00 to host as adjustment end code. H'55 reception. 	
Flash memory erase	Boot program - erase error H'AA reception	H'FF H'AA	 Checks flash memory data, erases all flash memory blocks when data has been written to and then transmits data H'AA to host. (If erasure fails, transmits data of H'FF to host and aborts operation.) 	
Transfer of programming control program	Transmits number of bytes (N) of programming control program to be transferred as 2-byte data (lower byte following upper byte) Transmits 1-byte of programming control program (repeated for N times)	Low-order byte and high-order byte Echoback H'XX Echoback H'AA	 Echobacks the 2-byte data received to host. Echobacks received data to host and also transfers it to RAM. (repeated for N times) Transmits data H'AA to host. 	
			Branches to programming control program transferred to on-chip RAM and starts execution.	

Host Bit Rate	System Clock Frequency Range of LSI
9,600 bps	8 to 10 MHz
4,800 bps	4 to 10 MHz
2,400 bps	2 to 10 MHz

Table 6.3System Clock Frequencies for which Automatic Adjustment of LSI Bit Rate is
Possible

6.3.2 Programming/Erasure in User Program Mode

On-board programming/erasing of an individual flash memory block can also be performed in user program mode by branching to a user programming/erasing control program. The user must prepare the settings for branching to the user programming/erasing control program and means to transfer programming data for on-board programming. The flash memory must contain the user programming/erasing control program or a program that transfer the user programming/erasing control program from external memory. Since the flash memory cannot be read during programming/erasure, transfer the user programming/erasing control program to on-chip RAM, as in boot mode. Figure 6.2 shows a sample procedure for programming/erasure in user program mode. Prepare a user programming/erasing control program in accordance with the description in section 6.4, Flash Memory Programming/Erasure.

The system clock oscillator must be used when programming or erasing the flash memory.

Figure 6.2 Programming/Erasing Flowchart Example in User Program Mode

8.3.5 Input Pull-Up MOS

Port 8 has an on-chip input pull-up MOS function that can be controlled by software. When a PCR8 bit is cleared to 0, setting the corresponding PUCR8 bit to 1 turns on the input pull-up MOS for that pin. The input pull-up MOS function is in the off state after a reset.

(n = 4 to 2)

PCR8n	()	1
PUCR8n	0	1	Х
Input Pull-Up MOS	Off	On	Off

[Legend] x: Don't care.

8.4 **Port 9**

Port 9 is an I/O port also functioning as an SSU I/O pin, IIC2 I/O pin and interrupt pin. Figure 8.4 shows its pin configuration.

Port 9 has the following registers.

- Port data register 9 (PDR9)
- Port control register 9 (PCR9)
- Port open-drain control register 9 (PODR9)
- Port pull-up control register 9 (PUCR9)

Figure 10.13 PWM Mode Example (TOB, TOC, and TOD = 1: initial output values are set to 1)

Section 12 Watchdog Timer

This LSI incorporates the watchdog timer (WDT). The WDT is an 8-bit timer that can generate an internal reset signal if a system crash prevents the CPU from writing to the timer counter, thus allowing it to overflow.

When this watchdog timer function is not needed, the WDT can be used as an interval timer. In interval timer operation, an interval timer interrupt is generated each time the counter overflows.

12.1 Features

The WDT features are described below.

• Selectable from eleven counter input clocks

Ten internal clock sources ($\phi/64$, $\phi/128$, $\phi/256$, $\phi/512$, $\phi/1024$, $\phi/2048$, $\phi/4096$, $\phi/8192$, $\phi_w/16$, and $\phi_w/256$) or the on-chip oscillator ($R_{osc}/2048$) can be selected as the timer-counter clock.

• Watchdog timer mode

If the counter overflows, this LSI is internally reset.

• Interval timer mode

If the counter overflows, an interval timer interrupt is generated.

• Use of module standby mode enables this module to be placed in standby mode independently when not used. (The WDT is operating as the initial value. For details, refer to section 5.4, Module Standby Function.)

