Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Obsolete | | Core Processor | 8051 | | Core Size | 8-Bit | | Speed | 18MHz | | Connectivity | I ² C, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, LED, POR, PWM, WDT | | Number of I/O | 26 | | Program Memory Size | 8KB (8K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 256 x 8 | | Voltage - Supply (Vcc/Vdd) | 2.4V ~ 3.6V | | Data Converters | A/D 4x8b; D/A 1x8b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-TSSOP (0.173", 4.40mm Width) | | Supplier Device Package | 28-TSSOP | | Purchase URL | https://www.e-xfl.com/product-detail/nxp-semiconductors/p89lpc934fdh-529 | # 3. Product comparison overview <u>Table 1</u> highlights the differences between the four devices. For a complete list of device features please see <u>Section 2 "Features and benefits"</u>. Table 1. Product comparison overview | Device | Flash memory | Sector size | ADC1 | ADC0 | CCU | Data EEPROM | |-----------|--------------|-------------|------|------|-----|-------------| | P89LPC933 | 4 kB | 1 kB | Χ | - | - | - | | P89LPC934 | 8 kB | 1 kB | X | - | - | - | | P89LPC935 | 8 kB | 1 kB | X | X | X | X | | P89LPC936 | 16 kB | 2 kB | Χ | Χ | Χ | X | # 4. Ordering information Table 2. Ordering information | Type number | Package | | | | | | | |--------------|---------|--|----------|--|--|--|--| | | Name | Description | Version | | | | | | P89LPC935FA | PLCC28 | plastic leaded chip carrier; 28 leads | SOT261-2 | | | | | | P89LPC933HDH | TSSOP28 | plastic thin shrink small outline | SOT361-1 | | | | | | P89LPC933FDH | | package; 28 leads; body width 4.4 mm | | | | | | | P89LPC934FDH | | | | | | | | | P89LPC935FDH | | | | | | | | | P89LPC936FDH | | | | | | | | | P89LPC935FHN | HVQFN28 | plastic thermal enhanced very thin quad flat package; no leads; 28 terminals; body $6 \times 6 \times 0.85$ mm | SOT788-1 | | | | | # 4.1 Ordering options Table 3. Ordering options | Type number | Flash memory | Temperature range | Frequency | |--------------|--------------|-------------------|-----------------| | P89LPC933HDH | 4 kB | −40 °C to +125 °C | 0 MHz to 18 MHz | | P89LPC933FDH | 4 kB | −40 °C to +85 °C | _ | | P89LPC935FA | 8 kB | _ | | | P89LPC934FDH | _ | | | | P89LPC935FDH | _ | | | | P89LPC935FHN | _ | | | | P89LPC936FDH | 16 kB | | | Product data sheet **Table 5. Special function registers - P89LPC933/934** * *indicates SFRs that are bit addressable.* | Name | Description | SFR | Bit functi | ons and ad | dresses | | | | | | Reset | value | |---------|-------------------------------|--------|------------|-------------|---------|-------|--------|--------|--------|--------|----------|-----------| | 035 | | addr. | MSB | | | | | | | LSB | Hex | Binary | | ס | Bit a | ddress | E7 | E 6 | E5 | E4 | E3 | E2 | E1 | E0 | | | | ACC* | Accumulator | E0H | | | | | | | | | 00 | 0000 0000 | | ADCON0 | A/D control register 0 | 8EH | - | - | - | - | - | ENADC0 | - | - | 00 | 0000 0000 | | ADCON1 | A/D control register 1 | 97H | ENBI1 | ENADCI
1 | TMM1 | EDGE1 | ADCI1 | ENADC1 | ADCS11 | ADCS10 | 00 | 0000 0000 | | ADINS | A/D input select | АЗН | ADI13 | ADI12 | ADI11 | ADI10 | - | - | - | - | 00 | 0000 0000 | | ADMODA | A/D mode register A | C0H | BNDI1 | BURST1 | SCC1 | SCAN1 | - | - | - | - | 00 | 0000 0000 | | ADMODB | A/D mode register B | A1H | CLK2 | CLK1 | CLK0 | - | ENDAC1 | ENDAC0 | BSA1 | - | 00 | 000x 0000 | | AD0DAT3 | A/D_0 data register 3 | F4H | | | | | | | | | 00 | 0000 0000 | | AD1BH | A/D_1 boundary high register | C4H | | | | | | | | | FF | 1111 1111 | | AD1BL | A/D_1 boundary low register | всн | | | | | | | | | 00 | 0000 0000 | | AD1DAT0 | A/D_1 data register 0 | D5H | | | | | | | | | 00 | 0000 0000 | | AD1DAT1 | A/D_1 data register 1 | D6H | | | | | | | | | 00 | 0000 0000 | | AD1DAT2 | A/D_1 data register 2 | D7H | | | | | | | | | 00 | 0000 0000 | | AD1DAT3 | A/D_1 data register 3 | F5H | | | | | | | | | 00 | 0000 0000 | | AUXR1 | Auxiliary function register | A2H | CLKLP | EBRR | ENT1 | ENT0 | SRST | 0 | - | DPS | 00[1] | 0000 00x0 | | | Bit a | ddress | F7 | F6 | F5 | F4 | F3 | F2 | F1 | F0 | | | | B* | B register | F0H | | | | | | | | | 00 | 0000 0000 | | BRGR0 | Baud rate generator rate low | BEH | | | | | | | | | 00[2] | 0000 0000 | | BRGR1 | Baud rate generator rate high | BFH | | | | | | | | | 00[1][2] | 0000 0000 | | BRGCON | Baud rate generator control | BDH | - | - | - | - | - | - | SBRGS | BRGEN | 00[2] | xxxx xx00 | | CMP1 | Comparator 1 control register | ACH | - | - | CE1 | CP1 | CN1 | OE1 | CO1 | CMF1 | 00[1] | xx00 0000 | | CMP2 | Comparator 2 control register | ADH | - | - | CE2 | CP2 | CN2 | OE2 | CO2 | CMF2 | 00[1] | xx00 0000 | | DIVM | CPU clock divide-by-M control | 95H | | | | | | | | | 00 | 0000 0000 | | DPTR | Data pointer (2 bytes) | | | | | | | | | | | | | DPH | Data pointer high | 83H | | | | | | | | | 00 | 0000 0000 | | DPL | Data pointer low | 82H | | | | | | | | | 00 | 0000 0000 | | FMADRH | Program flash address high | E7H | | | | | | | | | 00 | 0000 0000 | 8-bit microcontroller with accelerated two-clock 80C51 core P89LPC933/934/935/936 N X P Semiconductors **Table 5. Special function registers - P89LPC933/934** ...continued * indicates SFRs that are bit addressable. Table 5. | Name | Description | SFR | Bit function | ons and ad | dresses | | | | | | Reset | value | |--------|--------------------------------------|--------|--------------|------------|---------|--------|--------|--------|--------|--------|-------|-----------| | | | addr. | MSB | | | | | | | LSB | Hex | Binary | | RTCH | Real-time clock register high | D2H | | | | | | | | | 00[5] | 0000 0000 | | RTCL | Real-time clock register low | D3H | | | | | | | | | 00[5] | 0000 0000 | | SADDR | Serial port address register | A9H | | | | | | | | | 00 | 0000 0000 | | SADEN | Serial port address enable | В9Н | | | | | | | | | 00 | 0000 0000 | | SBUF | Serial Port data buffer register | 99H | | | | | | | | | xx | XXXX XXXX | | | Bit a | ddress | 9F | 9E | 9D | 9C | 9B | 9A | 99 | 98 | | | | SCON* | Serial port control | 98H | SM0/FE | SM1 | SM2 | REN | TB8 | RB8 | TI | RI | 00 | 0000 0000 | | SSTAT | Serial port extended status register | BAH | DBMOD | INTLO | CIDIS | DBISEL | FE | BR | OE | STINT | 00 | 0000 0000 | | SP | Stack pointer | 81H | | | | | | | | | 07 | 0000 0111 | | SPCTL | SPI control register | E2H | SSIG | SPEN | DORD | MSTR | CPOL | CPHA | SPR1 | SPR0 | 04 | 0000 0100 | | SPSTAT | SPI status register | E1H | SPIF | WCOL | - | - | - | - | - | - | 00 | 00xx xxxx | | SPDAT | SPI data register | E3H | | | | | | | | | 00 | 0000 0000 | | TAMOD | Timer 0 and 1 auxiliary mode | 8FH | - | - | - | T1M2 | - | - | - | T0M2 | 00 | 0xxx 0xxx | | | Bit a | ddress | 8F | 8E | 8D | 8C | 8B | 8A | 89 | 88 | | | | TCON* | Timer 0 and 1 control | 88H | TF1 | TR1 | TF0 | TR0 | IE1 | IT1 | IE0 | IT0 | 00 | 0000 0000 | | TH0 | Timer 0 high | 8CH | | | | | | | | | 00 | 0000 0000 | | TH1 | Timer 1 high | 8DH | | | | | | | | | 00 | 0000 0000 | | TL0 | Timer 0 low | 8AH | | | | | | | | | 00 | 0000 0000 | | TL1 | Timer 1 low | 8BH | | | | | | | | | 00 | 0000 0000 | | TMOD | Timer 0 and 1 mode | 89H | T1GATE | T1C/T | T1M1 | T1M0 | T0GATE | T0C/T | T0M1 | T0M0 | 00 | 0000 0000 | | TRIM | Internal oscillator trim register | 96H | RCCLK | ENCLK | TRIM.5 | TRIM.4 | TRIM.3 | TRIM.2 | TRIM.1 | TRIM.0 | | [6] [5] | | WDCON | Watchdog control register | A7H | PRE2 | PRE1 | PRE0 | - | - | WDRUN | WDTOF | WDCLK | | [7] [5] | Product data sheet **Table 6. Special function registers - P89LPC935/936** ...continued * indicates SFRs that are bit addressable. Table 6. | Name | Description | SFR | Bit function | ons and ad | dresses | | | | | | Reset | value | |--------|---|--------|--------------|------------|-------------|-------------|---------|-------------|-------------|-------------|-------|-----------| | | | addr. | MSB | | | | | | | LSB | Hex | Binary | | CCCRB | Capture compare B control register | EBH | ICECB2 | ICECB1 | ICECB0 | ICESB | ICNFB | FCOB | OCMB1 | OCMB0 | 00 | 0000 0000 | | CCCRC | Capture compare C control register | ECH | - | - | - | - | - | FCOC | OCMC1 | OCMC0 | 00 | xxxx x000 | | CCCRD | Capture compare D control register | EDH | - | - | - | - | - | FCOD | OCMD1 | OCMD0 | 00 | xxxx x000 | | CMP1 | Comparator 1 control register | ACH | - | - | CE1 | CP1 | CN1 | OE1 | CO1 | CMF1 | 00[3] | xx00 0000 | | CMP2 | Comparator 2 control register | ADH | - | - | CE2 | CP2 | CN2 | OE2 | CO2 | CMF2 | 00[3] | xx00 0000 | | DEECON | Data EEPROM control register | F1H | EEIF | HVERR | ECTL1 | ECTL0 | - | - | - | EADR8 | 0E | 0000 1110 | | DEEDAT | Data EEPROM data register | F2H | | | | | | | | | 00 | 0000 0000 | | DEEADR | Data EEPROM address register | F3H | | | | | | | | | 00 | 0000 0000 | | DIVM | CPU clock divide-by-M control | 95H | | | | | | | | | 00 | 0000 0000 | | DPTR | Data pointer (2 bytes) | | | | | | | | | | | | | DPH | Data pointer high | 83H | | | | | | | | | 00 | 0000 0000 | | DPL | Data pointer low | 82H | | | | | | | | | 00 | 0000 0000 | | FMADRH | Program flash address high | E7H | | | | | | | | | 00 | 0000 0000 | | FMADRL | Program flash address low | E6H | | | | | | | | | 00 | 0000 0000 | | FMCON | Program flash control (Read) | E4H | BUSY | - | - | - | HVA | HVE | SV | OI | 70 | 0111 0000 | | | Program flash control (Write) | E4H | FMCMD. | FMCMD. | FMCMD.
