E·XFL

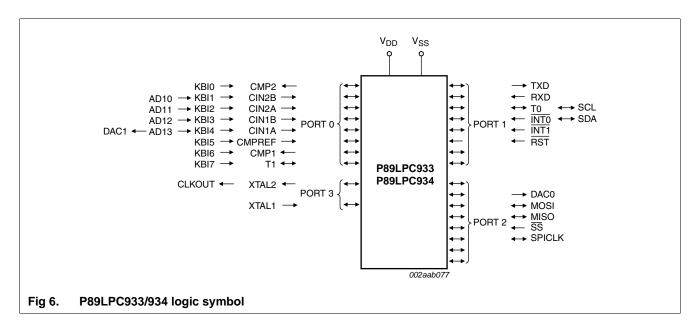
Welcome to E-XFL.COM

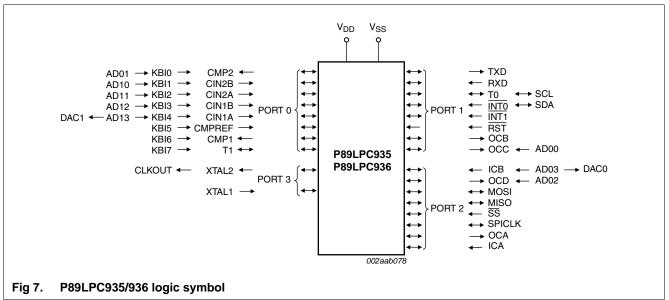
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	18MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	26
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	A/D 4x8b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	28-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p89lpc933hdh-512


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-bit microcontroller with accelerated two-clock 80C51 core

7. Logic symbols

8. Functional description

Remark: Please refer to the P89LPC933/934/935/936 *User manual* for a more detailed functional description.

8.1 Special function registers

Remark: SFR accesses are restricted in the following ways:

- User must **not** attempt to access any SFR locations not defined.
- Accesses to any defined SFR locations must be strictly for the functions for the SFRs.
- SFR bits labeled '-', logic 0 or logic 1 can **only** be written and read as follows:
 - '-' Unless otherwise specified, must be written with logic 0, but can return any value when read (even if it was written with logic 0). It is a reserved bit and may be used in future derivatives.
 - Logic 0 must be written with logic 0, and will return a logic 0 when read.
 - Logic 1 must be written with logic 1, and will return a logic 1 when read.

Table 6.Special function registers - P89LPC935/936* indicates SFRs that are bit addressable. P89LPC93 Table 6.

3_934	Name	Description	SFR	Bit function	ons and ad	Idresses						Reset	value
P89LPC933_934_935_936			addr.	MSB							LSB	Hex	Binary
936		Bit a	ddress	E7	E6	E5	E4	E3	E2	E1	E0		
	ACC*	Accumulator	E0H									00	0000 0000
	ADCON0	A/D control register 0	8EH	ENBI0	ENADCI 0	TMM0	EDGE0	ADCI0	ENADC0	ADCS01	ADCS00	00	0000 0000
	ADCON1	A/D control register 1	97H	ENBI1	ENADCI 1	TMM1	EDGE1	ADCI1	ENADC1	ADCS11	ADCS10	00	0000 0000
	ADINS	A/D input select	A3H	ADI13	ADI12	ADI11	ADI10	ADI03	ADI02	ADI01	ADI00	00	0000 0000
	ADMODA	A/D mode register A	C0H	BNDI1	BURST1	SCC1	SCAN1	BNDI0	BURST0	SCC0	SCAN0	00	000 000
All int	ADMODB	A/D mode register B	A1H	CLK2	CLK1	CLK0	-	ENDAC1	ENDAC0	BSA1	BSA0	00	000x 000
All information	AD0BH	A/D_0 boundary high register	BBH									FF	1111 1111
on prov	AD0BL	A/D_0 boundary low register	A6H									00	0000 000
provided in this	AD0DAT0	A/D_0 data register 0	C5H									00	0000 000
this d	AD0DAT1	A/D_0 data register 1	C6H									00	0000 000
document is subject to legal	AD0DAT2	A/D_0 data register 2	C7H									00	0000 000
nt is su	AD0DAT3	A/D_0 data register 3	F4H									00	0000 000
s document is subject to leg	AD1BH	A/D_1 boundary high register	C4H									FF	1111 1111
o legal	AD1BL	A/D_1 boundary low register	BCH									00	0000 000
disclair	AD1DAT0	A/D_1 data register 0	D5H									00	0000 000
ners.	AD1DAT1	A/D_1 data register 1	D6H									00	0000 000
	AD1DAT2	A/D_1 data register 2	D7H									00	0000 000
	AD1DAT3	A/D_1 data register 3	F5H									00	0000 000
	AUXR1	Auxiliary function register	A2H	CLKLP	EBRR	ENT1	ENT0	SRST	0	-	DPS	00	0000 00x
		Bit a	ddress	F7	F6	F5	F4	F3	F2	F1	F0		
	B*	B register	F0H									00	0000 000
07	BRGR0[2]	Baud rate generator rate low	BEH									00	0000 000
NXP B.V. 2011.	BRGR1[2]	Baud rate generator rate high	BFH									00	0000 000
V. 2011	BRGCON	Baud rate generator control	BDH	-	-	-	-	-	-	SBRGS	BRGEN	00 <u>[2]</u>	xxxx xx00
1. All rights res	CCCRA	Capture compare A control register	EAH	ICECA2	ICECA1	ICECA0	ICESA	ICNFA	FCOA	OCMA1	OCMA0	00	0000 000

