
Microchip Technology - PIC18F13K22-E/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 48MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 17

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 256 x 8

Voltage - Supply (Vcc/Vdd) 2.3V ~ 5.5V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 20-VFQFN Exposed Pad

Supplier Device Package 20-QFN (4x4)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f13k22-e-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f13k22-e-ml-4390191
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F1XK22
2.6 Internal Oscillator

The internal oscillator module contains two independent
oscillators which are:

• LFINTOSC: Low-Frequency Internal Oscillator

• HFINTOSC: High-Frequency Internal Oscillator

When operating with either oscillator, OSC1 will be an
I/O and OSC2 will be either an I/O or CLKOUT. The
CLKOUT function is selected by the FOSC bits of the
CONFIG1H Configuration register. When OSC2 is
configured as CLKOUT, the frequency at the pin is the
frequency of the Internal Oscillator divided by 4.

2.6.1 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is
a 31 kHz internal clock source. The LFINTOSC
oscillator is the clock source for:

• Power-up Timer

• Watchdog Timer

• Fail-Safe Clock Monitor

The LFINTOSC is enabled when any of the following
conditions are true:

• Power-up Timer is enabled (PWRTEN = 0)

• Watchdog Timer is enabled (WDTEN = 1)

• Watchdog Timer is enabled by software
(WDTEN = 0 and SWDTEN = 1)

• Fail-Safe Clock Monitor is enabled (FCMEM = 1)

• SCS1 = 1 and IRCF<2:0> = 000 and INTSRC = 0

• FOSC<3:0> selects the internal oscillator as the
primary clock and IRCF<2:0> = 000 and
INTSRC = 0

• IESO = 1 (Two-Speed Start-up) and
IRCF<2:0> = 000 and INTSRC = 0

2.6.2 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is
a precision oscillator that is factory-calibrated to
operate at 16 MHz. The output of the HFINTOSC
connects to a postscaler and a multiplexer (see
Figure 2-1). One of eight frequencies can be selected
using the IRCF<2:0> bits of the OSCCON register. The
following frequencies are available from the
HFINTOSC:

• 16 MHZ

• 8 MHZ

• 4 MHZ

• 2 MHZ

• 1 MHZ (Default after Reset)

• 500 kHz

• 250 kHz

• 31 kHz

The HFIOFS bit of the OSCCON register indicates
whether the HFINTOSC is stable.

The HFINTOSC is enabled if any of the following
conditions are true:

• SCS1 = 1 and IRCF<2:0>  000
• SCS1 = 1 and IRCF<2:0> = 000 and INTSRC = 1

• FOSC<3:0> selects the internal oscillator as the
primary clock and

- IRCF<2:0>  000 or

- IRCF<2:0> = 000 and INTSRC = 1

• IESO = 1 (Two-Speed Start-up) and

- IRCF<2:0>  000 or

- IRCF<2:0> = 000 and INTSRC = 1

• FCMEM = 1 (Fail-Safe Clock Monitoring) and

- IRCF<2:0>  000 or

- IRCF<2:0> = 000 and INTSRC = 1

Note 1: Selecting 31 kHz from the HFINTOSC
oscillator requires IRCF<2:0> = 000 and
the INTSRC bit of the OSCTUNE register
to be set. If the INTSRC bit is clear, the
system clock will come from the
LFINTOSC.

2: Additional adjustments to the frequency
of the HFINTOSC can made via the
OSCTUNE registers. See Register 2-3
for more details.
DS40001365F-page 16  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
FIGURE 3-7: USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)

Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to
the registers of the Access Bank.

2: The MOVFF instruction embeds the entire 12-bit address in the instruction.

Data Memory

Bank Select(2)

7 0
From Opcode(2)

0 0 0 0
000h

100h

200h

300h

F00h

E00h

FFFh

Bank 0

Bank 1

Bank 2

Bank 14

Bank 15

00h

FFh
00h

FFh
00h

FFh

00h

FFh
00h

FFh

00h

FFh

Bank 3
through
Bank 13

0 0 1 0 1 1 1 1 1 1 1 1

7 0
BSR(1)
 2009-2016 Microchip Technology Inc. DS40001365F-page 33

PIC18(L)F1XK22
4.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and
erasable during normal operation over the entire VDD

range.