5 | FMCMD.
4 | FMCMD. | FMCMD.
2 | FMCMD.
1 | FMCMD.
0 | | | | FMDATA | Program flash data | E5H | | | | | | | | | 00 | 0000 0000 | | I2ADR | I ² C slave address register | DBH | I2ADR.6 | I2ADR.5 | I2ADR.4 | I2ADR.3 | I2ADR.2 | I2ADR.1 | I2ADR.0 | GC | 00 | 0000 0000 | | | Bit a | ddress | DF | DE | DD | DC | DB | DA | D9 | D8 | | | | I2CON* | I ² C control register | D8H | - | I2EN | STA | STO | SI | AA | - | CRSEL | 00 | x000 00x0 | | I2DAT | I ² C data register | DAH | | | | | | | | | | | | I2SCLH | Serial clock generator/SCL duty cycle register high | DDH | | | | | | | | | 00 | 0000 0000 | external clock input on X1) and if the RTC is not using the crystal oscillator as its clock source. This allows external devices to synchronize to the P89LPC933/934/935/936. This output is enabled by the ENCLK bit in the TRIM register. The frequency of this clock output is $\frac{1}{2}$ that of the CCLK. If the clock output is not needed in Idle mode, it may be turned off prior to entering Idle, saving additional power. ## 8.4 On-chip RC oscillator option The P89LPC933/934/935/936 has a 6-bit TRIM register that can be used to tune the frequency of the RC oscillator. During reset, the TRIM value is initialized to a factory preprogrammed value to adjust the oscillator frequency to 7.373 MHz \pm 1 % at room temperature. End-user applications can write to the TRIM register to adjust the on-chip RC oscillator to other frequencies. ## 8.5 Watchdog oscillator option The watchdog has a separate oscillator which has a frequency of 400 kHz. This oscillator can be used to save power when a high clock frequency is not needed. # 8.6 External clock input option In this configuration, the processor clock is derived from an external source driving the P3.1/XTAL1 pin. The rate may be from 0 Hz up to 18 MHz. The P3.0/XTAL2 pin may be used as a standard port pin or a clock output. When using an oscillator frequency above 12 MHz, the reset input function of P1.5 must be enabled. An external circuit is required to hold the device in reset at power-up until VDD has reached its specified level. When system power is removed VDD will fall below the minimum specified operating voltage. When using an oscillator frequency above 12 MHz, in some applications, an external brownout detect circuit may be required to hold the device in reset when VDD falls below the minimum specified operating voltage. ## 8.7 CCLK wake-up delay The P89LPC933/934/935/936 has an internal wake-up timer that delays the clock until it stabilizes depending on the clock source used. If the clock source is any of the three crystal selections (low, medium and high frequencies) the delay is 992 OSCCLK cycles plus 60 μ s to 100 μ s. If the clock source is either the internal RC oscillator, watchdog oscillator, or external clock, the delay is 224 OSCCLK cycles plus 60 μ s to 100 μ s. # 8.8 CCLK modification: DIVM register The OSCCLK frequency can be divided down up to 510 times by configuring a dividing register, DIVM, to generate CCLK. This feature makes it possible to temporarily run the CPU at a lower rate, reducing power consumption. By dividing the clock, the CPU can retain the ability to respond to events that would not exit Idle mode by executing its normal program at a lower rate. This can also allow bypassing the oscillator start-up time in cases where Power-down mode would otherwise be used. The value of DIVM may be changed by the program at any time without interrupting code execution. ## 8.9 Low power select The P89LPC933/934/935/936 is designed to run at 18 MHz (CCLK) maximum. However, if CCLK is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can be set to logic 1 to lower the power consumption further. On any reset, CLKLP is logic 0 allowing highest performance access. This bit can then be set in software if CCLK is running at 8 MHz or slower. ## 8.10 Memory organization The various P89LPC933/934/935/936 