

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8052
Core Size	8-Bit
Speed	12.58MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	POR, PSM, Temp Sensor, WDT
Number of I/O	34
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	640 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.25V
Data Converters	A/D 3x16b, 4x24b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	56-VFQFN Exposed Pad, CSP
Supplier Device Package	56-LFCSP-VQ (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/aduc824bcpz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ADUC824* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

EVALUATION KITS

ADuC824 QuickStart Development System

DOCUMENTATION

Application Notes

- AN-1074: Understanding the Serial Download Protocol (Formerly uC004)
- AN-282: Fundamentals of Sampled Data Systems
- AN-644: Frequency Measurement Using Timer 2 on a MicroConverter [®] (uC013)
- AN-645: Interfacing an HD44780 Character LCD to a MicroConverter [®] (uC014)
- AN-660: XY-Matrix Keypad Interface to MicroConverter[®]
- AN-709: RTD Interfacing and Linearization Using an ADuC8xx MicroConverter[®]
- AN-759: Expanding the Number of DAC Outputs on the ADuC8xx and ADuC702x Families (uC012)
- UC-001: MicroConverter® I2C® Compatible Interface
- UC-006: A 4-wire UART-to-PC Interface
- UC-009: Addressing 16MB of External Data Memory
- UC-015: An ADuC824-Based Temperature-Logger
- UC-018: Uses of the Time Interval Counter

Data Sheet

- ADuC824: MicroConverter[®] = 24-Bit ADC + 16-Bit ADC + 12-Bit DAC + Flash MCU Data Sheet
- ADuC824: Errata Sheet

User Guides

- ADuC824 Quick Reference Guide
- UG-041: ADuC8xx Evaluation Kit Getting Started User Guide

TOOLS AND SIMULATIONS \Box

• Sigma-Delta ADC Tutorial

REFERENCE MATERIALS

Technical Articles

- DDS Circuit Generates Precise PWM Waveforms
- · Integrated Route Taken to Pulse Oximetry

DESIGN RESOURCES

- ADUC824 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADUC824 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

FEATURES	. 1
GENERAL DESCRIPTION	. 1
SPECIFICATIONS	. 3
TIMING SPECIFICATIONS	. 8
ABSOLUTE MAXIMUM RATINGS	
PIN CONFIGURATION	
ORDERING GUIDE	
PIN FUNCTION DESCRIPTIONS	
ADuC824 BLOCK DIAGRAM	
MEMORY ORGANIZATION	
OVERVIEW OF MCU-RELATED SFRS	
Accumulator (ACC)	
B SFR (B)	
Stack Pointer (SP)	
Data Pointer (DPTR)	
Program Status Word (PSW)	23
Power Control (PCON)	23
SPECIAL FUNCTION REGISTERS	24
SFR INTERFACE TO THE PRIMARY AND	
AUXILIARY ADCs	25
ADCSTAT	25
ADCMODE	
ADC0CON	
ADC1CON	
SF	
ICON	
ADC0H/ADC0M/ADC0L	
ADC1H/ADC1L	
OF0H/OF0M/OF0L	
OF1H/OF1L	
GN0H/GN0M/GN0L	
GN1H/GN1L	
PRIMARY AND AUXILIARY ADC DESCRIPTION	
Overview	
Primary ADC	
Auxiliary ADC	32
PRIMARY AND AUXILIARY ADC NOISE	
PERFORMANCE	
Analog Input Channels	
Primary and Auxiliary ADC Inputs	
Analog Input Ranges	
Programmable Gain Amplifier	34
Bipolar/Unipolar Inputs	34
Burnout Currents	34
Excitation Currents	35
Reference Input	35
Reference Detect	35
Sigma-Delta Modulator	35
Digital Filter	35
ADC Chopping	36
	37
Sulfitution	51

NONVOLATILE FLASH/EE MEMORY	37
Flash/EE Memory Overview	
Flash/EE Memory and the ADuC824	
ADuC824 Flash/EE Memory Reliability	37
Using the Flash/EE Program Memory	
Flash/EE Program Memory Security	
Using the Flash/EE Data Memory	
USER INTERFACE TO OTHER ON-CHIP ADuC824	
PERIPHERALS	41
DAC	41
On-Chip PLL	
Time Interval Counter (TIC)	43
Watchdog Timer	46
Power Supply Monitor	47
Serial Peripheral Interface	48
I ² C-Compatible Interface	50
8051-COMPATIBLE ON-CHIP PERIPHERALS	
Parallel I/O Ports 0-3	
Timers/Counters	
TIMER/COUNTER 0 AND 1 OPERATING MODES	
UART Serial Interface	
Interrupt System	60
ADuC824 HARDWARE DESIGN CONSIDERATIONS	
Clock Oscillator	
External Memory Interface	
Power-On Reset Operation	
Power Supplies	
Power Consumption	
Power-Saving Modes	
Grounding and Board Layout Recommendations	
ADuC824 System Self-Identification	65
OTHER HARDWARE CONSIDERATIONS	
In-Circuit Serial Download Access	
Embedded Serial Port Debugger	
Single-Pin Emulation Mode	
Enhanced-Hooks Emulation Mode	
Typical System Configuration	
QUICKSTART DEVELOPMENT SYSTEM	
OUTLINE DIMENSIONS	
Revision History	68

Parameter	ADuC824BS	Test Conditions/Comments	Unit
TRANSDUCER BURNOUT CURRENT S	OURCES		
AIN+ Current	-100	AIN+ is the Selected Positive Input to	nA typ
		the Primary ADC	-51
AIN- Current	+100	AIN- is the Selected Negative Input to	nA typ
		the Auxiliary ADC	
Initial Tolerance @ 25°C Drift	±10		% typ
Drift	0.03		%/°C typ
	0.05		, or C typ
EXCITATION CURRENT SOURCES			
Output Current	-200	Available from Each Current Source	μA typ
Initial Tolerance @ 25°C	±10		% typ
Drift	200		ppm/°C typ
Initial Current Matching @ 25°C	±1	Matching Between Both Current Sources	% typ
Drift Matching	20		ppm/°C typ
Line Regulation (AV _{DD})	1	$AV_{DD} = 5 V + 5\%$	µA/V typ
Load Regulation	0.1		µA/V typ
Output Compliance	$AV_{DD} - 0.6$		V max
	AGND		min
LOGIC INPUTS			
All Inputs Except SCLOCK, RESET,			
and XTAL1			
	0.0	DV = 5V	X 7
V _{INL} , Input Low Voltage	0.8	$DV_{DD} = 5 V$	V max
X7 T . TT' 1 X7 1 .	0.4	$DV_{DD} = 3 V$	V max
V _{INH} , Input High Voltage	2.0		V min
SCLOCK and RESET Only			
(Schmitt-Triggered Inputs) ²			
V_{T+}	1.3/3	$DV_{DD} = 5 V$	V min/V max
	0.95/2.5	$DV_{DD} = 3 V$	V min/V max
V_{T-}	0.8/1.4	$DV_{DD} = 5 V$	V min/V max
	0.4/1.1	$DV_{DD} = 3 V$	V min/V max
$V_{T+} - V_{T-}$	0.3/0.85	$DV_{DD} = 5 V$	V min/V max
	0.3/0.85	$DV_{DD} = 3 V$	V min/V max
Input Currents			
Port 0, P1.2–P1.7, EA	±10	$V_{IN} = 0 V \text{ or } V_{DD}$	μA max
SCLOCK, SDATA/MOSI, MISO, \overline{SS}^{12}	-10 min, -40 max	$V_{IN} = 0 V, DV_{DD} = 5 V,$ Internal Pull-Up	μA min/μA max
	±10	$V_{IN} = V_{DD}, DV_{DD} = 5 V$	μA max
RESET	±10	$V_{IN} = 0 V, DV_{DD} = 5 V$	μA max
	35 min, 105 max	$V_{\rm IN} = V_{\rm DD}, DV_{\rm DD} = 5 V,$	$\mu A \min/\mu A \max$
		Internal Pull-Down	
P1.0, P1.1, Ports 2 and 3	±10	$V_{IN} = V_{DD}, DV_{DD} = 5 V$	µA max
	-180	$V_{IN} = 2 V, DV_{DD} = 5 V$	µA min
	-660		µA max
	-20	$V_{IN} = 450 \text{ mV}, \text{DV}_{DD} = 5 \text{ V}$	µA min
	-75		μA max
Input Capacitance	5	All Digital Inputs	pF typ
			r- 'Jr
CRYSTAL OSCILLATOR (XTAL1 AND X	TAL2)		
Logic Inputs, XTAL1 Only	1		
V _{INL} , Input Low Voltage	0.8	$DV_{DD} = 5 V$	V max
	0.4	$DV_{DD} = 3 V$	V max
V _{INH} , Input High Voltage	3.5	$DV_{DD} = 5 V$	V min
	2.5	$DV_{DD} = 3 V$	V min
XTAL1 Input Capacitance	18		pF typ
XTAL2 Output Capacitance	18		pF typ