A read from program memory is executed one byte at
a time. A write to program memory is executed on
blocks of 16 or 8 bytes at a time depending on the
specific device (See Table 4-1). Program memory is
erased in blocks of 64 bytes at a time. The difference
between the write and erase block sizes requires from
4 to 8 block writes to restore the contents of a single
block erase. A Bulk Erase operation can not be issued
from user code.

TABLE 4-1: WRITE/ERASE BLOCK SIZES

Writing or erasing program memory will cease
instruction fetches until the operation is complete. The
program memory cannot be accessed during the write
or erase, therefore, code cannot execute. An internal
programming timer terminates program memory writes
and erases.

A value written to program memory does not need to be
a valid instruction. Executing a program memory
location that forms an invalid instruction results in a
NOP.

4.1 Table Reads and Table Writes

In order to read and write program memory, there are
two operations that allow the processor to move bytes
between the program memory space and the data RAM:

• Table Read (TBLRD)

• Table Write (TBLWT)

The program memory space is 16-bit wide, while the
data RAM space is 8-bit wide. Table reads and table
writes move data between these two memory spaces
through an 8-bit register (TABLAT).

The table read operation retrieves one byte of data
directly from program memory and places it into the
TABLAT register. Figure 4-1 shows the operation of a
table read.

The table write operation stores one byte of data from the
TABLAT register into a write block holding register. The
procedure to write the contents of the holding registers
into program memory is detailed in Section 4.5 “Writing
to Flash Program Memory”. Figure 4-2 shows the
operation of a table write with program memory and data
RAM.

Table operations work with byte entities. Tables
containing data, rather than program instructions, are
not required to be word-aligned. Therefore, a table can
start and end at any byte address. If a table write is being
used to write executable code into program memory,
program instructions will need to be word-aligned.

FIGURE 4-1: TABLE READ OPERATION

Device
Write Block
Size (bytes)

Erase Block
Size (bytes)

PIC18(L)F13K22 8 64

PIC18(L)F14K22 16 64

Table Pointer(1)

Table Latch (8-bit)
Program Memory

TBLPTRH TBLPTRL
TABLAT

TBLPTRU

Instruction: TBLRD*

Note 1: Table Pointer register points to a byte in program memory.

Program Memory
(TBLPTR)
 2009-2016 Microchip Technology Inc. DS40001365F-page 45

PIC18(L)F1XK22
4.4 Erasing Flash Program Memory

The minimum erase block is 32 words or 64 bytes. Only
through the use of an external programmer, or through
ICSP control, can larger blocks of program memory be
bulk erased. Word erase in the Flash array is not
supported.

When initiating an erase sequence from the
Microcontroller itself, a block of 64 bytes of program
memory is erased. The Most Significant 16 bits of the
TBLPTR<21:6> point to the block being erased. The
TBLPTR<5:0> bits are ignored.

The EECON1 register commands the erase operation.
The EEPGD bit must be set to point to the Flash
program memory. The WREN bit must be set to enable
write operations. The FREE bit is set to select an erase
operation.

The write initiate sequence for EECON2, shown as
steps 4 through 6 in Section 4.4.1 “Flash Program
Memory Erase Sequence”, is used to guard against
accidental writes. This is sometimes referred to as a
long write.

A long write is necessary for erasing the internal
Flash. Instruction execution is halted during the long
write cycle. The long write is terminated by the internal
programming timer.

4.4.1 FLASH PROGRAM MEMORY
ERASE SEQUENCE

The sequence of events for erasing a block of internal
program memory is:

1. Load Table Pointer register with address of
block being erased.

2. Set the EECON1 register for the erase operation:

• set EEPGD bit to point to program memory;

• clear the CFGS bit to access program memory;

• set WREN bit to enable writes;

• set FREE bit to enable the erase.