memory spaces are as follows: #### DATA 128 bytes of internal data memory space (00H:7FH) accessed via direct or indirect addressing, using instructions other than MOVX and MOVC. All or part of the Stack may be in this area. ### IDATA Indirect Data. 256 bytes of internal data memory space (00H:FFH) accessed via indirect addressing using instructions other than MOVX and MOVC. All or part of the Stack may be in this area. This area includes the DATA area and the 128 bytes immediately above it. #### • SFR Selected CPU registers and peripheral control and status registers, accessible only via direct addressing. #### XDATA (P89LPC935/936) 'External' Data or Auxiliary RAM. Duplicates the classic 80C51 64 kB memory space addressed via the MOVX instruction using the SPTR, R0, or R1. All or part of this space could be implemented on-chip. The P89LPC935/936 has 512 bytes of on-chip XDATA memory. not being used as the CPU clock. If the XTAL oscillator is used as the CPU clock, then the RTC will use CCLK as its clock source. Only power-on reset will reset the RTC and its associated SFRs to the default state. ## 8.19 CCU (P89LPC935/936) This unit features: - A 16-bit timer with 16-bit reload on overflow. - Selectable clock, with prescaler to divide clock source by any integral number between 1 and 1024. - Four compare/PWM outputs with selectable polarity. - Symmetrical/asymmetrical PWM selection. - Two capture inputs with event counter and digital noise rejection filter. - Seven interrupts with common interrupt vector (one overflow, two capture, four compare). - Safe 16-bit read/write via shadow registers. #### 8.19.1 CCU clock The CCU runs on the CCUCLK, which is either PCLK in basic timer mode, or the output of a Phase-Locked Loop (PLL). The PLL is designed to use a clock source between 0.5 MHz to 1 MHz that is multiplied by 32 to produce a CCUCLK between 16 MHz and 32 MHz in PWM mode (asymmetrical or symmetrical). The PLL contains a 4-bit divider to help divide PCLK into a frequency between 0.5 MHz and 1 MHz. #### 8.19.2 CCUCLK prescaling This CCUCLK can further be divided down by a prescaler. The prescaler is implemented as a 10-bit free-running counter with programmable reload at overflow. ## 8.19.3 Basic timer operation The timer is a free-running up/down counter with a direction control bit. If the timer counting direction is changed while the counter is running, the count sequence will be reversed. The timer can be written or read at any time. When a reload occurs, the CCU Timer Overflow Interrupt Flag will be set, and an interrupt generated if enabled. The 16-bit CCU timer may also be used as an 8-bit up/down timer. #### 8.19.4 Output compare There are four output compare channels A, B, C and D. Each output compare channel needs to be enabled in order to operate and the user will have to set the associated I/O pin to the desired output mode to connect the pin. When the contents of the timer matches that of a capture compare control register, the Timer Output Compare Interrupt Flag (TOCFx) becomes set. An interrupt will occur if enabled. # 8.19.5 Input capture Input capture is always enabled. Each time a capture event occurs on one of the two input capture pins, the contents of the timer is transferred to the corresponding 16-bit input capture register. The capture event can be programmed to be either rising or falling edge triggered. A simple noise filter can be enabled on the input capture by enabling the Input P89LPC933_934_935_936 # 8.19.7 Alternating output mode In asymmetrical mode, the user can set up PWM channels A/B and C/D as alternating pairs for bridge drive control. In this mode the output of these PWM channels are alternately gated on every counter cycle. ## 8.19.8 PLL operation The PWM module features a PLL that can be used to generate a CCUCLK frequency between 16 MHz and 32 MHz. At this frequency the PWM module provides ultrasonic PWM frequency with 10-bit resolution provided that the crystal frequency is 1 MHz or higher. The PLL is fed an input signal from 0.5 MHz to 1 MHz and generates an output signal of 32 times the input frequency. This signal is used to clock the timer. The user will have to set a divider that scales PCLK by a factor from 1 to 16. This divider is found in the SFR register TCR21. The PLL frequency can be expressed as shown in Equation 1. $$PLL frequency = \frac{PCLK}{(N+I)}$$ (1) Where: N is the value