
Microchip Technology - PIC18F13K22-E/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 48MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 17

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 256 x 8

Voltage - Supply (Vcc/Vdd) 2.3V ~ 5.5V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 20-SOIC (0.295", 7.50mm Width)

Supplier Device Package 20-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f13k22-e-so

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f13k22-e-so-4403408
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F1XK22
3.4 Data Addressing Modes

While the program memory can be addressed in only
one way – through the program counter – information
in the data memory space can be addressed in several
ways. For most instructions, the addressing mode is
fixed. Other instructions may use up to three modes,
depending on which operands are used and whether or
not the extended instruction set is enabled.

The addressing modes are:

• Inherent

• Literal

• Direct

• Indirect

An additional addressing mode, Indexed Literal Offset,
is available when the extended instruction set is
enabled (XINST Configuration bit = 1). Its operation is
discussed in greater detail in Section 3.5.1 “Indexed
Addressing with Literal Offset”.

3.4.1 INHERENT AND LITERAL
ADDRESSING

Many PIC18 control instructions do not need any
argument at all; they either perform an operation that
globally affects the device or they operate implicitly on
one register. This addressing mode is known as
Inherent Addressing. Examples include SLEEP, RESET
and DAW.

Other instructions work in a similar way but require an
additional explicit argument in the opcode. This is
known as Literal Addressing mode because they
require some literal value as an argument. Examples
include ADDLW and MOVLW, which respectively, add or
move a literal value to the W register. Other examples
include CALL and GOTO, which include a 20-bit
program memory address.

3.4.2 DIRECT ADDRESSING

Direct addressing specifies all or part of the source
and/or destination address of the operation within the
opcode itself. The options are specified by the
arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-
oriented instructions use some version of direct
addressing by default. All of these instructions include
some 8-bit literal address as their Least Significant
Byte. This address specifies either a register address in
one of the banks of data RAM (Section 3.3.3 “General

Purpose Register File”) or a location in the Access
Bank (Section 3.3.2 “Access Bank”) as the data
source for the instruction.

The Access RAM bit ‘a’ determines how the address is
interpreted. When ‘a’ is ‘1’, the contents of the BSR
(Section 3.3.1 “Bank Select Register (BSR)”) are
used with the address to determine the complete 12-bit
address of the register. When ‘a’ is ‘0’, the address is
interpreted as being a register in the Access Bank.
Addressing that uses the Access RAM is sometimes
also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire
12-bit address (either source or destination) in their
opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation’s results is determined
by the destination bit ‘d’. When ‘d’ is ‘1’, the results are
stored back in the source register, overwriting its
original contents. When ‘d’ is ‘0’, the results are stored
in the W register. Instructions without the ‘d’ argument
have a destination that is implicit in the instruction; their
destination is either the target register being operated
on or the W register.

3.4.3 INDIRECT ADDRESSING

Indirect addressing allows the user to access a location
in data memory without giving a fixed address in the
instruction. This is done by using File Select Registers
(FSRs) as pointers to the locations which are to be read
or written. Since the FSRs are themselves located in
RAM as Special File Registers, they can also be
directly manipulated under program control. This
makes FSRs very useful in implementing data
structures, such as tables and arrays in data memory.

The registers for indirect addressing are also
implemented with Indirect File Operands (INDFs) that
permit automatic manipulation of the pointer value with
auto-incrementing, auto-decrementing or offsetting
with another value. This allows for efficient code, using
loops, such as the example of clearing an entire RAM
bank in Example 3-5.

EXAMPLE 3-5: HOW TO CLEAR RAM
(BANK 1) USING
INDIRECT ADDRESSING

Note: The execution of some instructions in the
core PIC18 instruction set are changed
when the PIC18 extended instruction set is
enabled. See Section 3.5 “Data Memory
and the Extended Instruction Set” for
more information.

LFSR FSR0, 100h ;
NEXT CLRF POSTINC0 ; Clear INDF

; register then
; inc pointer

BTFSS FSR0H, 1 ; All done with
; Bank1?

