E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f13k22-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

0/I	20-Pin PDIP/SSOP/SOIC	20-Pin QFN	Analog	Comparator	Reference	ECCP	EUSART	MSSP	SR Latch	Timers	Interrupts	Pull-up	Basic
RA0	19	16	AN0	C1IN+	VREF-/ CVREF(DAC1OUT)	-	—	—	—	—	IOC/INT0	Y	PGD
RA1	18	15	AN1	C12IN0-	VREF+	_	—	—	—	_	IOC/INT1	Υ	PGC
RA2	17	14	AN2	C10UT	_	_	—	—	SRQ	TOCKI	IOC/INT2	Υ	_
RA3	4	1	—	—	—	_	—	—	—	—	IOC	Υ	MCLR/VPP
RA4	3	20	AN3	—	_		_	—	_	-	IOC	Υ	OSC2/CLKOUT
RA5	2	19	_	—	—	_	_	_	_	T13CKI	IOC	Υ	OSC1/CLKIN
RB4	13	10	AN10	_	—		_	SDI/SDA		—	IOC	Υ	—
RB5	12	9	AN11	—	—		RX/DT	—	-	_	IOC	Υ	_
RB6	11	8	_	—	_	_	—	SCL/SCK	_	—	IOC	Υ	_
RB7	10	7	—	—	_	_	TX/CK	_	_	_	IOC	Υ	_
RC0	16	13	AN4	C2IN+	_	—	—	—	—	—	—	—	_
RC1	15	12	AN5	C12IN1-	—				_			—	—
RC2	14	11	AN6	C12IN2-	—	P1D	—	—	—	—	—	—	—
RC3	7	4	AN7	C12IN3-	—	P1C			_	_	_	—	PGM
RC4	6	3	—	C2OUT	—	P1B	—	—	SRNQ	—	—	—	—
RC5	5	2	_	—	—	CCP1/P1A			_			—	—
RC6	8	5	AN8	—	—	—	_	SS	_	—	—	—	—
RC7	9	6	AN9	—	—			SDO			—	—	—
	1	18	_	—	—	—	_	_		—	—	—	Vdd
	20	17	—	—	—	—	—	—	—	—	—	—	Vss

TABLE 1:20-PIN ALLOCATION TABLE (PIC18(L)F1XK22)

4.4 Erasing Flash Program Memory

The minimum erase block is 32 words or 64 bytes. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

When initiating an erase sequence from the Microcontroller itself, a block of 64 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. The TBLPTR<5:0> bits are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

The write initiate sequence for EECON2, shown as steps 4 through 6 in **Section 4.4.1** "**Flash Program Memory Erase Sequence**", is used to guard against accidental writes. This is sometimes referred to as a long write.

A long write is necessary for erasing the internal Flash. Instruction execution is halted during the long write cycle. The long write is terminated by the internal programming timer.

4.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory is:

- 1. Load Table Pointer register with address of block being erased.
- 2. Set the EECON1 register for the erase operation:
 - set EEPGD bit to point to program memory;
 - · clear the CFGS bit to access program memory;
 - set WREN bit to enable writes;
 - set FREE bit to enable the erase.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write 0AAh to EECON2.
- 6. Set the WR bit. This will begin the block erase cycle.
- 7. The CPU will stall for duration of the erase (about 2 ms using internal timer).
- 8. Re-enable interrupts.

	MOVLW MOVWF MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH	; load TBLPTR with the base ; address of the memory block
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
ERASE_BLOC	K		
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable block Erase operation
	BCF	INTCON, GIE	; disable interrupts
Required	MOVLW	55h	
Sequence	MOVWF	EECON2	; write 55h
	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts

EXAMPLE 4-2: ERASING A FLASH PROGRAM MEMORY BLOCK

8.2 PORTB, TRISB and LATB Registers

PORTB is an 4-bit wide, bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., disable the output driver). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin).

The PORTB Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register read and write the latched output value for PORTB.

EXAMPLE 8-2: INITIALIZING PORTB

CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
CLRF	LATB	; Alternate method
		; to clear output
		; data latches
MOVLW	0F0h	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<7:4> as outputs

All PORTB pins are individually configurable as interrupt-on-change pins. Control bits in the IOCB register enable (when set) or disable (when clear) the interrupt function for each pin.

When set, the RABIE bit of the INTCON register enables interrupts on all pins which also have their corresponding IOCB bit set. When clear, the RABIE bit disables all interrupt-on-changes.