of PLLDV.3 to PLLDV.0. Since N ranges from 0 to 15, the CCLK frequency can be in the range of PCLK to PCLK 16. #### 8.22 SPI The P89LPC933/934/935/936 provides another high-speed serial communication interface—the SPI interface. SPI is a full-duplex, high-speed, synchronous communication bus with two operation modes: Master mode and Slave mode. Up to 3 Mbit/s can be supported in Master mode or up to 2 Mbit/s in Slave mode. It has a Transfer Completion Flag and Write Collision Flag Protection. The SPI interface has four pins: SPICLK, MOSI, MISO and SS: - SPICLK, MOSI and MISO are typically tied together between two or more SPI devices. Data flows from master to slave on MOSI (Master Out Slave In) pin and flows from slave to master on MISO (Master In Slave Out) pin. The SPICLK signal is output in the master mode and is input in the slave mode. If the SPI system is disabled, i.e., SPEN (SPCTL.6) = 0 (reset value), these pins are configured for port functions. - SS is the optional slave select pin. In a typical configuration, an SPI master asserts one of its port pins to select one SPI device as the current slave. An SPI slave device uses its SS pin to determine whether it is selected. Typical connections are shown in Figure 18 through Figure 20. ## 8.23 Analog comparators Two analog comparators are provided on the P89LPC933/934/935/936. Input and output options allow use of the comparators in a number of different configurations. Comparator operation is such that the output is a logic 1 (which may be read in a register and/or routed to a pin) when the positive input (one of two selectable pins) is greater than the negative input (selectable from a pin or an internal reference voltage). Otherwise the output is a zero. Each comparator may be configured to cause an interrupt when the output value changes. The overall connections to both comparators are shown in <u>Figure 21</u>. The comparators function to $V_{DD} = 2.4 \text{ V}$. When each comparator is first enabled, the comparator output and interrupt flag are not guaranteed to be stable for 10 microseconds. The corresponding comparator interrupt should not be enabled during that time, and the comparator interrupt flag must be cleared before the interrupt is enabled in order to prevent an immediate interrupt service. When a comparator is disabled the comparator's output, COn, goes HIGH. If the comparator output was LOW and then is disabled, the resulting transition of the comparator output from a LOW to HIGH state will set the comparator flag, CMFn. This will cause an interrupt if the comparator interrupt is enabled. The user should therefore disable the comparator interrupt prior to disabling the comparator. Additionally, the user should clear the comparator flag, CMFn, after disabling the comparator. ### 8.23.1 Internal reference voltage An internal reference voltage generator may supply a default reference when a single comparator input pin is used. The value of the internal reference voltage, referred to as $V_{ref(ba)}$, is 1.23 V \pm 10 %. ### 8.23.2 Comparator interrupt Each comparator has an interrupt flag contained in its configuration register. This flag is set whenever the comparator output changes state. The flag may be polled by software or may be used to generate an interrupt. The two comparators use one common interrupt vector. If both comparators enable interrupts, after entering the interrupt service routine, the user needs to read the flags to determine which comparator caused the interrupt. ### 8.23.3 Comparators and power reduction modes Either or both comparators may remain enabled when Power-down or Idle mode is activated, but both comparators are disabled automatically in Total Power-down mode. If a comparator interrupt is enabled (except in Total Power-down mode), a change of the comparator output state will generate an interrupt and wake-up the processor. If the comparator output to a pin is enabled, the pin should be configured in the push-pull mode in order to obtain fast switching times while in Power-down mode. The reason is that with the **oscillator** stopped, the temporary strong pull-up that normally occurs during switching on a quasi-bidirectional port pin does not take place. Comparators consume power in Power-down and Idle modes, as well as in the normal operating mode. This fact should be taken into account when system power consumption is an issue. To minimize