3. Disable interrupts.

4. Write 55h to EECON2.

5. Write 0AAh to EECON2.

6. Set the WR bit. This will begin the block erase
cycle.

7. The CPU will stall for duration of the erase
(about 2 ms using internal timer).

8. Re-enable interrupts.

EXAMPLE 4-2: ERASING A FLASH PROGRAM MEMORY BLOCK

MOVLW CODE_ADDR_UPPER ; load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL

ERASE_BLOCK
BSF EECON1, EEPGD ; point to Flash program memory
BCF EECON1, CFGS ; access Flash program memory
BSF EECON1, WREN ; enable write to memory
BSF EECON1, FREE ; enable block Erase operation
BCF INTCON, GIE ; disable interrupts

Required MOVLW 55h
Sequence MOVWF EECON2 ; write 55h

MOVLW 0AAh
MOVWF EECON2 ; write 0AAh
BSF EECON1, WR ; start erase (CPU stall)
BSF INTCON, GIE ; re-enable interrupts
DS40001365F-page 50  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
4.5 Writing to Flash Program Memory

The programming block size is 8 or 16 bytes,
depending on the device (See Table 4-1). Word or byte
programming is not supported.

Table writes are used internally to load the holding
registers needed to program the Flash memory. There
are only as many holding registers as there are bytes
in a write block (See Table 4-1).

Since the Table Latch (TABLAT) is only a single byte,
the TBLWT instruction may need to be executed 8, or 16
times, depending on the device, for each programming
operation. All of the table write operations will
essentially be short writes because only the holding
registers are written. After all the holding registers have
been written, the programming operation of that block
of memory is started by configuring the EECON1
register for a program memory write and performing the
long write sequence.

The long write is necessary for programming the
internal Flash. Instruction execution is halted during a
long write cycle. The long write will be terminated by
the internal programming timer.

The EEPROM on-chip timer controls the write time.
The write/erase voltages are generated by an on-chip
charge pump, rated to operate over the voltage range
of the device.

FIGURE 4-5: TABLE WRITES TO FLASH PROGRAM MEMORY

4.5.1 FLASH PROGRAM MEMORY WRITE
SEQUENCE

The sequence of events for programming an internal
program memory location should be:

1. Read 64 bytes into RAM.

2. Update data values in RAM as necessary.

3. Load Table Pointer register with address being
erased.

4. Execute the block erase procedure.

5. Load Table Pointer register with address of first
byte being written.

6. Write the 8 or 16 byte block into the holding
registers with auto-increment.

7. Set the EECON1 register for the write operation:

• set EEPGD bit to point to program memory;

• clear the CFGS bit to access program memory;

• set WREN to enable byte writes.

8. Disable interrupts.

9. Write 55h to EECON2.

10. Write 0AAh to EECON2.

11. Set the WR bit. This will begin the write cycle.

12. The CPU will stall for duration of the write (about
2 ms using internal timer).

13. Re-enable interrupts.

14. Repeat steps 6 to 13 for each block until all 64
bytes are written.

15. Verify the memory (table read).

This procedure will require about 6 ms to update each
write block of memory. An example of the required code
is given in Example 4-3.

Note: The default value of the holding registers on
device Resets and after write operations is
FFh. A write of FFh to a holding register
does not modify that byte. This means that
individual bytes of program memory may
be modified, provided that the change does
not attempt to change any bit from a ‘0’ to a
‘1’. When modifying individual bytes, it is
not necessary to load all holding registers
before executing a long write operation.

TABLAT

TBLPTR = xxxxYY(1)TBLPTR = xxxx01TBLPTR = xxxx00

Write Register

TBLPTR = xxxx02

Program Memory

Holding Register Holding Register Holding Register Holding Register

8 8 8 8

Note 1: YY = x7 or xF for 8 or 16 byte write blocks, respectively.