Parameter	•	Min	Тур	Max	Unit	Figure
SPI MAST	ER MODE TIMING (CPHA = 0)					
t _{SL}	SCLOCK Low Pulsewidth*		630		ns	9
t _{SH}	SCLOCK High Pulsewidth*		630		ns	9
t _{DAV}	Data Output Valid after SCLOCK Edge			50	ns	9
t _{DOSU}	Data Output Setup before SCLOCK Edge			150	ns	9
t _{DSU}	Data Input Setup Time before SCLOCK Edge	100			ns	9
t _{DHD}	Data Input Hold Time after SCLOCK Edge	100			ns	9
t _{DF}	Data Output Fall Time		10	25	ns	9
t _{DR}	Data Output Rise Time		10	25	ns	9
t _{SR}	SCLOCK Rise Time		10	25	ns	9
t _{SF}	SCLOCK Fall Time		10	25	ns	9

*Characterized under the following conditions:

a. Core clock divider bits CD2, CD1, and CD0 bits in PLLCON SFR set to 0, 1, and 1 respectively, i.e., core clock frequency = 1.57 MHz and b. SPI bit-rate selection bits SPR1 and SPR0 bits in SPICON SFR set to 0 and 0 respectively.

Figure 9. SPI Master Mode Timing (CPHA = 0)

Parameter	ſ	Min	Тур	Max	Unit	Figure
SPI SLAVE MODE TIMING (CPHA = 0)						
t _{SS}	SS to SCLOCK Edge	0			ns	11
t _{SL}	SCLOCK Low Pulsewidth		330		ns	11
t _{SH}	SCLOCK High Pulsewidth		330		ns	11
t _{DAV}	Data Output Valid after SCLOCK Edge			50	ns	11
t _{DSU}	Data Input Setup Time before SCLOCK Edge	100			ns	11
t _{DHD}	Data Input Hold Time after SCLOCK Edge	100			ns	11
t _{DF}	Data Output Fall Time		10	25	ns	11
t _{DR}	Data Output Rise Time		10	25	ns	11
t _{SR}	SCLOCK Rise Time		10	25	ns	11
t _{SF}	SCLOCK Fall Time		10	25	ns	11
t _{SSR}	SS to SCLOCK Edge			50	ns	11
t _{DOSS}	Data Output Valid after \overline{SS} Edge			20	ns	11
t _{SFS}	SS High after SCLOCK Edge	0			ns	11

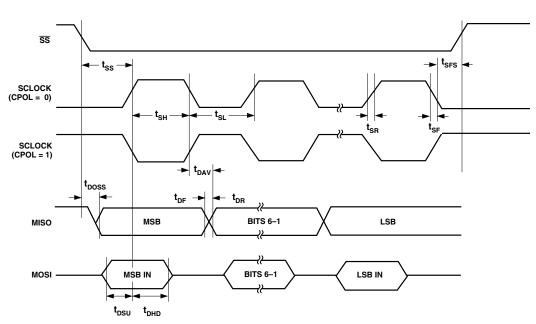


Figure 11. SPI Slave Mode Timing (CPHA = 0)

ADCMODE (ADC Mode Register)

Used to control the operational mode of both ADCs.

SFR Address	D1H
Power-On Default Value	00H
Bit Addressable	No

		1	1	1			
_	_	ADC0EN	ADC1EN	—	MD2	MD1	MD0

Table IV. ADCMODE SFR Bit Designations

Bit	Name	Descr	iption							
7		Reserv	Reserved for Future Use							
6	_	Reserv	Reserved for Future Use							
5	ADC0EN	Primar	y ADC E	Inable						
			Set by the user to enable the Primary ADC and place it in the mode selected in MD2–MD0 below							
					ace the Primary ADC in power-down mode.					
4	ADC1EN		ary ADC							
					the Auxiliary ADC and place it in the mode selected in MD2–MD0 below					
			Cleared by the user to place the Auxiliary ADC in power-down mode.							
3	_		Reserved for Future Use							
2	MD2	Primar	y and Au	xiliary A	DC Mode bits.					
1	MD1	These	bits selec	t the ope	erational mode of the enabled ADC as follows:					
0	MD0	MD2	MD1	MD	0					
		0	0	0	Power-Down Mode (Power-On Default)					
		0	0	1	Idle Mode					
					In Idle Mode the ADC filter and modulator are held in a reset state					
					although the modulator clocks are still provided.					
		0	1	0	Single Conversion Mode					
					In Single Conversion Mode, a single conversion is performed on the					
					enabled ADC. On completion of the conversion, the ADC data regis-					
					ters (ADC0H/M/L and/or ADC1H/L) are updated, the relevant flags					
					in the ADCSTAT SFR are written, and power-down is re-entered with					
					the MD2-MD0 accordingly being written to 000.					
		0	1	1	Continuous Conversion					
					In continuous conversion mode the ADC data registers are regularly					
					updated at the selected update rate (see SF register)					
		1	0	0	Internal Zero-Scale Calibration					
					Internal short is automatically connected to the enabled ADC(s)					
		1	0	1	Internal Full-Scale Calibration					
					Internal or External V_{REF} (as determined by XREF0 and XREF1 bits					
					in ADC0/1CON) is automatically connected to the ADC input for					
				0	this calibration.					
		1	1	0	System Zero-Scale Calibration					
					User should connect system zero-scale input to the ADC input pins					
					as selected by CH1/CH0 and ACH1/ACH0 bits in the ADC0/1CON					
			1	1	register.					
		1	1	1	System Full-Scale Calibration					
					User should connect system full-scale input to the ADC input pins as					
					selected by CH1/CH0 and ACH1/ACH0 bits in the ADC0/1CON					
					register.					

NOTES

Any change to the MD bits will immediately reset both ADCs. A write to the MD2-0 bits with no change is also treated as a reset. (See exception to this in Note 3 below.)
If ADC0CON is written when AD0EN = 1, or if AD0EN is changed from 0 to 1, then both ADCs are also immediately reset. In other words, the Primary ADC is given priority over the Auxiliary ADC and any change requested on the primary ADC is immediately responded to.

3. On the other hand, if ADC1CON is written or if ADC1EN is changed from 0 to 1, only the Auxiliary ADC is reset. For example, if the Primary ADC is continuously converting when the Auxiliary ADC change or enable occurs, the primary ADC continues undisturbed. Rather than allow the Auxiliary ADC to operate with a phase difference from the primary ADC, the Auxiliary ADC will fall into step with the outputs of the primary ADC. The result is that the first conversion time for the Auxiliary ADC will be delayed up to three outputs while the Auxiliary ADC update rate is synchronized to the Primary ADC.