NXP Semiconductors

8-bit microcontroller with accelerated two-clock 80C51 core P89LPC933/934/935/936

18 of 77

8.2 Enhanced CPU

The P89LPC933/934/935/936 uses an enhanced 80C51 CPU which runs at six times the speed of standard 80C51 devices. A machine cycle consists of two CPU clock cycles, and most instructions execute in one or two machine cycles.

8.3 Clocks

8.3.1 Clock definitions

The P89LPC933/934/935/936 device has several internal clocks as defined below:

OSCCLK — Input to the DIVM clock divider. OSCCLK is selected from one of four clock sources (see <u>Figure 8</u>) and can also be optionally divided to a slower frequency (see <u>Section 8.8 "CCLK modification: DIVM register"</u>).

Remark: fosc is defined as the OSCCLK frequency.

CCLK — CPU clock; output of the clock divider. There are two CCLK cycles per machine cycle, and most instructions are executed in one to two machine cycles (two or four CCLK cycles).

RCCLK — The internal 7.373 MHz RC oscillator output.

PCLK — Clock for the various peripheral devices and is ^{CCLK}/₂.

8.3.2 CPU clock (OSCCLK)

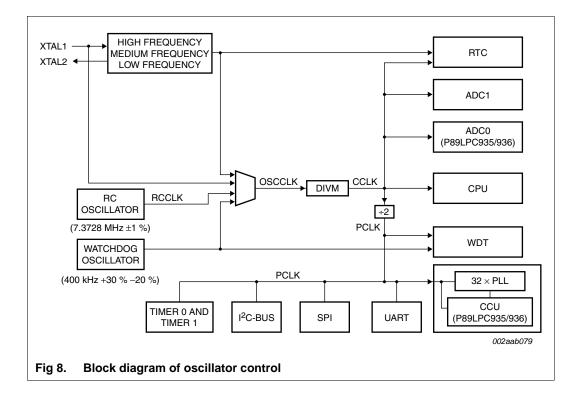
The P89LPC933/934/935/936 provides several user-selectable oscillator options in generating the CPU clock. This allows optimization for a range of needs from high precision to lowest possible cost. These options are configured when the flash is programmed and include an on-chip watchdog oscillator, an on-chip RC oscillator, an oscillator using an external crystal, or an external clock source. The crystal oscillator can be optimized for low, medium, or high frequency crystals covering a range from 20 kHz to 18 MHz.

8.3.3 Low speed oscillator option

This option supports an external crystal in the range of 20 kHz to 100 kHz. Ceramic resonators are also supported in this configuration.

8.3.4 Medium speed oscillator option

This option supports an external crystal in the range of 100 kHz to 4 MHz. Ceramic resonators are also supported in this configuration.


8.3.5 High speed oscillator option

This option supports an external crystal in the range of 4 MHz to 18 MHz. Ceramic resonators are also supported in this configuration.

8.3.6 Clock output

The P89LPC933/934/935/936 supports a user-selectable clock output function on the XTAL2/CLKOUT pin when crystal oscillator is not being used. This condition occurs if another clock source has been selected (on-chip RC oscillator, watchdog oscillator,

8-bit microcontroller with accelerated two-clock 80C51 core

• CODE

64 kB of code memory space, accessed as part of program execution and via the MOVC instruction. The P89LPC933/934/935/936 have 4 KB/8 kB/16 kB of on-chip Code memory.

The P89LPC935/936 also has 512 bytes of on-chip data EEPROM that is accessed via SFRs (see Section 8.27 "Data EEPROM (P89LPC935/936)").