power consumption, the user can disable the comparators via PCONA.5, or put the device in Total Power-down mode. ## 8.24 Keypad interrupt The Keypad Interrupt (KBI) function is intended primarily to allow a single interrupt to be generated when Port 0 is equal to or not equal to a certain pattern. This function can be used for bus address recognition or keypad recognition. The user can configure the port via SFRs for different tasks. The Keypad Interrupt Mask register (KBMASK) is used to define which input pins connected to Port 0 can trigger the interrupt. The Keypad Pattern register (KBPATN) is used to define a pattern that is compared to the value of Port 0. The Keypad Interrupt Flag (KBIF) in the Keypad Interrupt Control register (KBCON) is set when the condition is matched while the Keypad Interrupt function is active. An interrupt will be generated if enabled. The PATN_SEL bit in the Keypad Interrupt Control register (KBCON) is used to define equal or not-equal for the comparison. In order to use the Keypad Interrupt as an original KBI function like in 87LPC76x series, the user needs to set KBPATN = 0FFH and PATN_SEL = 1 (not equal), then any key connected to Port 0 which is enabled by the KBMASK register will cause the hardware to set KBIF and generate an interrupt if it has been enabled. The interrupt may be used to wake-up the CPU from Idle or Power-down modes. This feature is particularly useful in handheld, battery-powered systems that need to carefully manage power consumption yet also need to be convenient to use. In order to set the flag and cause an interrupt, the pattern on Port 0 must be held longer than six CCLKs. - ◆ Start immediately. - ◆ Edge triggered. - ◆ Dual start immediately (P89LPC935/936). - 8-bit conversion time of $\ge 3.9 \, \mu s$ at an A/D clock of 3.3 MHz. - Interrupt or polled operation. - Boundary limits interrupt. - DAC output to a port pin with high output impedance. - Clock divider. - Power-down mode. ## 9.3 Block diagram # 9.4 A/D operating modes ## 9.4.1 Fixed channel, single conversion mode A single input channel can be selected for conversion. A single conversion will be performed and the result placed in the result register which corresponds to the selected input channel. An interrupt, if enabled, will be generated after the conversion completes. # 10. Limiting values Table 10. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134).[1] | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------------|--|--|------|-----------------------|------| | T _{amb(bias)} | bias ambient temperature | | -55 | +125 | °C | | T _{stg} | storage temperature | | -65 | +150 | °C | | I _{OH(I/O)} | HIGH-level output current per input/output pin | | - | 20 | mA | | I _{OL(I/O)} | LOW-level output current per input/output pin | | - | 20 | mA | | I _{I/Otot(max)} | maximum total input/output current | | - | 100 | mA | | V _{xtal} | crystal voltage | on XTAL1, XTAL2 pin to V _{SS} | - | V _{DD} + 0.5 | V | | V _n | voltage on any other pin | except XTAL1, XTAL2 to V _{SS} | -0.5 | +5.5 | V | | P _{tot(pack)} | total power dissipation (per package) | based on package heat
transfer, not device power
consumption | - | 1.5 | W | ^[1] The following applies to <u>Table 10</u>: a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum b) Parameters are valid over ambient temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted. # 11. Static characteristics Table 11. Static characteristics P89LPC933_934_935_936 V_{DD} = 2.4 V to 3.6 V unless otherwise specified. $T_{amb} = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$ for industrial, $-40 \,^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$ for extended, unless otherwise specified. | Symbol | Parameter | Conditions | Min | Typ[1] | Max | Unit | |-----------------------|--------------------------------------|---|-----------------------|-----------------------|-------------|-------| | I _{DD(oper)} | operating supply current | $V_{DD} = 3.6 \text{ V}; f_{osc} = 12 \text{ MHz}$ | [2] _ | 11 | 18 | mA | | | | $V_{DD} = 3.6 \text{ V}; f_{osc} = 18 \text{ MHz}$ | [2] _ | 14 | 23 | mA | | I _{DD(idle)} | Idle mode supply current | $V_{DD} = 3.6 \text{ V}; f_{osc} = 12 \text{ MHz}$ | [2] _ | 3.25 | 5 | mA | | | | $V_{DD} = 3.6 \text{ V}; f_{osc} = 18 \text{ MHz}$ | [2] - | 5 | 7 | mA | | I _{DD(pd)} | Power-down mode supply current | V _{DD} = 3.6 V; voltage