Figure 15.1 Block Diagram of SSU

15.2 Input/Output Pins

Table 15.1 shows the pin configuration of the SSU.

Table 15.1 Pin Configuration

Pin Name	Abbreviation	I/O	Function
SSU clock	SSCK	I/O	SSU clock input/output
SSU data input/output	SSI	I/O	SSU data input/output
SSU data input/output	SSO	I/O	SSU data input/output
SSU chip select input/output	SCS	I/O	SSU chip select input/output

17.4.3 Operating States of A/D Converter

Table 17.2 shows the operating states of the A/D converter.

Table 17.2 Operating States of A/D Converter

Operating Mode	Reset	Active	Sleep	Watch	Sub- active	Sub-sleep	Standby	Module Standby
AMR	Reset	Functions	Retained	Retained	Functions/ Retained* ²	Retained	Retained	Retained
ADSR	Reset	Functions	Functions	Retained	Functions/ Retained* ²	Functions/ Retained* ²	Retained	Retained
ADRR	Retained*1	Functions	Functions	Retained	Functions/ Retained* ²	Functions/ Retained* ²	Retained	Retained

Notes: 1. Undefined at a power-on reset.

2. Function if $\frac{\phi w}{2}$ is selected as the internal clock. Halted and retained otherwise.

17.5 Example of Use

An example of how the A/D converter can be used is given below, using channel 1 (pin AN1) as the analog input channel. Figure 17.3 shows the operation timing.

- 1. Bits CH3 to CH0 in the A/D mode register (AMR) are set to 0101, making pin AN1 the analog input channel. A/D interrupts are enabled by setting bit IENAD to 1, and A/D conversion is started by setting bit ADSF to 1.
- 2. When A/D conversion is completed, bit IRRAD is set to 1, and the A/D conversion result is stored in ADRR. At the same time bit ADSF is cleared to 0, and the A/D converter goes to the idle state.
- 3. Bit IENAD = 1, so an A/D conversion end interrupt is requested.
- 4. The A/D interrupt handling routine starts.
- 5. The A/D conversion result is read and processed.
- 6. The A/D interrupt handling routine ends.

If bit ADSF is set to 1 again afterward, A/D conversion starts and steps 2 through 6 take place.

18.2 Input/Output Pins

Table 18.1 shows the pin configuration of the comparators.

Table 18.1 Pin Configuration

Pin Name	Abbreviation	I/O	Function
Comparator reference voltage	VCref	Input	Comparator reference voltage pin (external input)
Analog input channel 0	COMP0	Input	Comparator analog input pin 0
Analog input channel 1	COMP1	Input	Comparator analog input pin 1

18.3 Register Descriptions

The comparators have the following registers. For details on register addresses and register states during each processing, refer to section 20, List of Registers.

- Compare control registers 0, 1 (CMCR0, CMCR1)
- Compare data register (CMDR)

18.3.1 Compare Control Registers 0, 1 (CMCR0, CMCR1)

CMCR0 and CMCR1 control the comparators.

Bit	Bit Name	Initial Value	R/W	Description
7	CME	0	R/W	Comparator Enable
				0: Comparator halted
				1: Comparator operates
6	CMIE	0	R/W	Comparator Interrupt Enable
				0: Disables a comparator interrupt
				1: Enables a comparator interrupt
5	CMR	0	R/W	Comparator Reference Voltage Select
				0: Selects internal power supply as reference voltage
				1: Reference voltage is input from VCref pin
				For the combination of the CMR and CMLS bits.

Figure 21.6 Analog Power Supply Voltage and Operating Frequency Range of A/D Converter (1)