8.11 Data RAM arrangement

The 768 bytes of on-chip RAM are organized as shown in Table 7.

 Table 7.
 On-chip data memory usages

Туре	Data RAM	Size (bytes)
DATA	Memory that can be addressed directly and indirectly	128
IDATA	Memory that can be addressed indirectly	256
XDATA	Auxiliary ('External Data') on-chip memory that is accessed using the MOVX instructions (P89LPC935/936)	512

8.12 Interrupts

The P89LPC933/934/935/936 uses a four priority level interrupt structure. This allows great flexibility in controlling the handling of the many interrupt sources. The P89LPC933/934/935/936 supports 15 interrupt sources: external interrupts 0 and 1, timers 0 and 1, serial port Tx, serial port Rx, combined serial port Rx/Tx, brownout detect, watchdog/Real-Time clock, I²C-bus, keyboard, comparators 1 and 2, SPI, CCU, data EEPROM write/ADC completion.

Each interrupt source can be individually enabled or disabled by setting or clearing a bit in the interrupt enable registers IEN0 or IEN1. The IEN0 register also contains a global disable bit, EA, which disables all interrupts.

Each interrupt source can be individually programmed to one of four priority levels by setting or clearing bits in the interrupt priority registers IPO, IPOH, IP1, and IP1H. An interrupt service routine in progress can be interrupted by a higher priority interrupt, but not by another interrupt of the same or lower priority. The highest priority interrupt service cannot be interrupted by any other interrupt source. If two requests of different priority level is serviced.

If requests of the same priority level are pending at the start of an instruction, an internal polling sequence determines which request is serviced. This is called the arbitration ranking.

Remark: The arbitration ranking is only used to resolve pending requests of the same priority level.

8.12.1 External interrupt inputs

The P89LPC933/934/935/936 has two external interrupt inputs as well as the Keypad Interrupt function. The two interrupt inputs are identical to those present on the standard 80C51 microcontrollers.

8.13 I/O ports

The P89LPC933/934/935/936 has four I/O ports: Port 0, Port 1, Port 2, and Port 3. Ports 0, 1 and 2 are 8-bit ports, and Port 3 is a 2-bit port. The exact number of I/O pins available depends upon the clock and reset options chosen, as shown in Table 8.

Table 8.	Number	of I/O	nins	available
	NUMBER	01 1/0	pilla	available

Clock source	Reset option	Number of I/O pins (28-pin package)
On-chip oscillator or watchdog oscillator	No external reset (except during power-up)	26
	External RST pin supported	25
External clock input	No external reset (except during power-up)	25
	External RST pin supported ^[1]	24
Low/medium/high speed oscillator (external crystal or resonator)	No external reset (except during power-up)	24
	External RST pin supported ^[1]	23

[1] Required for operation above 12 MHz.

8.13.1 Port configurations

All but three I/O port pins on the P89LPC933/934/935/936 may be configured by software to one of four types on a bit-by-bit basis. These are: quasi-bidirectional (standard 80C51 port outputs), push-pull, open drain, and input-only. Two configuration registers for each port select the output type for each port pin.

- 1. P1.5 (\overline{RST}) can only be an input and cannot be configured.
- 2. P1.2 (SCL/T0) and P1.3 (SDA/INT0) may only be configured to be either input-only or open-drain.

8.13.1.1 Quasi-bidirectional output configuration

Quasi-bidirectional output type can be used as both an input and output without the need to reconfigure the port. This is possible because when the port outputs a logic HIGH, it is weakly driven, allowing an external device to pull the pin LOW. When the pin is driven LOW, it is driven strongly and able to sink a fairly large current. These features are somewhat similar to an open-drain output except that there are three pull-up transistors in the quasi-bidirectional output that serve different purposes.

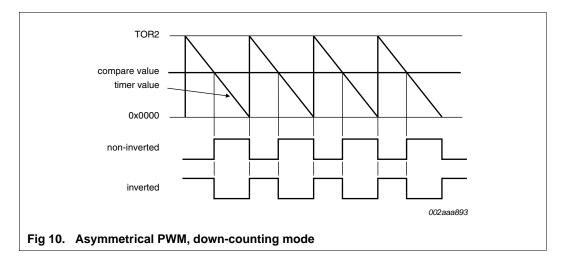
The P89LPC933/934/935/936 is a 3 V device, but the pins are 5 V-tolerant. In quasi-bidirectional mode, if a user applies 5 V on the pin, there will be a current flowing from the pin to V_{DD} , causing extra power consumption. Therefore, applying 5 V in quasi-bidirectional mode is discouraged.