Note: Before setting the WR bit, the Table
Pointer address needs to be within the
intended address range of the bytes in the
holding registers.
 2009-2016 Microchip Technology Inc. DS40001365F-page 51

PIC18(L)F1XK22
Example 6-3 shows the sequence to do a 16 x 16
unsigned multiplication. Equation 6-1 shows the
algorithm that is used. The 32-bit result is stored in four
registers (RES<3:0>).

EQUATION 6-1: 16 x 16 UNSIGNED
MULTIPLICATION
ALGORITHM

EXAMPLE 6-3: 16 x 16 UNSIGNED
MULTIPLY ROUTINE

Example 6-4 shows the sequence to do a 16 x 16
signed multiply. Equation 6-2 shows the algorithm
used. The 32-bit result is stored in four registers
(RES<3:0>). To account for the sign bits of the
arguments, the MSb for each argument pair is tested
and the appropriate subtractions are done.

EQUATION 6-2: 16 x 16 SIGNED
MULTIPLICATION
ALGORITHM

EXAMPLE 6-4: 16 x 16 SIGNED
MULTIPLY ROUTINE

RES3:RES0 = ARG1H:ARG1L  ARG2H:ARG2L
= (ARG1H  ARG2H  216) +

(ARG1H  ARG2L  28) +
(ARG1L  ARG2H  28) +
(ARG1L  ARG2L)

MOVF ARG1L, W
MULWF ARG2L ; ARG1L * ARG2L->

; PRODH:PRODL
MOVFF PRODH, RES1 ;
MOVFF PRODL, RES0 ;

;
MOVF ARG1H, W
MULWF ARG2H ; ARG1H * ARG2H->

; PRODH:PRODL
MOVFF PRODH, RES3 ;
MOVFF PRODL, RES2 ;

;
MOVF ARG1L, W
MULWF ARG2H ; ARG1L * ARG2H->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
MOVF ARG1H, W ;
MULWF ARG2L ; ARG1H * ARG2L->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

RES3:RES0 = ARG1H:ARG1L  ARG2H:ARG2L
= (ARG1H  ARG2H  216) +

(ARG1H  ARG2L  28) +
(ARG1L  ARG2H  28) +
(ARG1L  ARG2L) +
(-1  ARG2H<7>  ARG1H:ARG1L  216) +
(-1  ARG1H<7>  ARG2H:ARG2L  216)

MOVF ARG1L, W
MULWF ARG2L ; ARG1L * ARG2L ->

; PRODH:PRODL
MOVFF PRODH, RES1 ;
MOVFF PRODL, RES0 ;

;
MOVF ARG1H, W
MULWF ARG2H ; ARG1H * ARG2H ->

; PRODH:PRODL
MOVFF PRODH, RES3 ;
MOVFF PRODL, RES2 ;

;
MOVF ARG1L, W
MULWF ARG2H ; ARG1L * ARG2H ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
MOVF ARG1H, W ;
MULWF ARG2L ; ARG1H * ARG2L ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
BTFSS ARG2H, 7 ; ARG2H:ARG2L neg?
BRA SIGN_ARG1 ; no, check ARG1
MOVF ARG1L, W ;
SUBWF RES2 ;
MOVF ARG1H, W ;
SUBWFB RES3

;
SIGN_ARG1

BTFSS ARG1H, 7 ; ARG1H:ARG1L neg?
BRA CONT_CODE ; no, done
MOVF ARG2L, W ;
SUBWF RES2 ;
MOVF ARG2H, W ;
SUBWFB RES3

;
CONT_CODE

:

 2009-2016 Microchip Technology Inc. DS40001365F-page 59

PIC18(L)F1XK22
7.6 PIE Registers

The PIE registers contain the individual enable bits for
the peripheral interrupts. Due to the number of
peripheral interrupt sources, there are two Peripheral
Interrupt Enable registers (PIE1 and PIE2). When IPEN
= 0, the PEIE bit must be set to enable any of these
peripheral interrupts.