				_	Valu	es	_	
Item	Symbol	Applicable Pins	Test Condition	Min.	Тур.	Max.	Unit	Notes
Subsleep mode supply current	I _{SUBSP}	V _{cc}	$V_{cc} = 2.7 V,$ 32-kHz crystal resonator ($\phi_{sub} = \phi_w/2$)	_	3.5	_	μA	* ¹ * ² Reference value
			$\begin{split} V_{cc} &= 2.7 \text{ V}, \\ \text{on-chip} \\ \text{oscillator/32} (\phi_{sub} \\ &= \phi_w = R_{osc}/32) \end{split}$	_	34	_	_	* ¹ * ² Reference value
			$\label{eq:Vcc} \begin{array}{l} V_{cc} = 2.7 \ V, \\ 32\text{-}kHz \ crystal \\ resonator \ (\varphi_{\text{SUB}} = \\ \varphi_{\text{w}}) \end{array}$	_	5.1	16.0	-	* ¹ * ²
Watch mode supply current	I _{watch}	V _{cc}	$V_{cc} = 1.8 V,$ Ta = 25°C, 32-kHz crystal resonator	_	0.5	_	μA	* ¹ * ² Reference value
			$V_{cc} = 2.7 V,$ 32-kHz crystal resonator	_	1.5	5.0		* ¹ * ²
Standby mode supply current	I _{stby}	V _{cc}	$V_{cc} = 3.0 V,$ $Ta = 25^{\circ}C,$ 32-kHz crystal resonator not used	_	0.1	_	μA	* ¹ * ² Reference value
_			32-kHz crystal resonator not used	_	1.0	5.0	_	*1*2
RAM data retaining voltage	V_{RAM}	V _{cc}		1.5	_	—	V	
Permissible output low	I _{ol}	Output pins except port 8		—	—	0.5	mA	
current (per pin)		Port 8		—	—	15.0		
Permissible output low	$\Sigma \; {\rm I_{OL}}$	Output pins except port 8		_	_	20.0	mA	
current (total)		Port 8			_	45.0		

Table 21.4 Serial Interface Timing

 $V_{cc} = 1.8$ V to 3.6 V, $AV_{cc} = 1.8$ V to 3.6 V, $V_{ss} = 0.0$ V, unless otherwise specified.

Item			Test Condition	Values			_	Reference
		Symbol		Min.	Тур.	Max.	Unit	Figure
Input clock cycle	Asynchronous	t _{scyc}		4	_	_	$-\frac{t_{_{cyc}} \text{ or }}{t_{_{subcyc}}}$	Figure 21.18
	Clock synchronous	_		6	—	_		
Input clock pulse width		t _{sскw}		0.4	_	0.6	t _{scyc}	Figure 21.18
Transmit data delay time (clock synchronous)		t_{TXD}		_	—	1	t _{cyc} or t _{subcyc}	Figure 21.19
Receive data setup time (clock synchronous)		t _{exs}		400.0	_	_	ns	Figure 21.19
Receive data hold time (clock synchronous)		t _{RXH}		400.0	—	_	ns	Figure 21.19

		Applicable			Value	s		
Item	Symbol	Pins	Test Condition	Min.	Тур.	Max.	Unit	Notes
Active mode supply current	I _{OPE2}	V _{cc}	Active (medium-speed) mode, $V_{cc} = 1.8 V$, $f_{osc} = 2 MHz$, $\phi_{osc}/64$	_	0.1	_	mA	Max. guideline = 1.1 × typ. * ¹ * ²
			$\label{eq:constraint} \hline \begin{array}{l} \mbox{Active (medium-speed)} \\ \mbox{mode,} \\ \mbox{V}_{cc} = 3 \mbox{ V}, \\ \mbox{f}_{osc} = 4.2 \mbox{ MHz}, \\ \mbox{\phi}_{osc}/64 \end{array}$	_	0.3	0.5	_	* ¹ * ² 4-MHz version
			Active (medium-speed) mode, $V_{cc} = 3 V$, $f_{osc} = 10 MHz$, $\phi_{osc}/64$	_	0.5	0.7	_	* ¹ * ² 10-MHz version
Sleep mode supply current	I	V _{cc}	$V_{cc} = 1.8 \text{ V},$ $f_{osc} = 2 \text{ MHz}$	-	0.3	_	mA	Max. guideline = $1.1 \times \text{typ.} *^{1}*^{2}$
			$V_{cc} = 3 V,$ $f_{osc} = 4.2 MHz$	_	1.0	1.5	_	* ¹ * ² 4-MHz version
			$V_{cc} = 3 V,$ $f_{osc} = 10 MHz$	_	1.8	2.7	_	* ¹ * ² 10-MHz version
Subactive mode supply current	I _{SUB}	V _{cc}	$V_{cc} = 1.8 \text{ V},$ 32-kHz crystal resonator $(\phi_{SUB} = \phi_W/2)$	_	4.0	_	μA	* ¹ * ² Reference value
			$V_{cc} = 2.7 \text{ V},$ 32-kHz crystal resonator $(\phi_{SUB} = \phi_W/8)$	_	3.6	_		* ¹ * ² Reference value
			V_{cc} = 2.7 V, 32-kHz crystal resonator $(\phi_{SUB} = \phi_W/2)$	_	7.4	_		* ¹ * ² Reference value
			$V_{cc} = 2.7 \text{ V},$ on-chip oscillator/32 $(\phi_{SUB} = \phi_W = R_{OSC}/32)$	_	40	_		* ¹ * ² Reference value
			V_{cc} = 2.7 V, 32-kHz crystal resonator $(\phi_{SUB} = \phi_w)$	_	13	25		* ¹ * ²