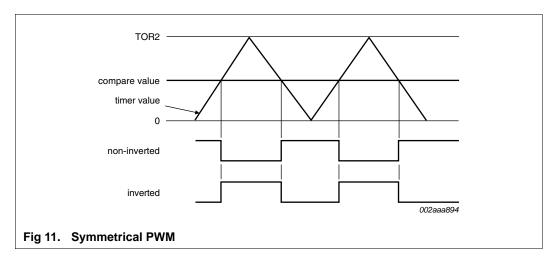
A quasi-bidirectional port pin has a Schmitt trigger input that also has a glitch suppression circuit.

8.13.1.2 Open-drain output configuration

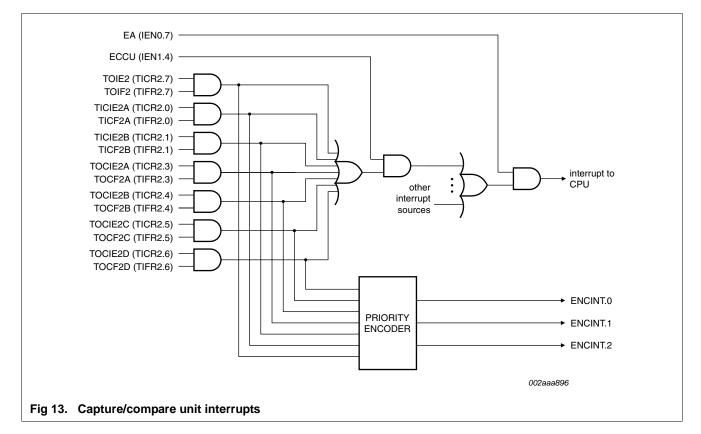
The open-drain output configuration turns off all pull-ups and only drives the pull-down transistor of the port driver when the port latch contains a logic 0. To be used as a logic output, a port configured in this manner must have an external pull-up, typically a resistor tied to V_{DD} .

Capture Noise Filter bit. If set, the capture logic needs to see four consecutive samples of the same value in order to recognize an edge as a capture event. An event counter can be set to delay a capture by a number of capture events.


8.19.6 PWM operation


PWM operation has two main modes, symmetrical and asymmetrical.

In asymmetrical PWM operation the CCU timer operates in down-counting mode regardless of the direction control bit.

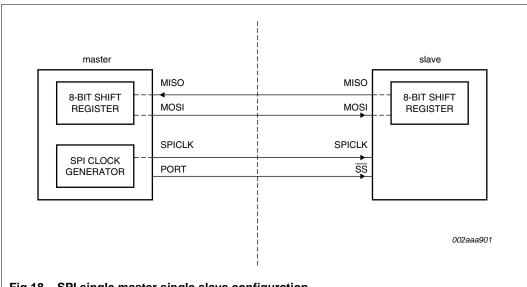

In symmetrical mode, the timer counts up/down alternately. The main difference from basic timer operation is the operation of the compare module, which in PWM mode is used for PWM waveform generation.

As with basic timer operation, when the PWM (compare) pins are connected to the compare logic, their logic state remains unchanged. However, since bit FCO is used to hold the halt value, only a compare event can change the state of the pin.

8-bit microcontroller with accelerated two-clock 80C51 core

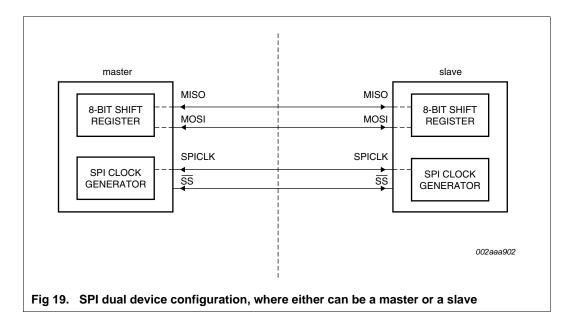
8.19.9 CCU interrupts

There are seven interrupt sources on the CCU which share a common interrupt vector.


8.20 UART

The P89LPC933/934/935/936 has an enhanced UART that is compatible with the conventional 80C51 UART except that Timer 2 overflow cannot be used as a baud rate source. The P89LPC933/934/935/936 does include an independent baud rate generator. The baud rate can be selected from the oscillator (divided by a constant), Timer 1 overflow, or the independent baud rate generator. In addition to the baud rate generation, enhancements over the standard 80C51 UART include Framing Error detection, automatic address recognition, selectable double buffering and several interrupt options. The UART can be operated in four modes: shift register, 8-bit UART, 9-bit UART, and CPU $clock_{16}$.