4. Once ADCMODE has been written with a calibration mode, the RDY0/1 bits (ADCSTAT) are immediately reset and the calibration commences. On completion, the appropriate calibration registers are written, the relevant bits in ADCSTAT are written, and the MD2–0 bits are reset to 000 to indicate the ADC is back in power-down mode.

5. Any calibration request of the Auxiliary ADC while the temperature sensor is selected will fail to complete. Although the RDY1 bit will be set at the end of the calibration cycle, no update of the calibration SFRs will take place and the ERR1 bit will be set.

6. Calibrations are performed at maximum SF (see SF SFR) value guaranteeing optimum calibration operation.

ADC0CON (Primary ADC Control Register)

Used to configure the Primary ADC for range, channel selection, external Ref enable, and unipolar or bipolar coding.

SFR Address	D2H
Power-On Default Value	07H
Bit Addressable	No

—	XREF0	CH1	CH0	UNI0	RN2	RN1	RN0

Table V. ADC0CON SFR Bit Designations

Bit	Name	Descripti	on						
7		Reserved f	Reserved for Future Use						
6	XREF0	Primary A	DC Exte	rnal Refe	rence Select Bit				
		Set by user	to enable	le the Prin	nary ADC to use the external reference via REFIN(+)/REFIN(-).				
		<i>Cleared</i> by	<i>Cleared</i> by user to enable the Primary ADC to use the internal bandgap reference ($V_{REF} = 1$						
5	CH1	Primary A							
4	CH0	Written by	the differential input pairs used by the Primary ADC as follows:						
		CH1	CH0		re Input Negative Input				
		0	0	AIN1	AIN2				
		0	1	AIN3	AIN4				
		1	0	AIN2					
		1	1	AIN3	AIN2				
3	UNI0	Primary A	-						
					coding, i.e., zero differential input will result in 000000 hex output.				
					olar coding, zero differential input will result in 800000 hex output.				
2	RN2	Primary A		-					
1	RN1				the Primary ADC input range as follows:				
0	RN0	RN2	RN1	RN0	Selected Primary ADC Input Range ($V_{REF} = 2.5 \text{ V}$)				
		0	0	0	$\pm 20 \text{ mV}$				
		0	0	1	$\pm 40 \text{ mV}$				
		0	1	0	$\pm 80 \text{ mV}$				
		0	1	1	$\pm 160 \text{ mV}$				
		1	0	0	$\pm 320 \text{ mV}$				
		1	0	1	$\pm 640 \text{ mV}$				
			1	0	±1.28 V				
			1	1	±2.56 V				

ADC1CON (Auxiliary ADC Control Register)

Used to configure the Auxiliary ADC for channel selection, external Ref enable and unipolar or bipolar coding. It should be noted that the Auxiliary ADC only operates on a fixed input range of $\pm V_{REF}$.

SFR Address	D3H
Power-On Default Value	00H
Bit Addressable	No

_	XREF1	ACH1	ACH0	UNI1	_	—	_
---	-------	------	------	------	---	---	---

Table VI. ADC1CON SFR Bit Designations

Bit	Name	Descript	ion		
7	_	Reserved	for Future U	Jse	
6	XREF1	Auxiliary	ADC Extern	nal Reference Bit	
		Set by use	er to enable t	the Auxiliary ADC t	o use the external reference via REFIN(+)/REFIN(-).
		Cleared by	y user to ena	ble the Auxiliary AI	OC to use the internal bandgap reference.
5	ACH1	Auxiliary	ADC Chann	nel Selection Bits	
4	ACH0	Written by	y the user to	select the single-ende	d input pins used to drive the Auxiliary ADC as follows:
		ACH1	ACH0	Positive Input	Negative Input
		0	0	AIN3	AGND
		0	1	AIN4	AGND
		1	0	Temp Sensor*	AGND (Temp. Sensor routed to the ADC input)
		1	1	AIN5	AGND
3	UNI1	Auxiliary	ADC Unipo	olar Bit	
		Set by use	er to enable	unipolar coding, i.e.,	zero input will result in 0000 hex output.
		Cleared by	y user to ena	ble bipolar coding, z	zero input will result in 8000 hex output.
2	_	Reserved	for Future U	Jse	
1	—	Reserved	for Future U	Jse	
0	—	Reserved	for Future U	Jse	

*NOTES

1. When the temperature sensor is selected, user code must select internal reference via XREF1 bit above and clear the UNI1 bit (ADC1CON.3) to select bipolar coding.

The temperature sensor is factory calibrated to yield conversion results 8000H at 0 °C.
A +1°C change in temperature will result in a +1 LSB change in the ADC1H register ADC conversion result.

SF (Sinc Filter Register)

The number in this register sets the decimation factor and thus the output update rate for the Primary and Auxiliary ADCs. This SFR cannot be written by user software while either ADC is active. The update rate applies to both Primary and Auxiliary ADCs and is calculated as follows:

$$f_{ADC} = \frac{1}{3} \times \frac{1}{8 \mathcal{S} F} \times f_{MOD}$$

Where:

$$f_{ADC}$$
 = ADC Output Update Rate

 f_{MOD} = Modulator Clock Frequency = 32.768 kHz SF = Decimal Value of SF Register

The allowable range for SF is 0Dhex to FFhex. Examples of SF values and corresponding conversion update rate (f_{ADC}) and con-

version time (t_{ADC}) are shown in Table VII, the power-on default value for the SF register is 45hex, resulting in a default ADC update rate of just under 20 Hz. Both ADC inputs are chopped to minimize offset errors, which means that the settling time for a single conversion or the time to a first conversion result in continuous conversion mode is $2 \times t_{ADC}$. As mentioned earlier, all calibration cycles will be carried out automatically with a maximum, i.e., FFhex, SF value to ensure optimum calibration performance. Once a calibration cycle has completed, the value in the SF register will be that programmed by user software.

Table VII. SF SFR Bit Designations

SF(dec)	SF(hex)	f _{ADC} (Hz)	t _{ADC} (ms)
13	0D	105.3	9.52
69	45	19.79	50.34
255	FF	5.35	186.77

The absolute input voltage range on the auxiliary ADC is restricted to between AGND -30 mV to AVDD +30 mV. The slightly negative absolute input voltage limit does allow the possibility of monitoring small signal bipolar signals using the single-ended auxiliary ADC front end.

Programmable Gain Amplifier

The output from the buffer on the primary ADC is applied to the input of the on-chip programmable gain amplifier (PGA). The PGA can be programmed through eight different unipolar input ranges and bipolar ranges. The PGA gain range is programmed via the range bits in the ADC0CON SFR. With the external reference select bit set in the ADC0CON SFR and an external 2.5 V reference, the unipolar ranges are 0 mV to 20 mV, 0 mV to 40 mV, 0 mV to 80 mV, 0 mV to 160 mV, 0 mV to 320 mV, 0 mV to 640 mV, 0 V to 1.28 V, and 0 to 2.56 V, while the bipolar ranges are $\pm 20 \text{ mV}$, $\pm 40 \text{ mV}$, $\pm 80 \text{ mV}$, $\pm 160 \text{ mV}$, \pm 320 mV, \pm 640 mV, \pm 1.28 V, and \pm 2.56 V. These are the nominal ranges that should appear at the input to the on-chip PGA. An ADC range matching specification of 2 µV (typ) across all ranges means that calibration need only be carried out at a single gain range and does not have to be repeated when the PGA gain range is changed.