REGISTER 7-6: PIE1: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 1

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 Unimplemented: Read as ‘0’

bit 6 ADIE: A/D Converter Interrupt Enable bit

1 = Enables the A/D interrupt
0 = Disables the A/D interrupt

bit 5 RCIE: EUSART Receive Interrupt Enable bit

1 = Enables the EUSART receive interrupt
0 = Disables the EUSART receive interrupt

bit 4 TXIE: EUSART Transmit Interrupt Enable bit

1 = Enables the EUSART transmit interrupt
0 = Disables the EUSART transmit interrupt

bit 3 SSPIE: Master Synchronous Serial Port Interrupt Enable bit

1 = Enables the MSSP interrupt
0 = Disables the MSSP interrupt

bit 2 CCP1IE: CCP1 Interrupt Enable bit

1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt

bit 1 TMR2IE: TMR2 to PR2 Match Interrupt Enable bit

1 = Enables the TMR2 to PR2 match interrupt
0 = Disables the TMR2 to PR2 match interrupt

bit 0 TMR1IE: TMR1 Overflow Interrupt Enable bit

1 = Enables the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt
 2009-2016 Microchip Technology Inc. DS40001365F-page 67

PIC18(L)F1XK22
TABLE 8-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

ANSEL ANS7 ANS6 ANS5 ANS4 ANS3 ANS2 ANS1 ANS0 247

ANSELH — — — — ANS11 ANS10 ANS9 ANS8 247

CCP1CON P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 246

ECCP1AS ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 246

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RABIE TMR0IF INT0IF RABIF 244

INTCON2 RABPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RABIP 244

INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF 244

LATC LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 247

PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 247

PSTRCON — — — STRSYNC STRD STRC STRB STRA 246

VREFCON1 D1EN D1LPS DAC1OE --- D1PSS1 D1PSS0 --- D1NSS 246

SLRCON — — — — — SLRC SLRB SLRA 247

SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 245

TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 247

T1CON RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 245

T3CON RD16 — T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 246
 2009-2016 Microchip Technology Inc. DS40001365F-page 87

PIC18(L)F1XK22
14.3.4.5 Clock Synchronization and
the CKP bit

When the CKP bit is cleared, the SCL output is forced
to ‘0’. However, clearing the CKP bit will not assert the
SCL output low until the SCL output is already
sampled low. Therefore, the CKP bit will not assert the
SCL line until an external I2C master device has
already asserted the SCL line. The SCL output will
remain low until the CKP bit is set and all other
devices on the I2C bus have deasserted SCL. This
ensures that a write to the CKP bit will not violate the
minimum high time requirement for SCL (see
Figure 14-12).

FIGURE 14-12: CLOCK SYNCHRONIZATION TIMING

SDA

SCL

DX – 1DX

WR

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

SSPCON1

CKP

Master device
deasserts clock

Master device
asserts clock
 2009-2016 Microchip Technology Inc. DS40001365F-page 149

PIC18(L)F1XK22
FIGURE 14-25: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

SDA

SCL

BCLIF

SDA released

SDA line pulled low
by another source

Sample SDA. While SCL is high,
data doesn’t match what is driven

Bus collision has occurred.

Set bus collision
interrupt (BCLIF)

by the master.

by master

Data changes
while SCL = 0
DS40001365F-page 164  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
15.4.1.5 Synchronous Master Transmission
Set-up

1. Initialize the SPBRGH, SPBRG register pair and
the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 15.3 “EUSART
Baud Rate Generator (BRG)”).

2. Enable the synchronous master serial port by
setting bits SYNC, SPEN and CSRC. Set the
TRIS bits corresponding to the RX/DT and
TX/CK I/O pins.