BRA NEXT ; NO, clear next
CONTINUE ; YES, continue
DS40001365F-page 40  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
3.4.3.1 FSR Registers and the INDF
Operand

At the core of indirect addressing are three sets of
registers: FSR0, FSR1 and FSR2. Each represents a
pair of 8-bit registers, FSRnH and FSRnL. Each FSR
pair holds a 12-bit value, therefore the four upper bits
of the FSRnH register are not used. The 12-bit FSR
value can address the entire range of the data memory
in a linear fashion. The FSR register pairs, then, serve
as pointers to data memory locations.

Indirect addressing is accomplished with a set of
Indirect File Operands, INDF0 through INDF2. These
can be thought of as “virtual” registers: they are
mapped in the SFR space but are not physically
implemented. Reading or writing to a particular INDF
register actually accesses its corresponding FSR
register pair. A read from INDF1, for example, reads
the data at the address indicated by FSR1H:FSR1L.
Instructions that use the INDF registers as operands
actually use the contents of their corresponding FSR as
a pointer to the instruction’s target. The INDF operand
is just a convenient way of using the pointer.

Because indirect addressing uses a full 12-bit address,
data RAM banking is not necessary. Thus, the current
contents of the BSR and the Access RAM bit have no
effect on determining the target address.

3.4.3.2 FSR Registers and POSTINC,
POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair
also has four additional indirect operands. Like INDF,
these are “virtual” registers which cannot be directly
read or written. Accessing these registers actually
accesses the location to which the associated FSR
register pair points, and also performs a specific action
on the FSR value. They are:

• POSTDEC: accesses the location to which the
FSR points, then automatically decrements the
FSR by 1 afterwards

• POSTINC: accesses the location to which the
FSR points, then automatically increments the
FSR by 1 afterwards

• PREINC: automatically increments the FSR by 1,
then uses the location to which the FSR points in
the operation

• PLUSW: adds the signed value of the W register
(range of -127 to 128) to that of the FSR and uses
the location to which the result points in the
operation.

In this context, accessing an INDF register uses the
value in the associated FSR register without changing
it. Similarly, accessing a PLUSW register gives the
FSR value an offset by that in the W register; however,
neither W nor the FSR is actually changed in the
operation. Accessing the other virtual registers
changes the value of the FSR register.

FIGURE 3-8: INDIRECT ADDRESSING

FSR1H:FSR1L

07

Data Memory

000h

100h

200h

300h

F00h

E00h

FFFh

Bank 0

Bank 1

Bank 2

Bank 14

Bank 15

Bank 3
through
Bank 13

ADDWF, INDF1, 1

07

Using an instruction with one of the
indirect addressing registers as the
operand....

...uses the 12-bit address stored in
the FSR pair associated with that
register....

...to determine the data memory
location to be used in that operation.

In this case, the FSR1 pair contains
ECCh. This means the contents of
location ECCh will be added to that
of the W register and stored back in
ECCh.

x x x x 1 1 1 0 1 1 0 0 1 1 0 0
 2009-2016 Microchip Technology Inc. DS40001365F-page 41

PIC18(L)F1XK22
5.3 Reading the Data EEPROM
Memory

To read a data memory location, the user must write the
address to the EEADR register, clear the EEPGD
control bit of the EECON1 register and then set control
bit, RD. The data is available on the very next
instruction cycle; therefore, the EEDATA register can
be read by the next instruction. EEDATA will hold this
value until another read operation, or until it is written to
by the user (during a write operation).

The basic process is shown in Example 5-1.

5.4 Writing to the Data EEPROM
Memory

To write an EEPROM data location, the address must
first be written to the EEADR register and the data
written to the EEDATA register. The sequence in
Example 5-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly
followed (write 55h to EECON2, write 0AAh to
EECON2, then set WR bit) for each byte. It is strongly
recommended that interrupts be disabled during this
code segment.

Additionally, the WREN bit in EECON1 must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM due to unexpected code
execution (i.e., runaway programs). The WREN bit
should be kept clear at all times, except when updating
the EEPROM. The WREN bit is not cleared by
hardware.

After a write sequence has been initiated, EECON1,
EEADR and EEDATA cannot be modified. The WR bit
will be inhibited from being set unless the WREN bit is
set. Both WR and WREN cannot be set with the same
instruction.