Appendix

A. Instruction Set

A.1 Instruction List

Condition Code

Symbol	Description
Rd	General destination register
Rs	General source register
Rn	General register
ERd	General destination register (address register or 32-bit register)
ERs	General source register (address register or 32-bit register)
ERn	General register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
PC	Program counter
SP	Stack pointer
CCR	Condition-code register
Ν	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
disp	Displacement
\rightarrow	Transfer from the operand on the left to the operand on the right, or transition from the state on the left to the state on the right
+	Addition of the operands on both sides
-	Subtraction of the operand on the right from the operand on the left
×	Multiplication of the operands on both sides
÷	Division of the operand on the left by the operand on the right
^	Logical AND of the operands on both sides
\vee	Logical OR of the operands on both sides
\oplus	Logical exclusive OR of the operands on both sides
7	NOT (logical complement)
(), < >	Contents of operand

Note: General registers include 8-bit registers (R0H to R7H and R0L to R7L) and 16-bit registers (R0 to R7 and E0 to E7).

		Instruction	Branch	Stack	Byte Data	Word Data	Internal
		Fetch	Addr. Read	Operation	Access	Access	Operation
Instruction	Mnemonic	I	J	ĸ	L	М	N
BIOR	BIOR #xx:3, Rd	1					
	BIOR #xx:3, @ERd	2			1		
	BIOR #xx:3, @aa:8	2			1		
BIST	BIST #xx:3, Rd	1					
	BIST #xx:3, @ERd	2			2		
	BIST #xx:3, @aa:8	2			2		
BIXOR	BIXOR #xx:3, Rd	1					
	BIXOR #xx:3, @ERd	2			1		
	BIXOR #xx:3, @aa:8	2			1		
BLD	BLD #xx:3, Rd	1					
	BLD #xx:3, @ERd	2			1		
	BLD #xx:3, @aa:8	2			1		
BNOT	BNOT #xx:3, Rd	1					
	BNOT #xx:3, @ERd	2			2		
	BNOT #xx:3, @aa:8	2			2		
	BNOT Rn, Rd	1					
	BNOT Rn, @ERd	2			2		
	BNOT Rn, @aa:8	2			2		
BOR	BOR #xx:3, Rd	1					
	BOR #xx:3, @ERd	2			1		
	BOR #xx:3, @aa:8	2			1		
BSET	BSET #xx:3, Rd	1					
	BSET #xx:3, @ERd	2			2		
	BSET #xx:3, @aa:8	2			2		
	BSET Rn, Rd	1					
	BSET Rn, @ERd	2			2		
	BSET Rn, @aa:8	2			2		
BSR	BSR d:8	2		1			
	BSR d:16	2		1			2
BST	BST #xx:3, Rd	1					
	BST #xx:3, @ERd	2			2		
	BST #xx:3, @aa:8	2			2		
	-						

Page Revisions (See Manual for Details)

Item