Typical matching across ranges is shown in Figure 20 below. Here, the primary ADC is configured in bipolar mode with an external 2.5 V reference, while just greater than 19 mV is forced on its inputs. The ADC continuously converts the DC input voltage at an update rate of 5.35 Hz, i.e., SF = FFhex. In total, 800 conversion results are gathered. The first 100 results are gathered with the primary ADC operating in the ± 20 mV range. The ADC range is then switched to ± 40 mV and 100 more conversion results are gathered, and so on until the last group of 100 samples are gathered with the ADC configured in the ± 2.56 V range. From Figure 20, The variation in the sample mean through each range, i.e., the range matching, is seen to be of the order of 2 μ V.

The auxiliary ADC does not incorporate a PGA and is configured for a fixed single input range of 0 to $V_{\rm REF}.$

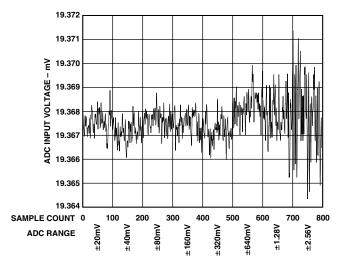


Figure 20. Primary ADC Range Matching

Bipolar/Unipolar Inputs

The analog inputs on the ADuC824 can accept either unipolar or bipolar input voltage ranges. Bipolar input ranges do not imply that the part can handle negative voltages with respect to system AGND.

Unipolar and bipolar signals on the AIN(+) input on the primary ADC are referenced to the voltage on the respective AIN(-) input. For example, if AIN(-) is 2.5 V and the primary ADC is configured for an analog input range of 0 mV to 20 mV, the input voltage range on the AIN(+) input is 2.5 V to 2.52 V. If AIN(-) is 2.5 V and the ADuC824 is configured for an analog input range of 1.28 V, the analog input range on the AIN(+) input is 1.22 V to 3.78 V (i.e., $2.5 V \pm 1.28 V$).

As mentioned earlier, the auxiliary ADC input is a single-ended input with respect to the system AGND. In this context a bipolar signal on the auxiliary ADC can only span 30 mV negative with respect to AGND before violating the voltage input limits for this ADC.

Bipolar or unipolar options are chosen by programming the Primary and Auxiliary Unipolar enable bits in the ADC0CON and ADC1CON SFRs respectively. This programs the relevant ADC for either unipolar or bipolar operation. Programming for either unipolar or bipolar operation does not change any of the input signal conditioning; it simply changes the data output coding and the points on the transfer function where calibrations occur. When an ADC is configured for unipolar operation, the output coding is natural (straight) binary with a zero differential input voltage resulting in a code of 000 . . . 000, a midscale voltage resulting in a code of 100 . . . 000, and a full-scale input voltage resulting in a code of 111 ... 111. When an ADC is configured for bipolar operation, the coding is offset binary with a negative full-scale voltage resulting in a code of 000...000, a zero differential voltage resulting in a code of 100...000, and a positive full-scale voltage resulting in a code of 111...111.

Burnout Currents

The primary ADC on the ADuC824 contains two 100 nA constant current generators, one sourcing current from AVDD to AIN(+), and one sinking from AIN(-) to AGND. The currents are switched to the selected analog input pair. Both currents are either on or off, depending on the Burnout Current Enable (BO) bit in the ICON SFR (see Table VIII). These currents can be used to verify that an external transducer is still operational before attempting to take measurements on that channel. Once the burnout currents are turned on, they will flow in the external transducer circuit, and a measurement of the input voltage on the analog input channel can be taken. If the resultant voltage measured is full-scale, this indicates that the transducer has gone open-circuit. If the voltage measured is 0 V, it indicates that the transducer has short circuited. For normal operation, these burnout currents are turned off by writing a 0 to the BO bit in the ICON SFR. The current sources work over the normal absolute input voltage range specifications.

ON-CHIP PLL

The ADuC824 is intended for use with a 32.768 kHz watch crystal. A PLL locks onto a multiple (384) of this to provide a stable 12.582912 MHz clock for the system. The core can operate at this frequency or at binary submultiples of it to allow power saving in cases where maximum core performance is not required. The default core clock is the PLL clock divided by 8 or 1.572864 MHz. The ADC clocks are also derived from the PLL clock, with the modulator rate being the same as the crystal oscillator frequency. The above choice of frequencies ensures that the modulators and the core will be synchronous, regardless of the core clock rate. The PLL control register is PLLCON.

PLLCON		PLL Control	l Register				
SFR Address		D7H					
Power-On Defau	ılt Value	03H					
Bit Addressable		No					
							· ``
OSC_PD	LOCK	—	LTEA	FINT	CD2	CD1	CD0

Table XV. PLLCON SFR Bit Designations

Bit	Name	Descrij	otion		
7	OSC_PD	Oscillat	or Power-do	wn Bit	
		Set by u	ser to halt th	ne 32 kHz oscill	ator in power-down mode.
		Cleared	by user to en	hable the 32 kH	z oscillator in power-down mode.
		This fea	ture allows	the TIC to cont	tinue counting even in power-down mode.
6	LOCK	PLL Lo	ck Bit		
		This is a	a read only b	oit.	
		Set auto	matically at j	power-on to ind	icate the PLL loop is correctly tracking the crystal clock. If the
		external	crystal beco	omes subsequer	ntly disconnected the PLL will rail and the core will halt.
		Cleared	automaticall	y at power-on t	to indicate the PLL is not correctly tracking the crystal clock.
		This ma	y be due to	the absence of a	crystal clock or an external crystal at power-on. In this mode,
		the PLI	output can	be 12.58 MHz	± 20%.
5	_				written with '0.'
4	LTEA	Reading	, this bit retu	arns the state of	f the external $\overline{\text{EA}}$ pin latched at reset or power-on.
3	FINT	Fast Int	errupt Resp	onse Bit	
					any interrupt to be executed at the fastest core clock frequency,
					CD2–0 bits (see below). Once user code has returned from an
					ecution at the core clock selected by the CD2-0 bits.
					nterrupt response feature.
2	CD2			Divider Bits	
1	CD1				ency at which the microcontroller core will operate.
0	CD0	CD2	CD1	CD0	Core Clock Frequency (MHz)
		0	0	0	12.582912
		0	0	1	6.291456
		0	1	0	3.145728
		0	1	1	1.572864 (Default Core Clock Frequency)
		1	0	0	0.786432
		1	0	1	0.393216
			1	0	0.196608
		1	1	1	0.098304

TIME INTERVAL COUNTER (TIC)

A time interval counter is provided on-chip for counting longer intervals than the standard 8051-compatible timers are capable of. The TIC is capable of timeout intervals ranging from 1/128th second to 255 hours. Furthermore, this counter is clocked by the crystal oscillator rather than the PLL and thus has the ability to remain active in power-down mode and time long power-down intervals. This has obvious applications for remote battery-powered sensors where regular widely spaced readings are required.

Six SFRs are associated with the time interval counter, TIMECON being its control register. Depending on the configuration of the IT0 and IT1 bits in TIMECON, the selected time counter register

overflow will clock the interval counter. When this counter is equal to the time interval value loaded in the INTVAL SFR, the TII bit (TIMECON.2) is set and generates an interrupt if enabled (See IEIP2 SFR description under Interrupt System later in this data sheet.) If the ADuC824 is in power-down mode, again with TIC interrupt enabled, the TII bit will wake up the device and resume code execution by vectoring directly to the TIC interrupt service vector address at 0053 hex. The TIC-related SFRs are described in Table XVI. Note also that the timebase SFRs can be written initially with the current time, the TIC can then be controlled and accessed by user software. In effect, this facilitates the implementation of a real-time clock. A block diagram of the TIC is shown in Figure 32.