At the completion of the write cycle, the WR bit is
cleared by hardware and the EEPROM Interrupt Flag
bit, EEIF, is set. The user may either enable this
interrupt or poll this bit. EEIF must be cleared by
software.

5.5 Write Verify

Depending on the application, good programming
practice may dictate that the value written to the
memory should be verified against the original value.
This should be used in applications where excessive
writes can stress bits near the specification limit.

EXAMPLE 5-1: DATA EEPROM READ

EXAMPLE 5-2: DATA EEPROM WRITE

MOVLW DATA_EE_ADDR ;
MOVWF EEADR ; Data Memory Address to read
BCF EECON1, EEPGD ; Point to DATA memory
BCF EECON1, CFGS ; Access EEPROM
BSF EECON1, RD ; EEPROM Read
MOVF EEDATA, W ; W = EEDATA

MOVLW DATA_EE_ADDR_LOW ;
MOVWF EEADR ; Data Memory Address to write
MOVLW DATA_EE_DATA ;
MOVWF EEDATA ; Data Memory Value to write
BCF EECON1, EEPGD ; Point to DATA memory
BCF EECON1, CFGS ; Access EEPROM
BSF EECON1, WREN ; Enable writes
BCF INTCON, GIE ; Disable Interrupts
MOVLW 55h ;

Required MOVWF EECON2 ; Write 55h
Sequence MOVLW 0AAh ;

MOVWF EECON2 ; Write 0AAh
BSF EECON1, WR ; Set WR bit to begin write
BSF INTCON, GIE ; Enable Interrupts

; User code execution
BCF EECON1, WREN ; Disable writes on write complete (EEIF set)
DS40001365F-page 56  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22

REGISTER 7-2: INTCON2: INTERRUPT CONTROL 2 REGISTER

R/W-1 R/W-1 R/W-1 R/W-1 U-0 R/W-1 U-0 R/W-1

RABPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RABIP

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 RABPU: PORTA and PORTB Pull-up Enable bit

1 = PORTA and PORTB pull-ups are disabled
0 = PORTA and PORTB pull-ups are enabled provided that the pin is an input and the corresponding

WPUA and WPUB bits are set.

bit 6 INTEDG0: External Interrupt 0 Edge Select bit

1 = Interrupt on rising edge
0 = Interrupt on falling edge

bit 5 INTEDG1: External Interrupt 1 Edge Select bit

1 = Interrupt on rising edge
0 = Interrupt on falling edge

bit 4 INTEDG2: External Interrupt 2 Edge Select bit

1 = Interrupt on rising edge
0 = Interrupt on falling edge

bit 3 Unimplemented: Read as ‘0’

bit 2 TMR0IP: TMR0 Overflow Interrupt Priority bit

1 = High priority
0 = Low priority

bit 1 Unimplemented: Read as ‘0’

bit 0 RABIP: RA and RB Port Change Interrupt Priority bit

1 = High priority
0 = Low priority

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit. User software might ensure the
appropriate interrupt flag bits are clear
prior to enabling an interrupt. This feature
allows for software polling.
 2009-2016 Microchip Technology Inc. DS40001365F-page 63

PIC18(L)F1XK22

REGISTER 7-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 U-0

OSCFIF C1IF C2IF EEIF BCLIF — TMR3IF —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 OSCFIF: Oscillator Fail Interrupt Flag bit

1 = Device oscillator failed, clock input has changed to HFINTOSC (must be cleared by software)
0 = Device clock operating

bit 6 C1IF: Comparator C1 Interrupt Flag bit

1 = Comparator C1 output has changed (must be cleared by software)
0 = Comparator C1 output has not changed

bit 5 C2IF: Comparator C2 Interrupt Flag bit

1 = Comparator C2 output has changed (must be cleared by software)
0 = Comparator C2 output has not changed

bit 4 EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit

1 = The write operation is complete (must be cleared by software)
0 = The write operation is not complete or has not been started

bit 3 BCLIF: Bus Collision Interrupt Flag bit

1 = A bus collision occurred (must be cleared by software)
0 = No bus collision occurred

bit 2 Unimplemented: Read as ‘0’

bit 1 TMR3IF: TMR3 Overflow Interrupt Flag bit

1 = TMR3 register overflowed (must be cleared by software)
0 = TMR3 register did not overflow

bit 0 Unimplemented: Read as ‘0’
DS40001365F-page 66  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
8.5 Port Slew Rate Control

The output slew rate of each port is programmable to
select either the standard transition rate or a reduced
transition rate of 0.1 times the standard to minimize
EMI. The reduced transition time is the default slew
rate for all ports.