8.20.1 Mode 0


Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are transmitted or received, LSB first. The baud rate is fixed at $^{1}\!/_{16}$ of the CPU clock frequency.

8-bit microcontroller with accelerated two-clock 80C51 core

8.22.1 Typical SPI configurations

8.25 Watchdog timer

The watchdog timer causes a system reset when it underflows as a result of a failure to feed the timer prior to the timer reaching its terminal count. It consists of a programmable 12-bit prescaler, and an 8-bit down counter. The down counter is decremented by a tap taken from the prescaler. The clock source for the prescaler is either the PCLK or the nominal 400 kHz watchdog oscillator. The watchdog timer can only be reset by a power-on reset. When the watchdog feature is disabled, it can be used as an interval timer and may generate an interrupt. Figure 22 shows the watchdog timer in Watchdog mode. Feeding the watchdog requires a two-byte sequence. If PCLK is selected as the watchdog clock and the CPU is powered-down, the watchdog is disabled. The watchdog timer has a time-out period that ranges from a few μ s to a few seconds. Please refer to the P89LPC933/934/935/936 *User manual* for more details.

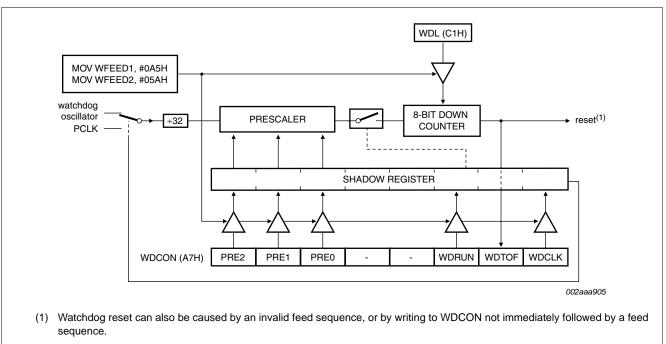


Fig 22. Watchdog timer in Watchdog mode (WDTE = 1)

8.26 Additional features

8.26.1 Software reset

The SRST bit in AUXR1 gives software the opportunity to reset the processor completely, as if an external reset or watchdog reset had occurred. Care should be taken when writing to AUXR1 to avoid accidental software resets.

8.26.2 Dual data pointers

The dual Data Pointers (DPTR) provides two different Data Pointers to specify the address used with certain instructions. The DPS bit in the AUXR1 register selects one of the two Data Pointers. Bit 2 of AUXR1 is permanently wired as a logic 0 so that the DPS bit may be toggled (thereby switching Data Pointers) simply by incrementing the AUXR1 register, without the possibility of inadvertently altering other bits in the register.

8-bit microcontroller with accelerated two-clock 80C51 core

Table 13. Dynamic characteristics (18 MHz) ... continued

 V_{DD} = 3.0 V to 3.6 V unless otherwise specified.

 $T_{amb} = -40 \degree C$ to +85 $\degree C$ for industrial, -40 $\degree C$ to +125 $\degree C$ for extended, unless otherwise specified. [1][2]

Symbol	Parameter	Conditions	Variat	Variable clock			Unit
			Min	Мах	Min	Max	
SPICLKH	SPICLK HIGH time	see <u>Figure 26, 28,</u>					
	master	[–] <u>29</u> , <u>30</u>	² /CCLK	-	111	-	ns
	slave	_	³ /CCLK	Max Min Max LK - 111 - LK - 167 - LK - 111 - LK - 111 - LK - 167 - LK - 167 - 0 - 100 - 0 - 100 - 0 - 100 - 0 - 100 - 160 - 160 - 111 - 111 - 100 - 100 - 100 - 100 - 100 - 2000 - 2000	ns		
t _{SPICLKL}	SPICLK LOW time	see Figure 26, 28,					
	master	[–] <u>29</u> , <u>30</u>	² /CCLK	-	111	-	ns
SPIDSU	slave	_	³ /CCLK	-	167	-	ns
t _{SPIDSU}	SPI data set-up time	see <u>Figure 26, 28,</u>					
	master or slave	<u> 29, 30 </u>	100	-	100	-	ns
t _{SPIDH} SPI data hold time master or slave	SPI data hold time	see Figure 26, 28,					
	<u> 29, 30 </u>	100	-	100	-	ns	
t _{SPIA}	SPI access time	see <u>Figure 29</u> , <u>30</u>					
	slave	_	0	80	0	80	ns
t _{SPIDIS}	SPI disable time	see <u>Figure 29</u> , <u>30</u>					
	slave	_	0	160	-	160	ns
t _{SPIDV}	SPI enable to output data valid time	see <u>Figure 26, 28,</u> <u>29, 30</u>					
	slave	_	-	160	-	160	ns
	master	_	-	111	-	111	ns
t _{SPIOH}	SPI output data hold time	see <u>Figure 26, 28,</u> <u>29, 30</u>	0	-	0	-	ns
SPIR	SPI rise time	see <u>Figure 26, 28,</u>					
	SPI outputs (SPICLK, MOSI, MISO)	<u> 29,</u> <u>30</u>	-	100	-	100	ns
	SPI inputs (SPICLK, MOSI, MISO, \overline{SS})	_	-	2000	-	2000	ns
SPIF	SPI fall time	see <u>Figure 26, 28,</u>					
	SPI outputs (SPICLK, MOSI, MISO)	<u> 29,</u> <u>30 </u>	-	100	-	100	ns
	SPI inputs (SPICLK, MOSI, MISO, \overline{SS})	_	-	2000	-	2000	ns