Only pins configured as inputs can cause this interrupt to occur (i.e., any pin configured as an output is excluded from the interrupt-on-change comparison).

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTB. The 'mismatch' outputs of the last read are OR'd together to set the PORTB Change Interrupt flag bit (RABIF) in the INTCON register.

This interrupt can wake the device from the Sleep mode, or any of the Idle modes. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB to clear the mismatch condition (except when PORTB is the source or destination of a MOVFF instruction).
- b) Clear the flag bit, RABIF.

A mismatch condition will continue to set the RABIF flag bit. Reading or writing PORTB will end the mismatch condition and allow the RABIF bit to be cleared. The latch holding the last read value is not affected by a MCLR nor Brown-out Reset. After either one of these Resets, the RABIF flag will continue to be set if a mismatch is present.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RABIF interrupt flag may not get set. Furthermore, since a read or write on a port affects all bits of that port, care must be taken when using multiple pins in Interrupt-on-Change mode. Changes on one pin may not be seen while servicing changes on another pin.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

All PORTB pins have individually controlled weak internal pull-up. When set, each bit of the WPUB register enables the corresponding pin pull-up. When cleared, the RABPU bit of the INTCON2 register enables pull-ups on all pins which also have their corresponding WPUB bit set. When set, the RABPU bit disables all weak pull-ups. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Note: On a Power-on Reset, RB<5:4> are configured as analog inputs by default and read as '0'.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	247
ANSELH	_	_	_	_	ANS11	ANS10	ANS9	ANS8	247
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	246
ECCP1AS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	246
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	244
INTCON2	RABPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RABIP	244
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	244
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	247
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	247
PSTRCON	_	_	_	STRSYNC	STRD	STRC	STRB	STRA	246
VREFCON1	D1EN	D1LPS	DAC10E		D1PSS1	D1PSS0		D1NSS	246
SLRCON	_	_	_	—	_	SLRC	SLRB	SLRA	247
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	245
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	247
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	245
T3CON	RD16	—	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	246

TABLE 8-6.	SUMMARY OF	REGISTERS	ASSOCIATED	WITH PORTC
IADLL 0-0.		ILCIOI LING		

8.4 **Port Analog Control**

Г

Some port pins are multiplexed with analog functions such as the Analog-to-Digital Converter and comparators. When these I/O pins are to be used as analog inputs it is necessary to disable the digital input buffer to avoid excessive current caused by improper biasing of the digital input. Individual control of the digital input buffers on pins which share analog functions is provided by the ANSEL and ANSELH registers. Setting an ANSx bit high will disable the associated digital input buffer and cause all reads of that pin to return '0' while allowing analog functions of that pin to operate correctly.

The state of the ANSx bits has no affect on digital output functions. A pin with the associated TRISx bit clear and ANSx bit set will still operate as a digital output but the Input mode will be analog.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
bit 7							bit 0
Lonordi							
Legena:	I		L 14				
R = Readab			DIt		nented bit, re		
-n = Value a	t POR	'1' = Bit is set		0° = Bit is cle	eared	x = Bit is unk	nown
hit 7	ANS7. RC3	Analog Select (Control hit				
Sit 1	1 = Digital in	put buffer of RC	3 is disabled				
	0 = Digital in	put buffer of RC	3 is enabled				
bit 6	ANS6: RC2	Analog Select (Control bit				
	1 = Digital in	put buffer of RC	2 is disabled				
	0 = Digital in	put buffer of RC	2 is enabled				
bit 5	ANS5: RC1	Analog Select (Control bit				
	1 = Digital in	put buffer of RC	1 is disabled				
	0 = Digital in	put buffer of RC	1 is enabled				
bit 4	ANS4: RC0	Analog Select (Control bit				
	1 = Digital in	put buffer of RC	0 is disabled				
	0 = Digital in	put buffer of RC	0 is enabled				
bit 3	ANS3: RA4	Analog Select (Control bit				
	1 = Digital in	put buffer of RA	4 is disabled				
h:1 0							
DIT 2	ANS2: RA2	Analog Select C					
	1 = Digital in	IPUT DUTTER OF RA	2 is enabled				
bit 1		Analog Soloct (Control bit				
	1 - Digital in	Analog Select C					
	1 = Digital in 0 = Digital in	put buffer of RA	1 is enabled				
bit 0	ANSO: RAD	Analog Select (Control bit				
	1 = Digital in	put buffer of RA	0 is disabled				