REGISTER 8-16: SLRCON: SLEW RATE CONTROL REGISTER

U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-1 R/W-1

— — — — — SLRC SLRB SLRA

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-3 Unimplemented: Read as ‘0’

bit 2 SLRC: PORTC Slew Rate Control bit

1 = All outputs on PORTC slew at 0.1 times the standard rate
0 = All outputs on PORTC slew at the standard rate

bit 1 SLRB: PORTB Slew Rate Control bit

1 = All outputs on PORTB slew at 0.1 times the standard rate
0 = All outputs on PORTB slew at the standard rate

bit 0 SLRA: PORTA Slew Rate Control bit

1 = All outputs on PORTA slew at 0.1 times the standard rate(1)

0 = All outputs on PORTA slew at the standard rate

Note 1: The slew rate of RA4 defaults to standard rate when the pin is used as CLKOUT.
DS40001365F-page 90  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
EXAMPLE 10-1: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

TABLE 10-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

RTCinit
MOVLW 80h ; Preload TMR1 register pair
MOVWF TMR1H ; for 1 second overflow
CLRF TMR1L
MOVLW b’00001111’ ; Configure for external clock,
MOVWF T1CON ; Asynchronous operation, external oscillator
CLRF secs ; Initialize timekeeping registers
CLRF mins ;
MOVLW .12
MOVWF hours
BSF PIE1, TMR1IE ; Enable Timer1 interrupt
RETURN

RTCisr
BSF TMR1H, 7 ; Preload for 1 sec overflow
BCF PIR1, TMR1IF ; Clear interrupt flag
INCF secs, F ; Increment seconds
MOVLW .59 ; 60 seconds elapsed?
CPFSGT secs
RETURN ; No, done
CLRF secs ; Clear seconds
INCF mins, F ; Increment minutes
MOVLW .59 ; 60 minutes elapsed?
CPFSGT mins
RETURN ; No, done
CLRF mins ; clear minutes
INCF hours, F ; Increment hours
MOVLW .23 ; 24 hours elapsed?
CPFSGT hours
RETURN ; No, done
CLRF hours ; Reset hours
RETURN ; Done

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RABIE TMR0IF INT0IF RABIF 245

IPR1 — ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 248

PIE1 — ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 248

PIR1 — ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 248

TMR1H Timer1 Register, High Byte 246

TMR1L Timer1 Register, Low Byte 246

TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 248

T1CON RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 246

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.

Note 1: Unimplemented, read as’1’.
 2009-2016 Microchip Technology Inc. DS40001365F-page 99

PIC18(L)F1XK22
13.4.8 OPERATION IN POWER-MANAGED
MODES

In Sleep mode, all clock sources are disabled. Timer2
will not increment and the state of the module will not
change. If the ECCP pin is driving a value, it will
continue to drive that value. When the device wakes
up, it will continue from this state. If Two-Speed
Start-ups are enabled, the initial start-up frequency
from HFINTOSC and the postscaler may not be stable
immediately.

In PRI_IDLE mode, the primary clock will continue to
clock the ECCP module without change. In all other
power-managed modes, the selected power-managed
mode clock will clock Timer2. Other power-managed
mode clocks will most likely be different than the
primary clock frequency.

13.4.8.1 Operation with Fail-Safe
Clock Monitor

If the Fail-Safe Clock Monitor is enabled, a clock failure
will force the device into the RC_RUN Power-Managed
mode and the OSCFIF bit of the PIR2 register will be
set. The ECCP will then be clocked from the internal
oscillator clock source, which may have a different
clock frequency than the primary clock.

See the previous section for additional details.

13.4.9 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force
all ports to Input mode and the CCP registers to their
Reset states.

This forces the enhanced CCP module to reset to a
state compatible with the standard CCP module.