[1] Parameters are valid over ambient temperature range unless otherwise specified.

[2] Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.

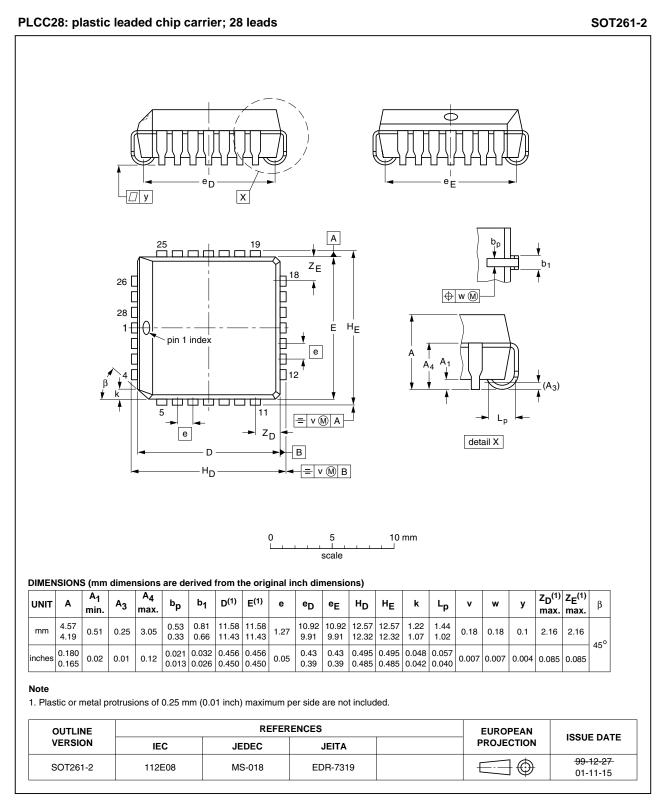
8-bit microcontroller with accelerated two-clock 80C51 core

13.2 ADC electrical characteristics

Table 16. ADC electrical characteristics

 $V_{DD} = 2.4$ V to 3.6 V, unless otherwise specified.

 $T_{amb} = -40 \degree C$ to +85 °C for industrial, -40 °C to +125 °C for extended, unless otherwise specified. All limits valid for an external source impedance of less than 10 k Ω .


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIA	analog input voltage		V _{SS} –0.2	-	V _{DD} +0.2	V
C _{iss}	input capacitance		-	-	15	pF
E _D	differential linearity error		-	-	±1	LSB
E _{L(adj)}	integral non-linearity		-	-	±1	LSB
E _O	offset error		-	-	±2	LSB
E _G	gain error		-	-	±1	%
E _{u(tot)}	total unadjusted error		-	-	±2	LSB
M _{CTC}	channel-to-channel matching		-	-	±1	LSB
$\alpha_{ct(port)}$	crosstalk between port inputs	0 kHz to 100 kHz	-	-	-60	dB
SR _{in}	input slew rate		-	-	100	V/ms
T _{cy(ADC)}	ADC clock cycle time		111	-	2000	ns
t _{ADC}	ADC conversion time	A/D enabled	-	-	13T _{cy(ADC)}	ns