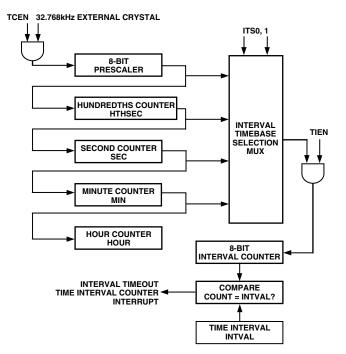


Figure 32. TIC, Simplified Block Diagram

—

TIMECON		TIC Control	Register				
SFR Address		A1H					
Power-On Defau	lt Value	00H					
Bit Addressable		No					
_	_	ITS1	ITS0	STI	TII	TIEN	ICEN

Table XVI. TIMECON SFR Bit Designations

Bit	Name	Description
7	_	Reserved for Future Use
6	_	Reserved for Future Use. For future product code compatibility this bit should be written as a '1.'
5	ITS1	Interval Timebase Selection Bits.
4	ITS0	Written by user to determine the interval counter update rate.
		ITS1 ITS0 Interval Timebase
		0 0 1/128 Second
		0 1 Seconds
		1 0 Minutes
		1 1 Hours
3	STI	Single Time Interval Bit
		Set by user to generate a single interval timeout. If set, a timeout will clear the TIEN bit.
		Cleared by user to allow the interval counter to be automatically reloaded and start counting again at
		each interval timeout.
2	TII	TIC Interrupt Bit
		Set when the 8-bit Interval Counter matches the value in the INTVAL SFR.
		Cleared by user software.
1	TIEN	Time Interval Enable Bit
		Set by user to enable the 8-bit time interval counter.
		Cleared by user to disable and clear the contents of the interval counter.
0	TCEN	Time Clock Enable Bit
		Set by user to enable the time clock to the time interval counters.
		Cleared by user to disable the clock to the time interval counters and clear the time interval SFRs.
		The time registers (HTHSEC, SEC, MIN and HOUR) can be written while TCEN is low.

SERIAL PERIPHERAL INTERFACE

The ADuC824 integrates a complete hardware Serial Peripheral Interface (SPI) interface on-chip. SPI is an industry standard synchronous serial interface that allows eight bits of data to be synchronously transmitted and received simultaneously, i.e., full duplex. It should be noted that the SPI physical interface is shared with the I²C interface and therefore the user can only enable one or the other interface at any given time (see SPE in SPICON below). The system can be configured for Master or Slave operation and typically consists of four pins, namely:

MISO (Master In, Slave Out Data I/O Pin), Pin#14

The MISO (master in slave out) pin is configured as an input line in master mode and an output line in slave mode. The MISO line on the master (data in) should be connected to the MISO line in the slave device (data out). The data is transferred as byte wide (8-bit) serial data, MSB first.

MOSI (Master Out, Slave In Pin), Pin#27

The MOSI (master out slave in) pin is configured as an output line in master mode and an input line in slave mode. The MOSI line on the master (data out) should be connected to the MOSI line in the slave device (data in). The data is transferred as byte wide (8-bit) serial data, MSB first.

SCLOCK (Serial Clock I/O Pin), Pin#26

The master clock (SCLOCK) is used to synchronize the data being transmitted and received through the MOSI and MISO data

lines. A single data bit is transmitted and received in each SCLOCK period. Therefore, a byte is transmitted/received after eight SCLOCK periods. The SCLOCK pin is configured as an output in master mode and as an input in slave mode. In master mode the bit-rate, polarity and phase of the clock are controlled by the CPOL, CPHA, SPR0 and SPR1 bits in the SPICON SFR (see Table XIX). In slave mode the SPICON register will have to be configured with the phase and polarity (CPHA and CPOL) of the expected input clock. In both master and slave mode the data is transmitted on one edge of the SCLOCK signal and sampled on the other. It is important therefore that the CPHA and CPOL are configured the same for the master and slave devices.

SS (Slave Select Input Pin), Pin#13

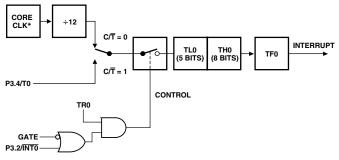
The Slave Select (\overline{SS}) input pin is only used when the ADuC824 is configured in slave mode to enable the SPI peripheral. This line is active low. Data is only received or transmitted in slave mode when the \overline{SS} pin is low, allowing the ADuC824 to be used in single master, multislave SPI configurations. If CPHA = 1 then the \overline{SS} input may be permanently pulled low. With CPHA = 0 then the \overline{SS} input must be driven low before the first bit in a byte wide transmission or reception and return high again after the last bit in that byte wide transmission or reception. In SPI Slave Mode, the logic level on the external \overline{SS} pin (Pin# 13), can be read via the SPR0 bit in the SPICON SFR.

The following SFR registers are used to control the SPI interface.

SPICON	SPI Control Re	egister		
SFR Address Power-On Default Value Bit Addressable	F8H 04H Yes			

ISPI	WCOL	SPE	SPIM	CPOL	СРНА	SPR1	SPR0
------	------	-----	------	------	------	------	------

Table XIX. SPICON SFR Bit Designations


Bit	Name	Description
7	ISPI	SPI Interrupt Bit
		Set by MicroConverter at the end of each SPI transfer.
		Cleared directly by user code or indirectly by reading the SPIDAT SFR.
6	WCOL	Write Collision Error Bit
		Set by MicroConverter if SPIDAT is written to while an SPI transfer is in progress.
		Cleared by user code.
5	SPE	SPI Interface Enable Bit
		Set by user to enable the SPI interface.
		Cleared by user to enable the I^2C interface.
4	SPIM	SPI Master/Slave Mode Select Bit
		Set by user to enable Master Mode operation (SCLOCK is an output).
		Cleared by user to enable Slave Mode operation (SCLOCK is an input).
3	CPOL*	Clock Polarity Select Bit
		Set by user if SCLOCK idles high.
		Cleared by user if SCLOCK idles low.
2	CPHA*	Clock Phase Select Bit
		Set by user if leading SCLOCK edge is to transmit data.
		Cleared by user if trailing SCLOCK edge is to transmit data.
1	SPR1	SPI Bit-Rate Select Bits
0	SPR0	These bits select the SCLOCK rate (bit-rate) in Master Mode as follows:
		SPR1 SPR0 Selected Bit Rate SPR1 SPR0 Selected Bit Rate
		$0 \qquad 0 \qquad f_{\text{CORE}}/2 \qquad 1 \qquad 0 \qquad f_{\text{CORE}}/8$
		$1 f_{CORE}/4 1 1 f_{CORE}/16$
		In SPI Slave Mode, i.e., SPIM = 0, the logic level on the external \overline{SS} pin (Pin# 13), can be read via the SPR0 bit.

TIMER/COUNTER 0 AND 1 OPERATING MODES

The following paragraphs describe the operating modes for timer/ counters 0 and 1. Unless otherwise noted, assume that these modes of operation are the same for timer 0 as for timer 1.

Mode 0 (13-Bit Timer/Counter)

Mode 0 configures an 8-bit timer/counter with a divide-by-32 prescaler. Figure 34 shows mode 0 operation.

*THE CORE CLOCK IS THE OUTPUT OF THE PLL AS DESCRIBED ON PAGE 42.

Figure 34. Timer/Counter 0, Mode 0

In this mode, the timer register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s, it sets the timer overflow flag TF0. The overflow flag, TF0, can then be used to request an interrupt. The counted input is enabled to the timer when TR0 = 1 and either Gate = 0 or $\overline{INT0} = 1$. Setting Gate = 1 allows the timer to be controlled by external input $\overline{INT0}$, to facilitate pulsewidth measurements. TR0 is a control bit in the special function register TCON; Gate is in TMOD. The 13-bit register consists of all eight bits of TH0 and the lower five bits of TL0. The upper three bits of TL0 are indeterminate and should be ignored. Setting the run flag (TR0) does not clear the registers.