REGISTER 8-14: ANSEL: ANALOG SELECT REGISTE

0 = Digital input buffer of RA0 is enabled

- Note 1: The auto-shutdown condition is a level-based signal, not an edge-based signal. As long as the level is present, the auto-shutdown will persist.
 - 2: Writing to the ECCPASE bit is disabled while an auto-shutdown condition persists.
 - **3:** Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart) the PWM signal will always restart at the beginning of the next PWM period.
 - 4: Prior to an auto-shutdown event caused by a comparator output or INT pin event, a software shutdown can be triggered in firmware by setting the CCPxASE bit to a '1'. The Auto-Restart feature tracks the active status of a shutdown caused by a comparator output or INT pin event only, so if it is enabled at this time, it will immediately clear this bit and restart the ECCP module at the beginning of the next PWM period.

FIGURE 13-12: PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PRSEN = 0)

14.3.4.5 Clock Synchronization and the CKP bit

When the CKP bit is cleared, the SCL output is forced to '0'. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have deasserted SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 14-12).

14.3.17.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 14-26).
- b) SCL is sampled low before SDA is asserted low (Figure 14-27).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- · the Start condition is aborted,
- · the BCLIF flag is set and
- the MSSP module is reset to its Idle state (Figure 14-26).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 14-28). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to 0; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 14-28: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	_	—	—	PVCFG1	PVCFG0	NVCFG1	NVCFG0			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7-4	Unimplemented: Read as '0'									
bit 3-2	PVCFG<1:0>: Positive Voltage Reference select bit									
	00 = Positive voltage reference supplied internally by VDD.									
	10 = Positive voltage reference supplied internally through FVR. 11 = Reserved									
bit 1-0	NVCFG<1:0>	. Negative Vol	tage Reference	e select bit						
00 = Negative voltage reference supplied internally by Vss. 01 = Negative voltage reference supplied externally through VREF- pin. 10 = Reserved. 11 = Reserved.										

REGISTER 16-2: ADCON1: A/D CONTROL REGISTER 1

23.0 SPECIAL FEATURES OF THE CPU

PIC18(L)F1XK22 devices include several features intended to maximize reliability and minimize cost through elimination of external components. These are:

- · Oscillator Selection
- Resets:
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Code Protection
- ID Locations
- In-Circuit Serial Programming[™]

The oscillator can be configured for the application depending on frequency, power, accuracy and cost. All of the options are discussed in detail in **Section 2.0 "Oscillator Module"**.

A complete discussion of device Resets and interrupts is available in previous sections of this data sheet.

In addition to their Power-up and Oscillator Start-up Timers provided for Resets, PIC18(L)F1XK22 devices have a Watchdog Timer, which is either permanently enabled via the Configuration bits or software controlled (if configured as disabled).

The inclusion of an internal RC oscillator also provides the additional benefits of a Fail-Safe Clock Monitor (FSCM) and Two-Speed Start-up. FSCM provides for background monitoring of the peripheral clock and automatic switchover in the event of its failure. Two-Speed Start-up enables code to be executed almost immediately on start-up, while the primary clock source completes its start-up delays.

All of these features are enabled and configured by setting the appropriate Configuration register bits.

MOVFF	Move f to f		MO	/LB Move literal to low			w nibble in BSR				
Syntax:	MOVFF f _s ,f _d			Synt	ax:	MOVLB k	MOVLB k				
Operands:	$\begin{array}{l} 0 \leq f_s \leq 4095 \\ 0 \leq f_d \leq 4095 \end{array}$			Oper Oper	rands: ration:	$0 \le k \le 255$ k $\rightarrow BSR$	0 ≤ k ≤ 255 k → BSR				
Operation: Status Affected:	$(f_s) \rightarrow f_d$			Statu	is Affected:	None					
	None	1			Enco	oding:	0000	0001 00	000	kkkk	
Encoding: 1st word (source) 2nd word (destin.)	1100 ffff ffff ffff _s 1111 ffff ffff ffff _d			Desc	cription:	The 8-bit lite Bank Selec of BSR<7:4	The 8-bit literal 'k' is loaded into the Bank Select Register (BSR). The of BSR<7:4> always remains '0',				
moved to destination regist Location of source 'f _s ' can b in the 4096-byte data space FFFh) and location of destii can also be anywhere from			n register f _s ' can be a a space ((of destinat re from 00	'f _d '. anywhere 000h to tion 'f _d ' 00h to	Word Cycle Q C	ds: es: cycle Activity: Q1	1 1 Q2	Q3	·	Q4	
	FFFh. Either sou (a useful s	rce or des	stination ca uation).	an be W		Decode	Read literal 'k'	Process Data	Wri 'k'	te literal to BSR	
	MOVFF is transferrin peripheral buffer or a The MOVF PCL, TOS destination	particular g a data n register (s n I/O port F instructi U, TOSH n register.	ly useful for nemory loo such as the). on cannot or TOSL a	or cation to a e transmit use the as the	Exar	nple: Before Instruc BSR Reg After Instructio BSR Reg	MOVLB tion gister = 02 on gister = 05	5 h			
Words:	2										
Cycles:	2 (3)										
Q Cvcle Activity:											