NXP Semiconductors

P89LPC933/934/935/936

8-bit microcontroller with accelerated two-clock 80C51 core

14. Package outline

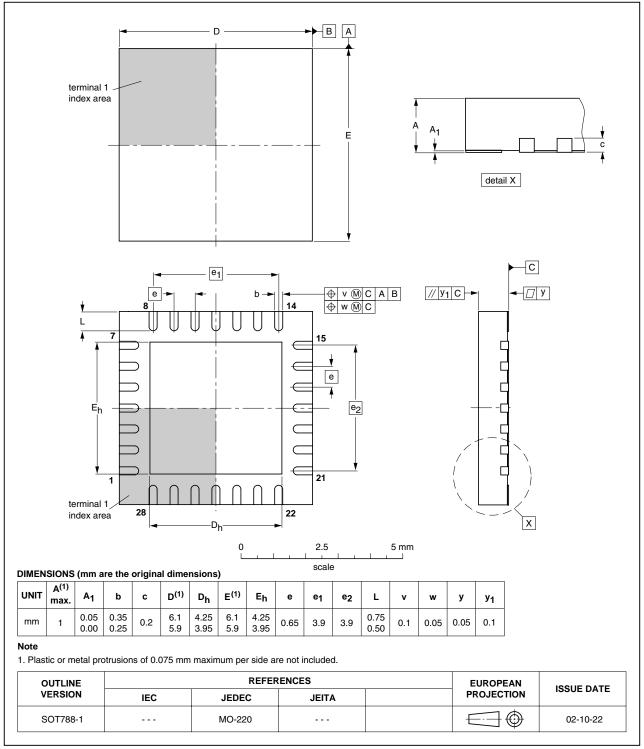


Fig 32. Package outline SOT261-2 (PLCC28)

All information provided in this document is subject to legal disclaimers.

SOT788-1

8-bit microcontroller with accelerated two-clock 80C51 core

HVQFN28: plastic thermal enhanced very thin quad flat package; no leads; 28 terminals; body 6 x 6 x 0.85 mm

Fig 34. Package outline SOT788-1 (HVQFN28)

15. Abbreviations

Table 17.	Acronym list
Acronym	Description
A/D	Analog to Digital
CPU	Central Processing Unit
DAC	Digital to Analog Converter
EPROM	Erasable Programmable Read-Only Memory
EEPROM	Electrically Erasable Programmable Read-Only Memory
EMI	Electro-Magnetic Interference
LED	Light Emitting Diode
PWM	Pulse Width Modulator
RAM	Random Access Memory
RC	Resistance-Capacitance
RTC	Real-Time Clock
SAR	Successive Approximation Register
SFR	Special Function Register
SPI	Serial Peripheral Interface
UART	Universal Asynchronous Receiver/Transmitter

16. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
P89LPC933_934_935_936 v.8	20110112	Product data sheet	-	P89LPC933_934_ 935_936 v.7
Modifications:	• Table 10) "Limiting values": Char	nged V _n max to 5.	5 V.
	• Table 11	"Static characteristics":	: Added V _{POR} .	
	• Table 16	6 "ADC electrical charac	teristics": Correcte	ed V _{IA} max.
	Section	8.16 "Reset": Added se	ntence "When this	pin functions as a reset input"
P89LPC933_934_ 935_936 v.7	20081126	Product data sheet	-	P89LPC933_934_ 935_936 v.6
P89LPC933_934_935_936 v.6	20050620	Product data sheet	-	P89LPC933_934_ 935_936 v.5
P89LPC933_934_935_936 v.6 P89LPC933_934_935_936 v.5	20050620	Product data sheet Product data sheet	-	P89LPC933_934_ 935_936 v.5 P89LPC933_934_ 935 v.4

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

8-bit microcontroller with accelerated two-clock 80C51 core

19. Contents

1	General description 1	8.1
2	Features and benefits 1	8.1
2.1	Principal features 1	8.1
2.2	Additional features 2	8.1
3	Product comparison overview	8.1 8.1
4	Ordering information 3	8.1
4.1	Ordering options	8.1
5	Block diagram	8.1
6	Pinning information	8.1
6.1	Pinning	8.1
6.2	Pin description	8.1
7	Logic symbols 11	8.1
8	Functional description	8.1
8.1	Special function registers	8.1
8.2	Enhanced CPU	8.1
8.3	Clocks	8.1
8.3.1	Clock definitions	8.1
8.3.2	CPU clock (OSCCLK)	8.1 8.1
8.3.3	Low speed oscillator option 24	8.1
8.3.4	Medium speed oscillator option 24	8.2
8.3.5	High speed oscillator option 24	0.2 8.2
8.3.6	Clock output	0.2 8.2
8.4	On-chip RC oscillator option	8.2
8.5	Watchdog oscillator option	8.2
8.6	External clock input option 25	8.2
8.7	CCLK wake-up delay 27	8.2
8.8	CCLK modification: DIVM register 27	8.2
8.9	Low power select 27	8.2
8.10	Memory organization 27	8.2
8.11	Data RAM arrangement 28	-
8.12	Interrupts	8.2
8.12.1	External interrupt inputs 28	
8.13	I/O ports	8.2
8.13.1	Port configurations	8.2
8.13.1.1	1 0	8.2
8.13.1.2		8.2
8.13.1.3	1 5 6	8.2
8.13.1.4		8.2
8.13.2	Port 0 analog functions	8.2
8.13.3	Additional port features	8.2
8.14	Power monitoring functions	8.2
8.14.1	Brownout detection	8.2
8.14.2	Power-on detection	8.2
8.15	Power reduction modes	8.2
8.15.1	Idle mode	8.2
8.15.2	Power-down mode 32	8.2