3. Disable Receive mode by clearing bits SREN
and CREN.

4. Enable Transmit mode by setting the TXEN bit.

5. If 9-bit transmission is desired, set the TX9 bit.

6. If interrupts are desired, set the TXIE, GIE and
PEIE interrupt enable bits.

7. If 9-bit transmission is selected, the ninth bit
should be loaded in the TX9D bit.

8. Start transmission by loading data to the TXREG
register.

FIGURE 15-10: SYNCHRONOUS TRANSMISSION

FIGURE 15-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

 bit 0 bit 1 bit 7

Word 1

 bit 2 bit 0 bit 1 bit 7
RX/DT

Write to
TXREG Reg

TXIF bit
(Interrupt Flag)

TXEN bit
‘1’ ‘1’

 Word 2

TRMT bit

Write Word 1 Write Word 2

Note: Sync Master mode, SPBRG = 0, continuous transmission of two 8-bit words.

pin

TX/CK pin

TX/CK pin

(SCKP = 0)

(SCKP = 1)

RX/DT pin

TX/CK pin

Write to
TXREG reg

TXIF bit

TRMT bit

bit 0 bit 1 bit 2 bit 6 bit 7

TXEN bit
 2009-2016 Microchip Technology Inc. DS40001365F-page 191

PIC18(L)F1XK22
TABLE 15-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

BAUDCON ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 247

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RABIE TMR0IF INT0IF RABIF 245

IPR1 — ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 248

PIE1 — ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 248

PIR1 — ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 248

RCREG EUSART Receive Register 247

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 247

SPBRG EUSART Baud Rate Generator Register, Low Byte 247

SPBRGH EUSART Baud Rate Generator Register, High Byte 247

TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 247

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.
DS40001365F-page 194  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
17.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a
digital circuit by comparing two analog voltages and
providing a digital indication of their relative magnitudes.
The comparators are very useful mixed signal building
blocks because they provide analog functionality
independent of the program execution. The Analog
Comparator module includes the following features:

• Independent comparator control

• Programmable input selection

• Comparator output is available internally/externally

• Programmable output polarity

• Interrupt-on-Change

• Wake-up from Sleep

• Programmable Speed/Power optimization

• PWM shutdown

• Programmable and fixed voltage reference

17.1 Comparator Overview

A single comparator is shown in Figure 17-1 along with
the relationship between the analog input levels and
the digital output. When the analog voltage at VIN+ is
less than the analog voltage at VIN-, the output of the
comparator is a digital low level. When the analog
voltage at VIN+ is greater than the analog voltage at
VIN-, the output of the comparator is a digital high level.

FIGURE 17-1: SINGLE COMPARATOR

–

+VIN+

VIN-
Output

Output

VIN+
VIN-

Note: The black areas of the output of the
comparator represents the uncertainty
due to input offsets and response time.
DS40001365F-page 210  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
17.5 Operation During Sleep

The comparator, if enabled before entering Sleep mode,
remains active during Sleep. The additional current
consumed by the comparator is shown separately in
Section 26.0 “Electrical Specifications”. If the
comparator is not used to wake the device, power
consumption can be minimized while in Sleep mode by
turning off the comparator. Each comparator is turned off
by clearing the CxON bit of the CMxCON0 register.

A change to the comparator output can wake-up the
device from Sleep. To enable the comparator to wake
the device from Sleep, the CxIE bit of the PIE2 register
and the PEIE bit of the INTCON register must be set.
The instruction following the SLEEP instruction always
executes following a wake from Sleep. If the GIE bit of
the INTCON register is also set, the device will then
execute the Interrupt Service Routine.

17.6 Effects of a Reset

A device Reset forces the CMxCON0 and CM2CON1
registers to their Reset states. This forces both
comparators and the voltage references to their Off
states.
 2009-2016 Microchip Technology Inc. DS40001365F-page 215

PIC18(L)F1XK22
20.3 Register Definitions: FVR Control

REGISTER 20-1: VREFCON0: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0 R/W-0 R/W-0 R/W-1 U-0 U-0 U-0 U-0