comparators powered
down | [2] - | 55 | 80 | μА | | I _{DD(tpd)} | total Power-down mode supply current | all devices except
P89LPC933HDH;
V _{DD} = 3.6 V | [3] - | 1 | 5 | μА | | | | P89LPC933HDH only;
V _{DD} = 3.6 V | <u>[3]</u> _ | - | 25 | μА | | (dV/dt) _r | rise rate | of V _{DD} | - | - | 2 | mV/μs | | (dV/dt) _f | fall rate | of V _{DD} | - | - | 50 | mV/μs | | V _{POR} | power-on reset voltage | | - | - | 0.5 | V | | V_{DDR} | data retention supply voltage | | 1.5 | - | - | V | | $V_{th(HL)}$ | HIGH-LOW threshold voltage | except SCL, SDA | 0.22V _{DD} | $0.4V_{DD}$ | - | V | | V _{IL} | LOW-level input voltage | SCL, SDA only | -0.5 | - | $0.3V_{DD}$ | V | | $V_{th(LH)}$ | LOW-HIGH threshold voltage | except SCL, SDA | - | 0.6V _{DD} | $0.7V_{DD}$ | V | | V _{IH} | HIGH-level input voltage | SCL, SDA only | $0.7V_{DD}$ | - | 5.5 | V | | V _{hys} | hysteresis voltage | port 1 | - | 0.2V _{DD} | - | V | | V _{OL} | LOW-level output voltage | I_{OL} = 20 mA;
V_{DD} = 2.4 V to 3.6 V
all ports, all modes except
high-Z | <u>[4]</u> _ | 0.6 | 1.0 | V | | | | I _{OL} = 3.2 mA; V _{DD} = 2.4 V
to 3.6 V all ports, all modes
except high-Z | - | 0.2 | 0.3 | V | | V _{OH} | HIGH-level output voltage | I_{OH} = -20 μ A;
V_{DD} = 2.4 V to 3.6 V;
all ports,
quasi-bidirectional mode | V _{DD} – 0.3 | V _{DD} – 0.2 | - | V | | | | I_{OH} = -3.2 mA;
V_{DD} = 2.4 V to 3.6 V;
all ports, push-pull mode | V _{DD} - 0.7 | V _{DD} – 0.4 | - | V | | | | I_{OH} = -10 mA; V_{DD} = 3.6 V; all ports, push-pull mode | - | 3.2 | - | V | | V _{xtal} | crystal voltage | on XTAL1, XTAL2 pins; with respect to V _{SS} | -0.5 | - | +4.0 | V | | V _n | voltage on any other pin | except XTAL1, XTAL2, V _{DD} ; with respect to V _{SS} | <u>[5]</u> –0.5 | - | +5.5 | V | | C _{iss} | input capacitance | | [6] _ | - | 15 | pF | © NXP B.V. 2011. All rights reserved. Table 11. Static characteristics ... continued V_{DD} = 2.4 V to 3.6 V unless otherwise specified. $T_{amb} = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$ for industrial, -40 $^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$ for extended, unless otherwise specified. | Symbol | Parameter | Conditions | Min | Typ[<u>1]</u> | Max | Unit | |-------------------------|--|--|-----------------|----------------|------|------------| | I _{IL} | LOW-level input current | $V_1 = 0.4 \ V$ | [7] _ | - | -80 | μΑ | | I _{LI} | input leakage current | $V_I = V_{IL}$, V_{IH} or $V_{th(HL)}$ | [8] _ | - | ±10 | μΑ | | I _{THL} | HIGH-LOW transition current | all ports; $V_I = 1.5 \text{ V}$ at $V_{DD} = 3.6 \text{ V}$ | [<u>9]</u> –30 | - | -450 | μΑ | | R _{RST_N(int)} | internal pull-up resistance on pin RST | | 10 | - | 30 | kΩ | | V _{bo} | brownout trip voltage | $2.4 \text{ V} < \text{V}_{DD} < 3.6 \text{ V}$; with BOV = 1, BOPD = 0 | 2.40 | - | 2.70 | V | | V _{ref(bg)} | band gap reference voltage | | 1.11 | 1.23 | 1.34 | V | | TC _{bg} | band gap temperature coefficient | | - | 10 | 20 | ppm/
°C | - [1] Typical ratings are not guaranteed. The values listed are at room temperature, 3 V. - [2] The I_{DD(oper)}, I_{DD(idle)}, and I_{DD(pd)} specifications are measured using an external clock with the following functions disabled: comparators, real-time clock, and watchdog timer. - [3] The I_{DD(tpd)} specification is measured using an external clock with the following functions disabled: comparators, real-time clock, brownout detect, and watchdog timer. - [4] See Section 10 "Limiting values" for steady state (non-transient) limits on I_{OL} or I_{OH}. If I_{OL}/I_{OH} exceeds the test condition, V_{OL}/V_{OH} may exceed the related specification. - [5] This specification can be applied to pins which have A/D input or analog comparator input functions when the pin is not being used for those analog functions. When the pin is being used as an analog input pin, the maximum voltage on the pin must be limited to 4.0 V with respect to V_{SS}. - [6] Pin capacitance is characterized but not tested. - [7] Measured with port in quasi-bidirectional mode. - [8] Measured with port in high-impedance mode. - [9] Port pins source a transition current when used in quasi-bidirectional mode and externally driven from logic 1 to logic 0. This current is highest when V_I is approximately 2 V. Table 12. Dynamic characteristics (12 MHz) ...continued $V_{DD} = 2.4 \text{ V to } 3.6 \text{ V unless otherwise specified.