8.15.3	Total Power-down mode	33
8.16		33
8.16.1	Reset	33
8.17	Reset vector.	34
8.17.1	Timers/counters 0 and 1	34 34
-	Mode 0	-
8.17.2	Mode 1	34
8.17.3	Mode 2	34
8.17.4	Mode 3	34
8.17.5	Mode 6	34
8.17.6	Timer overflow toggle output	34
8.18	RTC/system timer	34
8.19	CCU (P89LPC935/936)	35
8.19.1	CCU clock	35
8.19.2	CCUCLK prescaling	35
8.19.3	Basic timer operation	35
8.19.4	Output compare	35
8.19.5	Input capture	35
8.19.6	PWM operation	36
8.19.7	Alternating output mode	37
8.19.8	PLL operation	37
8.19.9	CCU interrupts	38
8.20	UART	38
8.20.1	Mode 0	38
8.20.2	Mode 1	39
8.20.3	Mode 2	39
8.20.4	Mode 3	39
8.20.5	Baud rate generator and selection	39
8.20.6	Framing error	39
8.20.7	Break detect	40
8.20.8	Double buffering	40
8.20.9	Transmit interrupts with double	
	buffering enabled (modes 1, 2 and 3)	40
8.20.10	The 9 th bit (bit 8) in double	
	buffering (modes 1, 2 and 3)	40
8.21	I ² C-bus serial interface	41
8.22	SPI	43
8.22.1	Typical SPI configurations	44
8.23	Analog comparators	46
8.23.1	Internal reference voltage	46
8.23.2	Comparator interrupt	47
8.23.3	Comparators and power reduction modes	47
8.24	Keypad interrupt.	47
8.25	Watchdog timer	48
8.26	Additional features	48
8.26.1	Software reset	48
8.26.2	Dual data pointers	48
8.27	Data EEPROM (P89LPC935/936)	49
8.28	Flash program memory	49
0.20		+3

continued >>

8-bit microcontroller with accelerated two-clock 80C51 core

8.28.1	General description	49
8.28.2	Features	
8.28.3	Flash organization	50
8.28.4	Using flash as data storage	50
8.28.5	Flash programming and erasing	50
8.28.6	In-circuit programming	
8.28.7	In-application programming	50
8.28.8	ISP	51
8.28.9	Power-on reset code execution	
8.28.10	Hardware activation of the boot loader	
8.29	User configuration bytes	
8.30	User sector security bytes	
9	A/D converter	52
9.1	General description	
9.2	Features and benefits	
9.3	Block diagram	53
9.4	A/D operating modes	53
9.4.1	Fixed channel, single conversion mode	53
9.4.2	Fixed channel, continuous conversion mode .	54
9.4.3	Auto scan, single conversion mode	54
9.4.4	Auto scan, continuous conversion mode	54
9.4.5	Dual channel, continuous conversion mode	54
9.4.6	Single step mode	54
9.5	Conversion start modes	54
9.5.1	Timer triggered start	54
9.5.2	Start immediately	54
9.5.3	Edge triggered	55
9.5.4	Dual start immediately (P89LPC935/936)	
9.6	Boundary limits interrupt	55
9.7	DAC output to a port pin with high output	
		55
9.8	Clock divider	
9.9	Power-down and Idle mode	
10	Limiting values	
11	Static characteristics	57
11.1	I _{OH} as a function of V _{OH}	
12	Dynamic characteristics	60
12.1	Waveforms	64
12.2	ISP entry mode	66
13	Other characteristics	67
13.1	Comparator electrical characteristics	
13.2	ADC electrical characteristics	68
14	Package outline	
15	Abbreviations	72
16	Revision history	73
17	Legal information	74
17.1	Data sheet status	74
17.2	Definitions	74
17.3	Disclaimers	74

17.4	Trademarks	75
18	Contact information	75
19	Contents	76

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2011.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 12 January 2011 Document identifier: P89LPC933_934_935_936