,y Clivity

Q1	Q2	Q3	Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example: MOVFF REG1, REG2

Before Instruction REG1 REG2	=	33h 11h
After Instruction		
REG1 REG2	= =	33h 33h

MO\	/LW	Move lite	Move literal to W					
Synta	ax:	MOVLW	k					
Oper	ands:	$0 \le k \le 25$	5					
Oper	ation:	$k\toW$						
Statu	is Affected:	None						
Enco	oding:	0000	1110	kkk	k	kkkk		
Desc	ription:	The 8-bit I	The 8-bit literal 'k' is loaded into W.					
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3	6	Q4			
	Decode	Read literal 'k'	Proce Dat	ess a	Write to W			
Example:		MOVLW	5Ah					
	After Instruction	on						
	W	= 5Ah						

MOVWF	Move W	Move W to f				
Syntax:	MOVWF	f {,a}				
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5				
Operation:	$(W) \to f$					
Status Affected:	None					
Encoding:	0110	111a	ffff	ffff		
Description:	Move data Location 'f 256-byte b If 'a' is '0', If 'a' is '1', GPR bank If 'a' is '0' set is enab in Indexed mode whe Section 2 Bit-Orient Literal Off	i from W to can be a bank. the Access the BSR i (default). and the ex- bled, this i Literal Of enever f < 4.2.3 "By red Instru fset Mode	to register nywhere is Bank is s used to struction fset Addr 95 (5Fh). te-Orient ctions in s' for deta	"f". in the selected. select the nstruction operates essing See ed and Indexed ails.		
Words:	1	1				
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Proce Data	ess a re	Write egister 'f'		
Example:	MOVWF	REG, O				
Before Instruc	tion					
W	= 4Fh					
REG After Instructio	= FFh					
W REG	= 4Fh = 4Fh					

24.2.2 EXTENDED INSTRUCTION SET

ADD	ADDFSR Add Literal to FSR							
Synta	ax:	ADDFSR	f, k					
Oper	ands:	$0 \le k \le 63$						
		f ∈ [0, 1, 2]						
Oper	ation:	FSR(f) + k	$x \rightarrow FSR($	f)				
Statu	s Affected:	None	None					
Enco	oding:	1110	1000	ffkk kk		kkkk		
Desc	cription:	The 6-bit I contents c	The 6-bit literal 'k' is added to the contents of the FSR specified by 'f'.					
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1 Q2		Q3			Q4		
	Decode	Read	Proce	SS	۷	Vrite to		
		literal 'k'	Data	a		FSR		

ADDFSR 2, 23h

03FFh

0422h

Example:

Before Instruction FSR2

After Instruction

FSR2

=

=

ADDULNK	Add Literal to FSR2 and Return					
Syntax:	ADDULN	ADDULNK k				
Operands:	$0 \le k \le 63$					
Operation:	$FSR2 + k \rightarrow FSR2$,					
	$(TOS) \rightarrow PC$					
Status Affected:	None					
Encoding:	1110 1000 11k		11kk	kkkk		
Description.	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.					
Words:	1					
Cycles:	2					

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No	No	No	No
Operation	Operation	Operation	Operation

Example: ADDULNK 23h

Before Instru	ction	
FSR2	=	03FFh
PC	=	0100h
After Instruct	ion	
FSR2	=	0422h
PC	=	(TOS)