Mode 1 (16-Bit Timer/Counter)

Mode 1 is the same as Mode 0, except that the timer register is running with all 16 bits. Mode 1 is shown in Figure 35.

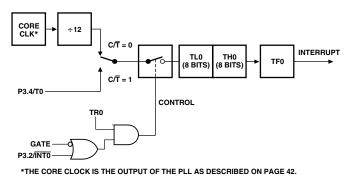
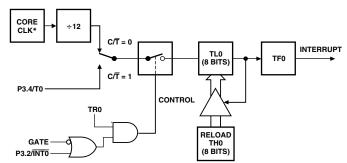



Figure 35. Timer/Counter 0, Mode 1

Mode 2 (8-Bit Timer/Counter with Auto Reload)

Mode 2 configures the timer register as an 8-bit counter (TL0) with automatic reload, as shown in Figure 36. Overflow from TL0 not only sets TF0, but also reloads TL0 with the contents of TH0, which is preset by software. The reload leaves TH0 unchanged.

*THE CORE CLOCK IS THE OUTPUT OF THE PLL AS DESCRIBED ON PAGE 42.

Figure 36. Timer/Counter 0, Mode 2

Mode 3 (Two 8-Bit Timer/Counters)

Mode 3 has different effects on timer 0 and timer 1. Timer 1 in Mode 3 simply holds its count. The effect is the same as setting TR1 = 0. Timer 0 in Mode 3 establishes TL0 and TH0 as two separate counters. This configuration is shown in Figure 37. TL0 uses the timer 0 control bits: C/T, Gate, TR0, INT0, and TF0. TH0 is locked into a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from timer 1. Thus, TH0 now controls the "timer 1" interrupt. Mode 3 is provided for applications requiring an extra 8-bit timer or counter.

When timer 0 is in Mode 3, timer 1 can be turned on and off by switching it out of, and into, its own Mode 3, or can still be used by the serial interface as a *Baud Rate Generator*. In fact, it can be used, in any application not requiring an interrupt from timer 1 itself.

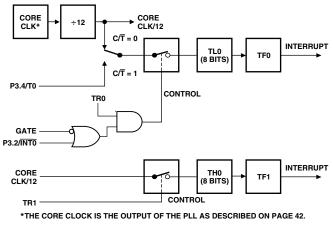


Figure 37. Timer/Counter 0, Mode 3

SFR Address C8H
51 K Address Coll
Power-On Default Value 00H
Bit Addressable Yes

TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CNT2	CAP2	
-----	------	------	------	-------	-----	------	------	--

Table XXV. T2CON SFR Bit Designations

Bit	Name	Description
7	TF2	Timer 2 Overflow Flag
		Set by hardware on a Timer 2 overflow. TF2 will not be set when either RCLK or TCLK = 1.
		Cleared by user software.
6	EXF2	Timer 2 External Flag
		Set by hardware when either a capture or reload is caused by a negative transition on T2EX and
		EXEN2 = 1.
		Cleared by user user software.
5	RCLK	Receive Clock Enable Bit
		Set by user to enable the serial port to use Timer 2 overflow pulses for its receive clock in serial
		port Modes 1 and 3.
		Cleared by user to enable Timer 1 overflow to be used for the receive clock.
4	TCLK	Transmit Clock Enable Bit
		Set by user to enable the serial port to use Timer 2 overflow pulses for its transmit clock in serial
		port Modes 1 and 3.
		Cleared by user to enable Timer 1 overflow to be used for the transmit clock.
3	EXEN2	Timer 2 External Enable Flag
		Set by user to enable a capture or reload to occur as a result of a negative transition on T2EX if
		Timer 2 is not being used to clock the serial port.
		Cleared by user for Timer 2 to ignore events at T2EX.
2	TR2	Timer 2 Start/Stop Control Bit
		Set by user to start Timer 2.
		Cleared by user to stop Timer 2.
1	CNT2	Timer 2 Timer or Counter Function Select Bit
		Set by user to select counter function (input from external T2 pin).
		Cleared by user to select timer function (input from on-chip core clock).
0	CAP2	Timer 2 Capture/Reload Select Bit
		Set by user to enable captures on negative transitions at T2EX if $EXEN2 = 1$.
		Cleared by user to enable auto-reloads with Timer 2 overflows or negative transitions at T2EX
		when $EXEN2 = 1$. When either $RCLK = 1$ or $TCLK = 1$, this bit is ignored and the timer is
		forced to autoreload on Timer 2 overflow.

Timer/Counter 2 Data Registers

Timer/Counter 2 also has two pairs of 8-bit data registers associated with it. These are used as both timer data registers and timer capture/reload registers.

TH2 and TL2

Timer 2, data high byte and low byte. SFR Address = CDhex, CChex respectively.

RCAP2H and RCAP2L

Timer 2, Capture/Reload byte and low byte. SFR Address = CBhex, CAhex respectively.

Timer/Counter 2 Operating Modes

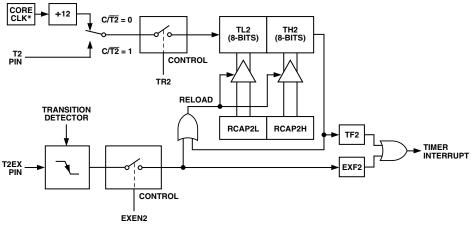
The following paragraphs describe the operating modes for timer/ counter 2. The operating modes are selected by bits in the T2CON SFR as shown in Table XXVI.

RCLK (or) TCLK	CAP2	TR2	MODE
0	0	1	16-Bit Autoreload
0	1	1	16-Bit Capture
1	X	1	Baud Rate
Х	X	0	OFF

Table XXVI. TIMECON SFR Bit Designations

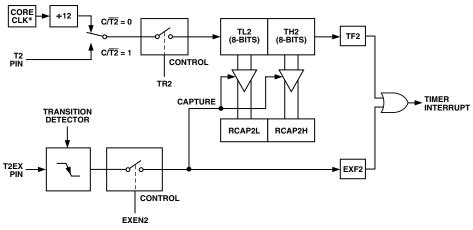
16-Bit Autoreload Mode

In 'Autoreload' mode, there are two options, which are selected by bit EXEN2 in T2CON. If EXEN2 = 0, then when Timer 2 rolls over it not only sets TF2 but also causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2L and RCAP2H, which are preset by software. If EXEN2 = 1, then Timer 2 still performs the above, but with the added feature that a 1-to-0 transition at external input T2EX will also trigger the 16-bit reload and set EXF2. The autoreload mode is illustrated in Figure 38.


16-Bit Capture Mode

In the 'Capture' mode, there are again two options, which are selected by bit EXEN2 in T2CON. If EXEN2 = 0, then Timer 2 is a 16-bit timer or counter which, upon overflowing, sets bit TF2, the Timer 2 overflow bit, which can be used to generate an interrupt. If EXEN2 = 1, then Timer 2 still performs the above, but a 1-to-0 transition on external input T2EX causes the current value in the Timer 2 registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2, like TF2, can generate an interrupt. The Capture Mode is illustrated in Figure 39.

The baud rate generator mode is selected by RCLK = 1 and/or TCLK = 1.


In either case if Timer 2 is being used to generate the baud rate, the TF2 interrupt flag will not occur. Hence Timer 2 interrupts will not occur so they do not have to be disabled. In this mode the EXF2 flag, however, can still cause interrupts and this can be used as a third external interrupt.

Baud rate generation will be described as part of the UART serial port operation in the following pages.

*THE CORE CLOCK IS THE OUTPUT OF THE PLL AS DESCRIBED ON PAGE 42.