FVR1EN FVR1ST FVR1S<1:0> — — — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 FVR1EN: Fixed Voltage Reference Enable bit
0 = Fixed Voltage Reference is disabled
1 = Fixed Voltage Reference is enabled

bit 6 FVR1ST: Fixed Voltage Reference Ready Flag bit
0 = Fixed Voltage Reference output is not ready or not enabled
1 = Fixed Voltage Reference output is ready for use

bit 5-4 FVR1S<1:0>: Fixed Voltage Reference Selection bits
00 = Fixed Voltage Reference Peripheral output is off
01 = Fixed Voltage Reference Peripheral output is 1x (1.024V)
10 = Fixed Voltage Reference Peripheral output is 2x (2.048V)(1)

11 = Fixed Voltage Reference Peripheral output is 4x (4.096V)(1)

bit 3-2 Reserved: Read as ‘0’. Maintain these bits clear.

bit 1-0 Unimplemented: Read as ‘0’.

Note 1: Fixed Voltage Reference output cannot exceed VDD.

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset

Values on
Page

VREFCON0 FVR1EN FVR1ST FVR1S<1:0> — — — — 232

Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used by the FVR module.
DS40001365F-page 232  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22

POP Pop Top of Return Stack

Syntax: POP

Operands: None

Operation: (TOS)  bit bucket

Status Affected: None

Encoding: 0000 0000 0000 0110

Description: The TOS value is pulled off the return
stack and is discarded. The TOS value
then becomes the previous value that
was pushed onto the return stack.
This instruction is provided to enable
the user to properly manage the return
stack to incorporate a software stack.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No
operation

POP TOS
value

No
operation

Example: POP
GOTO NEW

Before Instruction
TOS = 0031A2h
Stack (1 level down) = 014332h

After Instruction
TOS = 014332h
PC = NEW

PUSH Push Top of Return Stack

Syntax: PUSH

Operands: None

Operation: (PC + 2)  TOS

Status Affected: None

Encoding: 0000 0000 0000 0101

Description: The PC + 2 is pushed onto the top of
the return stack. The previous TOS
value is pushed down on the stack.
This instruction allows implementing a
software stack by modifying TOS and
then pushing it onto the return stack.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode PUSH
PC + 2 onto
return stack

No
operation

No
operation

Example: PUSH

Before Instruction
TOS = 345Ah
PC = 0124h

After Instruction
PC = 0126h
TOS = 0126h
Stack (1 level down) = 345Ah
DS40001365F-page 294  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22

RETURN Return from Subroutine

Syntax: RETURN {s}

Operands: s  [0,1]

Operation: (TOS)  PC,
if s = 1
(WS)  W,
(STATUSS)  Status,
(BSRS)  BSR,
PCLATU, PCLATH are unchanged

Status Affected: None

Encoding: 0000 0000 0001 001s

Description: Return from subroutine. The stack is
popped and the top of the stack (TOS)
is loaded into the program counter. If
‘s’= 1, the contents of the shadow
registers, WS, STATUSS and BSRS,
are loaded into their corresponding
registers, W, Status and BSR. If
‘s’ = 0, no update of these registers
occurs (default).

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No
operation

Process
Data

POP PC
from stack

No
operation

No
operation

No
operation

No
operation

Example: RETURN

After Instruction:
PC = TOS

RLCF Rotate Left f through Carry

Syntax: RLCF f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f<n>)  dest<n + 1>,
(f<7>)  C,
(C)  dest<0>

Status Affected: C, N, Z

Encoding: 0011 01da ffff ffff

Description: The contents of register ‘f’ are rotated
one bit to the left through the CARRY
flag. If ‘d’ is ‘0’, the result is placed in
W. If ‘d’ is ‘1’, the result is stored back
in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is
selected. If ‘a’ is ‘1’, the BSR is used to
select the GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f 95 (5Fh). See Section 24.2.3
“Byte-Oriented and Bit-Oriented
Instructions in Indexed Literal Offset
Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: RLCF REG, 0, 0

Before Instruction
REG = 1110 0110
C = 0

After Instruction
REG = 1110 0110
W = 1100 1100
C = 1

C register f
 2009-2016 Microchip Technology Inc. DS40001365F-page 297

PIC18(L)F1XK22

TABLE 26-4: PRIMARY RUN SUPPLY CURRENT

PIC18LF1XK22 Standard Operating Conditions (unless otherwise stated)

PIC18F1XK22 Standard Operating Conditions (unless otherwise stated)

Param.
No.