}$ $T_{amb} = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$ for industrial, $-40 \,^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$ for extended, unless otherwise specified. [1][2] | Symbol | Parameter | Conditions | Variab | ole clock | f _{osc} = 1 | 12 MHz | Unit | |----------------------|--------------------------------------|--|--------------------|-----------|----------------------|--------|------| | | | | Min | Max | Min | Max | | | t _{SPILAG} | SPI enable lag time | see <u>Figure 29</u> , <u>30</u> | | | | | | | | slave | _ | 250 | - | 250 | - | ns | | t _{SPICLKH} | SPICLK HIGH time | see <u>Figure 26, 28,</u> | | | | | | | | master | <u>29</u> , <u>30</u> | ² /cclk | - | 165 | - | ns | | | slave | | ³ /cclk | - | 250 | - | ns | | tSPICLKL | SPICLK LOW time | see <u>Figure 26,</u> <u>28,</u> | | | | | | | | master | <u>29</u> , <u>30</u> | ² /CCLK | - | 165 | - | ns | | | slave | | ³ /CCLK | - | 250 | - | ns | | t _{SPIDSU} | SPI data set-up time | see <u>Figure 26, 28,</u> | | | | | | | | master or slave | <u>29</u> , <u>30</u> | 100 | - | 100 | - | ns | | t _{SPIDH} | SPI data hold time | see <u>Figure 26, 28,</u> | | | | | | | | master or slave | <u>29</u> , <u>30</u> | 100 | - | 100 | - | ns | | t _{SPIA} | SPI access time | see <u>Figure 29</u> , <u>30</u> | | | | | | | | slave | | 0 | 120 | 0 | 120 | ns | | t _{SPIDIS} | SPI disable time | see <u>Figure 29</u> , <u>30</u> | | | | | | | | slave | _ | 0 | 240 | - | 240 | ns | | t _{SPIDV} | SPI enable to output data valid time | see <u>Figure 26, 28,</u>
29, <u>30</u> | | | | | | | | slave | | - | 240 | - | 240 | ns | | | master | _ | - | 167 | - | 167 | ns | | t _{SPIOH} | SPI output data hold time | see <u>Figure 26, 28,</u>
29, <u>30</u> | 0 | - | 0 | - | ns | | t _{SPIR} | SPI rise time | see <u>Figure 26, 28,</u> | | | | | | | | SPI outputs
(SPICLK, MOSI, MISO) | <u>29, 30</u> | - | 100 | - | 100 | ns | | | SPI inputs (SPICLK, MOSI, MISO, SS) | | - | 2000 | - | 2000 | ns | | SPIF | SPI fall time | see <u>Figure 26, 28,</u> | | | | | | | -OFIF | SPI outputs
(SPICLK, MOSI, MISO) | <u>29,</u> <u>30</u> | - | 100 | - | 100 | ns | | | SPI inputs (SPICLK, MOSI, MISO, SS) | | - | 2000 | - | 2000 | ns | ^[1] Parameters are valid over ambient temperature range unless otherwise specified. ^[2] Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz. # 12.2 ISP entry mode #### Table 14. Dynamic characteristics, ISP entry mode V_{DD} = 2.4 V to 3.6 V, unless otherwise specified. $T_{amb} = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$ for industrial, -40 $^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$ for extended, unless otherwise specified. | arrio | • | * | | • | | | |-----------------|--|------------|-----|-----|-----|------| | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | t_{VR} | RST delay from V _{DD} active time | | 50 | - | - | μS | | t _{RH} | RST HIGH time | | 1 | - | 32 | μS | | t _{RL} | RST LOW time | | 1 | - | - | μS | # 13. Other characteristics # 13.1 Comparator electrical characteristics Table 15. Comparator electrical characteristics V_{DD} = 2.4 V to 3.6 V, unless otherwise specified. $T_{amb} = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$ for industrial, -40 $^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$ for extended, unless otherwise specified. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-----------------------|----------------------------------|--------------------|-------|-----|--------------|------| | V_{IO} | input offset voltage | | - | - | ±20 | mV | | V _{IC} | common-mode input voltage | | 0 | - | $V_{DD}-0.3$ | V | | CMRR | common-mode rejection ratio | | [1] _ | - | -50 | dB | | t _{res(tot)} | total response time | | - | 250 | 500 | ns | | t _(CE-OV) | chip enable to output valid time | | - | - | 10 | μS | | ILI | input leakage current | $0 < V_I < V_{DD}$ | - | - | ±10 | μΑ | ^[1] This parameter is characterized, but not tested in production. # 17. Legal information #### 17.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. #### 17.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. **Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### 17.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. **Suitability for use** — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. **No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. P89LPC933_934_935_936 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.