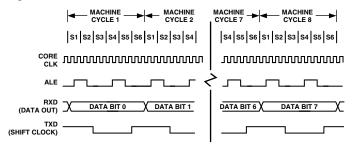
Figure 38. Timer/Counter 2, 16-Bit Autoreload Mode

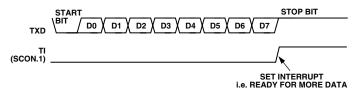
*THE CORE CLOCK IS THE OUTPUT OF THE PLL AS DESCRIBED ON PAGE 42.

Figure 39. Timer/Counter 2, 16-Bit Capture Mode

Mode 0: 8-Bit Shift Register Mode

Mode 0 is selected by clearing both the SM0 and SM1 bits in the SFR SCON. Serial data enters and exits through RXD. TXD outputs the shift clock. Eight data bits are transmitted or received. Transmission is initiated by any instruction that writes to SBUF. The data is shifted out of the RXD line. The eight bits are transmitted with the least-significant bit (LSB) first, as shown in Figure 40.




Figure 40. UART Serial Port Transmission, Mode 0.

Reception is initiated when the receive enable bit (REN) is 1 and the receive interrupt bit (RI) is 0. When RI is cleared the data is clocked into the RXD line and the clock pulses are output from the TXD line.

Mode 1: 8-Bit UART, Variable Baud Rate

Mode 1 is selected by clearing SM0 and setting SM1. Each data byte (LSB first) is preceded by a start bit(0) and followed by a stop bit(1). Therefore 10 bits are transmitted on TXD or received on RXD. The baud rate is set by the Timer 1 or Timer 2 overflow rate, or a combination of the two (one for transmission and the other for reception).

Transmission is initiated by writing to SBUF. The 'write to SBUF' signal also loads a 1 (stop bit) into the ninth bit position of the transmit shift register. The data is output bit by bit until the stop bit appears on TXD and the transmit interrupt flag (TI) is automatically set as shown in Figure 41.

Figure 41. UART Serial Port Transmission, Mode 0.

Reception is initiated when a 1-to-0 transition is detected on RXD. Assuming a valid start bit was detected, character reception continues. The start bit is skipped and the eight data bits are clocked into the serial port shift register. When all eight bits have been clocked in, the following events occur:

The eight bits in the receive shift register are latched into SBUF

The ninth bit (Stop bit) is clocked into RB8 in SCON

The Receiver interrupt flag (RI) is set

if, and only if, the following conditions are met at the time the final shift pulse is generated:

RI = 0, and

Either SM2 = 0, or SM2 = 1 and the received stop bit = 1.

If either of these conditions is not met, the received frame is irretrievably lost, and RI is not set.

Mode 2: 9-Bit UART with Fixed Baud Rate

Mode 2 is selected by setting SM0 and clearing SM1. In this mode the UART operates in 9-bit mode with a fixed baud rate. The baud rate is fixed at Core_Clk/64 by default, although by setting the SMOD bit in PCON, the frequency can be doubled to Core_Clk/32. Eleven bits are transmitted or received, a start bit(0), eight data bits, a programmable ninth bit and a stop bit(1). The ninth bit is most often used as a parity bit, although it can be used for anything, including a ninth data bit if required.

To transmit, the eight data bits must be written into SBUF. The ninth bit must be written to TB8 in SCON. When transmission is initiated the eight data bits (from SBUF) are loaded onto the transmit shift register (LSB first). The contents of TB8 are loaded into the ninth bit position of the transmit shift register. The transmission will start at the next valid baud rate clock. The TI flag is set as soon as the stop bit appears on TXD.

Reception for Mode 2 is similar to that of Mode 1. The eight data bytes are input at RXD (LSB first) and loaded onto the receive shift register. When all eight bits have been clocked in, the following events occur:

The eight bits in the receive shift register are latched into SBUF

The ninth data bit is latched into RB8 in SCON

The Receiver interrupt flag (RI) is set

if, and only if, the following conditions are met at the time the final shift pulse is generated:

$$RI = 0$$
, and

Either SM2 = 0, or SM2 = 1 and the received stop bit = 1.

If either of these conditions is not met, the received frame is irretrievably lost, and RI is not set.

Mode 3: 9-Bit UART with Variable Baud Rate

Mode 3 is selected by setting both SM0 and SM1. In this mode the 8051 UART serial port operates in 9-bit mode with a variable baud rate determined by either Timer 1 or Timer 2. The operation of the 9-bit UART is the same as for Mode 2 but the baud rate can be varied as for Mode 1.

In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. Reception is initiated in the other modes by the incoming start bit if REN = 1.

UART Serial Port Baud Rate Generation Mode 0 Baud Rate Generation

The baud rate in Mode 0 is fixed:

Mode 0 Baud Rate = (Core Clock Frequency*/12)

*In these descriptions, Core Clock Frequency refers to the core clock frequency selected via the CD0–2 bits in the PLLCON SFR.

Mode 2 Baud Rate Generation

The baud rate in Mode 2 depends on the value of the SMOD bit in the PCON SFR. If SMOD = 0, the baud rate is 1/64 of the core clock. If SMOD = 1, the baud rate is 1/32 of the core clock:

Mode 2 Baud Rate = $(2^{\text{SMOD}}/64) \times (\text{Core Clock Frequency})$

Mode 1 and 3 Baud Rate Generation

The baud rates in Modes 1 and 3 are determined by the overflow rate in Timer 1 or Timer 2, or both (one for transmit and the other for receive).

ADuC824 HARDWARE DESIGN CONSIDERATIONS

This section outlines some of the key hardware design considerations that must be addressed when integrating the ADuC824 into any hardware system.

Clock Oscillator

As described earlier, the core clock frequency for the ADuC824 is generated from an on-chip PLL that locks onto a multiple (384 times) of 32.768 kHz. The latter is generated from an internal clock oscillator. To use the internal clock oscillator, connect a 32.768 kHz parallel resonant crystal between XTAL1 and XTAL2 pins (32 and 33) as shown in Figure 43.

As shown in the typical external crystal connection diagram in Figure 44, two internal 12 pF capacitors are provided on-chip. These are connected internally, directly to the XTAL1 and XTAL2 pins and the total input capacitances at both pins is detailed in the specification section of this data sheet. The value of the total load capacitance required for the external crystal should be the value recommended by the crystal manufacturer for use with that specific crystal. In many cases, because of the on-chip capacitors, additional external load capacitors will not be required.

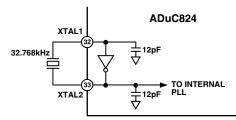


Figure 43. External Parallel Resonant Crystal Connections

External Memory Interface

In addition to its internal program and data memories, the ADuC824 can access up to 64 Kbytes of external program memory (ROM/PROM/etc.) and up to 16 Mbytes of external data memory (SRAM).

To select from which code space (internal or external program memory) to begin executing instructions, tie the \overline{EA} (external access) pin high or low, respectively. When \overline{EA} is high (pulled up to V_{DD}), user program execution will start at address 0 of the internal 8 Kbytes Flash/EE code space. When \overline{EA} is low (tied to ground) user program execution will start at address 0 of the external code space. In either case, addresses above 1FFF hex (8K) are mapped to the external space.

Note that a second very important function of the \overline{EA} pin is described in the Single Pin Emulation Mode section of this data sheet.

External program memory (if used) must be connected to the ADuC824 as illustrated in Figure 44. Note that 16 I/O lines (Ports 0 and 2) are dedicated to bus functions during external program memory fetches. Port 0 (PO) serves as a multiplexed address/data bus. It emits the low byte of the program counter (PCL) as an address, and then goes into a float state awaiting the arrival of the code byte from the program memory. During the

time that the low byte of the program counter is valid on P0, the signal ALE (Address Latch Enable) clocks this byte into an address latch. Meanwhile, Port 2 (P2) emits the high byte of the program counter (PCH), then PSEN strobes the EPROM and the code byte is read into the ADuC824.