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

ADD	OWF	ADD W to Indexed (Indexed Literal Offset mode)						
Synta	ax:	ADDWF	[k] {,d}					
Operands:		$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$						
Oper	ation:	(W) + ((FS	SR2) + k) -	\rightarrow dest				
Statu	is Affected:	N, OV, C,	DC, Z					
Enco	oding:	0010	01d0	kkkk	kkkk			
Description:		The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).						
Word	ds:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	8	Q4			
	Decode	Read 'k'	Proce Dat	ess v a de	Write to estination			
Exan	nple:	ADDWF	[OFST]	, 0				
	Before Instruction	on						
W OFST FSR2 Contents of 0A2Ch		=	17h 2Ch 0A00h 20h	ı				
	After Instruction W Contents	=	37h					
	or UA2Ch	=	ZUN					

BSF Bit Set Indexed (Indexed Literal Offset mode)						ode)		
Synta	ax:	BSF [k]	, b					
Oper	ands:	$0 \le f \le 9$ $0 \le b \le 7$	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$					
Oper	ation:	$1 \rightarrow ((FS))$	SR2	<u>2)</u> + k) <b< td=""><td>></td><td></td><td></td></b<>	>			
Statu	s Affected:	None						
Enco	ding:	1000		bbb0	kkł	k	kkkk	
Description:		Bit 'b' of offset by	the the	register e value 'l	indica ‹', is s	ated et.	by FSR2,	
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2		Q3			Q4	
	Decode	Read register 'f	;	Proce Data	ess a	V de	Vrite to stination	
Exan	nple:	BSF	[FLAG_O	FST]	, 7		
Before Instructio FLAG_OFS FSR2 Contents of 0A0Ah		tion FST	= = =	0Ah 0A00h 55h	1			
	After Instructic Contents of 0A0Ah	n	=	D5h				

SETF	Set Index (Indexed	Set Indexed (Indexed Literal Offset mode)					
Syntax:	SETF [k]						
Operands:	$0 \leq k \leq 95$						
Operation:	$FFh \rightarrow ((FS))$	SR2) + k)					
Status Affected:	None						
Encoding:	0110	1000	kkk	k	kkkk		
Description:	The conten FSR2, offse	The contents of the register indicated by FSR2, offset by 'k', are set to FFh.					
Words:	1	1					
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read 'k'	Proce Data	ess a	r	Write egister		
Example:	SETF [OFST]					
Before Instruction							
OFST FSR2 Contents	= 2C = 0A	;h .00h					
of 0A2Ch	= 00	h					
Example: Before Instruct OFST FSR2 Contents of 0A2Ch After Instructio	Read 'k' SETF [ion = 2C = 0A = 00 n	OFST]	ess a	r	vvrite egister		

= FFh

Contents of 0A2Ch

DC CHA	DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)				
Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions	
		Internal Program Memory Programming Specifications ⁽¹⁾						
D110	VPP	Voltage on MCLR/VPP/RA3 pin	8	—	9	V	(Note 3, Note 4)	
D113	IDDP	Supply Current during Programming	—	—	10	mA		
		Data EEPROM Memory ⁽²⁾						
D120	ED	Byte Endurance	100K	—	—	E/W	-40°C to +85°C	
D121	VDRW	VDD for Read/Write	VDDMIN	—	VDDMAX	V	Using EECON to read/write	
D122	TDEW	Erase/Write Cycle Time	—	3	4	ms		
D123	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated	
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C	
D130		Program Flash Memory						
	Ер	Cell Endurance	10k	—	—	E/W	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D131	Vpr	VDD for Read	VDDMIN	_	VDDMAX	V		
D131A		Voltage on MCLR/VPP during Erase/Program	8.0	—	9.0	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D131B	VBE	VDD for Bulk Erase	2.7	—	VDDMAX	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D132	VPEW	VDD for Write or Row Erase	2.2 Vddmin		Vddmax Vddmax	V	PIC18LF1XK22 PIC18F1XK22	
D132A	IPPPGM	Current on MCLR/VPP during Erase/Write	_	1.0	—	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D132B	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D133	TPEW	Erase/Write cycle time	—	2.0	2.8	ms	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D134	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated	

TABLE 26-10: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: Refer to Section 5.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the ICD 2 VPP voltage must be placed between the ICD 2 and target system when programming or debugging with the ICD 2.

27.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "MAXIMUM", "Max.", "MINIMUM" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

Package Marking Information (Continued)

20-Lead SOIC (7.50 mm)

20-Lead QFN (4x4x0.9 mm)

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information.