Device Characteristics Typ. Max. Units Conditions

D014 Supply Current (IDD)(1, 2, 4, 5) 0.20 0.32 mA -40°C to +125°C VDD = 1.8V FOSC = 1 MHz
(PRI_RUN,

EC Med Osc)
D014A 0.27 0.39 mA -40°C to +125°C VDD = 3.0V

D014 .20 .32 mA -40°C to +125°C VDD = 2.3V FOSC = 1 MHz
(PRI_RUN,

EC Med Osc)
D014A .27 .39 mA -40°C to +125°C VDD = 3.0V

D014B .30 .42 mA -40°C to +125°C VDD = 5.0V

D015 1.7 2.6 mA -40°C to +125°C VDD = 1.8V FOSC = 16 MHz
(PRI_RUN,

EC High Osc)
D015A 3.0 4.2 mA -40°C to +125°C VDD = 3.0V

D015 2.4 3.2 mA -40°C to +125°C VDD = 2.3V FOSC = 16 MHz
(PRI_RUN,

EC High Osc)
D015A 3.0 4.2 mA -40°C to +125°C VDD = 3.0V

D015B 3.3 4.4 mA -40°C to +125°C VDD = 5.0V

D016
11.5 14.0 mA -40°C to +125°C VDD = 3.0V

FOSC = 64 MHz
(PRI_RUN,

EC High Osc)

D016 11.9 14.4 mA -40°C to +125°C VDD = 2.3V FOSC = 64 MHz
(PRI_RUN,

EC High Osc)
D016A 12.1 14.6 mA -40°C to +125°C VDD = 5.0V

D017 2.1 2.9 mA -40°C to +125°C VDD = 1.8V FOSC = 4 MHz
16 MHz Internal

(PRI_RUN HS+PLL)
D017A 3.1 4.0 mA -40°C to +125°C VDD = 3.0V

D017 2.1 2.9 mA -40°C to +125°C VDD = 2.3V FOSC = 4 MHz
16 MHz Internal

(PRI_RUN HS+PLL)
D017A 3.1 4.0 mA -40°C to +125°C VDD = 3.0V

D017B 3.3 4.5 mA -40°C to +125°C VDD = 5.0V

D018
10 15 mA -40°C to +125°C VDD = 3.0V

FOSC = 16 MHz
64 MHz Internal

(PRI_RUN HS+PLL)

D018 12.4 15.4 mA -40°C to +125°C VDD = 3.0V FOSC = 16 MHz
64 MHz Internal

(PRI_RUN HS+PLL)
D018A 12.6 15.6 mA -40°C to +125°C VDD = 5.0V

* These parameters are characterized but not tested.
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from

rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin

loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact
on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be
extended by the formula IR = VDD/2REXT (mA) with REXT in k

4: FVR and BOR are disabled.
5: When a single temperature range is provided for a parameter, the specification applies to both industrial and extended

temperature devices.
DS40001365F-page 328  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
FIGURE 27-19: MEMLOW TYPICAL PRI_RUN IDD (EC)

FIGURE 27-20: MEMLOW TYPICAL PRI_RUN IDD (HS + PLL)

1 MHz

16 MHz

64 MHz

0

2

4

6

8

10

12

14

2.3 2.8 3.3 3.8 4.3 4.8

ID
D

 (
m

A
)

VDD (V)

64 MHz
(16 MHz Input)

6

8

10

12

14

16

ID
D

(m
A)

16 MHz
(4 MHz Input)

0

2

4

6

2.3 2.8 3.3 3.8 4.3 4.8
VDD (V)
DS40001365F-page 366  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS40001365F-page 378  2009-2016 Microchip Technology Inc.