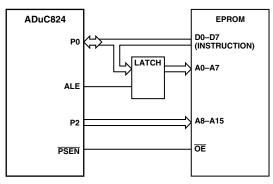


Figure 44. External Program Memory Interface

Note that program memory addresses are always 16 bits wide, even in cases where the actual amount of program memory used is less than 64 Kbytes. External program execution sacrifices two of the 8-bit ports (P0 and P2) to the function of addressing the program memory. While executing from external program memory, Ports 0 and 2 can be used simultaneously for read/write access to external data memory, but not for general-purpose I/O.

Though both external program memory and external data memory are accessed by some of the same pins, the two are completely independent of each other from a software point of view. For example, the chip can read/write external data memory while executing from external program memory.

Figure 45 shows a hardware configuration for accessing up to 64 Kbytes of external RAM. This interface is standard to any 8051 compatible MCU.

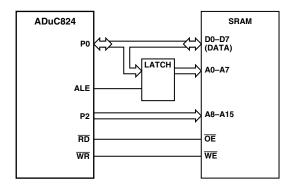


Figure 45. External Data Memory Interface (64 K Address Space)

If access to more than 64 Kbytes of RAM is desired, a feature unique to the ADuC824 allows addressing up to 16 Mbytes of external RAM simply by adding an additional latch as illustrated in Figure 46.

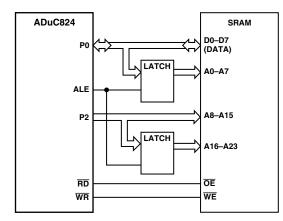


Figure 46. External Data Memory Interface (16 MBytes Address Space)

In either implementation, Port 0 (P0) serves as a multiplexed address/data bus. It emits the low byte of the data pointer (DPL) as an address, which is latched by a pulse of ALE prior to data being placed on the bus by the ADuC824 (write operation) or the SRAM (read operation). Port 2 (P2) provides the data pointer page byte (DPP) to be latched by ALE, followed by the data pointer high byte (DPH). If no latch is connected to P2, DPP is ignored by the SRAM, and the 8051 standard of 64 Kbyte external data memory access is maintained.

Detailed timing diagrams of external program and data memory read and write access can be found in the timing specification sections of this data sheet.

Power-On Reset Operation

External POR (power-on reset) circuitry must be implemented to drive the RESET pin of the ADuC824. The circuit must hold the RESET pin asserted (high) whenever the power supply (DV_{DD}) is below 2.5 V. Furthermore, V_{DD} must remain above 2.5 V for at least 10 ms before the RESET signal is deasserted (low) by which time the power supply must have reached at least a 2.7 V level. The external POR circuit must be operational down to 1.2 V or less. The timing diagram of Figure 47 illustrates this functionality under three separate events: power-up, brownout, and power-down. Notice that when RESET is asserted (high) it tracks the voltage on DV_{DD} .

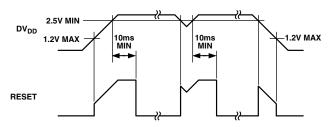


Figure 47. External POR Timing

The best way to implement an external POR function to meet the above requirements involves the use of a dedicated POR chip, such as the ADM809/ADM810 SOT-23 packaged PORs from Analog Devices. Recommended connection diagrams for both active-high ADM810 and active-low ADM809 PORs are shown in Figure 48 and Figure 49 respectively.

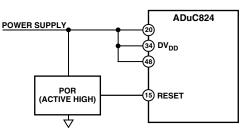


Figure 48. External Active High POR Circuit

Some active-low POR chips, such as the ADM809 can be used with a manual push-button as an additional reset source as illustrated by the dashed line connection in Figure 49.

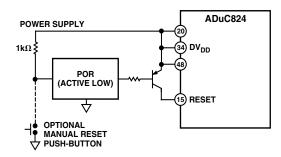


Figure 49. External Active Low POR Circuit

Power Supplies

The ADuC824's operational power supply voltage range is 2.7 V to 5.25 V. Although the guaranteed data sheet specifications are given only for power supplies within 2.7 V to 3.6 V or +5% of the nominal 5 V level, the chip will function equally well at any power supply level between 2.7 V and 5.25 V.

Separate analog and digital power supply pins (AV_{DD} and DV_{DD} respectively) allow AV_{DD} to be kept relatively free of noisy digital signals often present on the system DVDD line. In this mode the part can also operate with split supplies; that is, using different voltage supply levels for each supply. For example, this means that the system can be designed to operate with a DV_{DD} voltage level of 3 V while the AV_{DD} level can be at 5 V or vice versa if required. A typical split supply configuration is show in Figure 50.

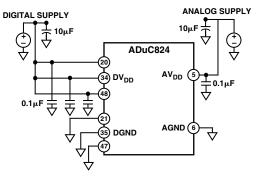


Figure 50. External Dual Supply Connections

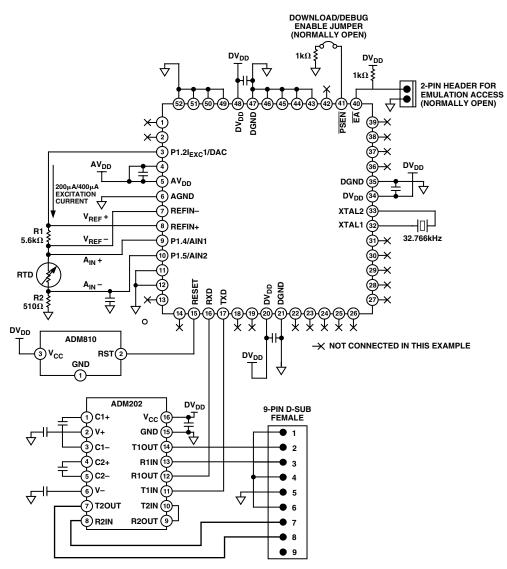


Figure 53. Typical System Configuration

comes with the single-pin emulator available from Accutron Limited (www.accutron.com), use a 2-pin 0.1-inch pitch "Friction Lock" header from Molex (www.molex.com) such as their part number 22-27-2021. Be sure to observe the polarity of this header. As represented in Figure 53, when the Friction Lock tab is at the right, the ground pin should be the lower of the two pins (when viewed from the top).

Enhanced-Hooks Emulation Mode

ADuC824 also supports enhanced-hooks emulation mode. An enhanced-hooks-based emulator is available from Metalink Corporation (www.metaice.com). No special hardware support for these emulators needs to be designed onto the board since these are "pod-style" emulators where users must replace the chip on their board with a header device that the emulator pod plugs into. The only hardware concern is then one of determining if adequate space is available for the emulator pod to fit into the system enclosure.

Typical System Configuration

A typical ADuC824 configuration is shown in Figure 53. It summarizes some of the hardware considerations discussed in the previous paragraphs.

Figure 53 also includes connections for a typical analog measurement application of the ADuC824, namely an interface to an RTD (Resistive Temperature Device). The arrangement shown is commonly referred to as a 4-wire RTD configuration.

Here, the on-chip excitation current sources are enabled to excite the sensor. An external differential reference voltage is generated by the current sourced through resistor R1. This current also flows directly through the RTD, which generates a differential voltage directly proportional to temperature. This differential voltage is routed directly to the positive and negative inputs of the primary ADC (AIN1, AIN2 respectively). A second external resistor, R2, is used to ensure that absolute analog input voltage on the negative input to the primary ADC stays within that specified for the ADuC824, i.e., AGND + 100 mV.

It should also be noted that variations in the excitation current do not affect the measurement system as the input voltage from the RTD and reference voltage across R1 vary ratiometrically with the excitation current. Resistor R1 must, however, have a low temperature coefficient to avoid errors in the reference voltage over temperature.