TABLE 13-3: REGISTERS ASSOCIATED WITH ECCP1 MODULE AND TIMER1 TO TIMER3

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

CCPR1H Capture/Compare/PWM Register 1, High Byte 247

CCPR1L Capture/Compare/PWM Register 1, Low Byte 247

CCP1CON P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 247

ECCP1AS ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 247

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RABIE TMR0IF INT0IF RABIF 245

IPR1 — ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 248

IPR2 OSCFIP C1IP C2IP EEIP BCLIP — TMR3IP — 248

PIE1 — ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 248

PIE2 OSCFIE C1IE C2IE EEIE BCLIE — TMR3IE — 248

PIR1 — ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 248

PIR2 OSCFIF C1IF C2IF EEIF BCLIF — TMR3IF — 248

PR2 Timer2 Period Register 246

PWM1CON PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDC0 247

RCON IPEN SBOREN — RI TO PD POR BOR 246

TMR1H Timer1 Register, High Byte 246

TMR1L Timer1 Register, Low Byte 246

TMR2 Timer2 Register 246

TMR3H Timer3 Register, High Byte 247

TMR3L Timer3 Register, Low Byte 247

TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 248

T1CON RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 246

T2CON — T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 246

T3CON RD16 — T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 247

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during ECCP operation.
DS40001365F-page 126  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
14.2.3 ENABLING SPI I/O

To enable the serial port, SSP Enable bit, SSPEN of the
SSPCON1 register, must be set. To reset or
reconfigure SPI mode, clear the SSPEN bit, reinitialize
the SSPCON registers and then set the SSPEN bit.
This configures the SDI, SDO, SCK and SS pins as
serial port pins. For the pins to behave as the serial port
function, some must have their data direction bits (in
the TRIS register) appropriately programmed as
follows:

• SDI is automatically controlled by the SPI module

• SDO must have corresponding TRIS bit cleared

• SCK (Master mode) must have corresponding
TRIS bit cleared

• SCK (Slave mode) must have corresponding
TRIS bit set

• SS must have corresponding TRIS bit set

Any serial port function that is not desired may be
overridden by programming the corresponding data
direction (TRIS) register to the opposite value.

14.2.4 TYPICAL CONNECTION

Figure 14-2 shows a typical connection between two
microcontrollers. The master controller (Processor 1)
initiates the data transfer by sending the SCK signal.
Data is shifted out of both shift registers on their
programmed clock edge and latched on the opposite
edge of the clock. Both processors should be
programmed to the same Clock Polarity (CKP), then
both controllers would send and receive data at the
same time. Whether the data is meaningful (or dummy
data) depends on the application software. This leads
to three scenarios for data transmission:

• Master sends data–Slave sends dummy data

• Master sends data–Slave sends data

• Master sends dummy data–Slave sends data

FIGURE 14-2: TYPICAL SPI MASTER/SLAVE CONNECTION

Serial Input Buffer
(SSPBUF)

Shift Register
(SSPSR)

MSb LSb

SDO

SDI

Processor 1

SCK

SPI Master SSPM<3:0> = 00xx

Serial Input Buffer
(SSPBUF)

Shift Register
(SSPSR)

LSbMSb

SDI

SDO

Processor 2

SCK

SPI Slave SSPM<3:0> = 010x

Serial Clock

SS
Slave Select

General I/O
(optional)
 2009-2016 Microchip Technology Inc. DS40001365F-page 131

PIC18(L)F1XK22
FIGURE 14-27: BUS COLLISION DURING START CONDITION (SCL = 0)

FIGURE 14-28: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

SDA

SCL

SEN
bus collision occurs. Set BCLIF.
SCL = 0 before SDA = 0,

Set SEN, enable Start
sequence if SDA = 1, SCL = 1

TBRG TBRG

SDA = 0, SCL = 1

BCLIF

S

SSPIF

Interrupt cleared
by software

bus collision occurs. Set BCLIF.
SCL = 0 before BRG time-out,

‘0’ ‘0’

‘0’‘0’

SDA

SCL

SEN

Set S
Less than TBRG

TBRG

SDA = 0, SCL = 1

BCLIF

S

SSPIF

S

Interrupts cleared
by softwareset SSPIF

SDA = 0, SCL = 1,

SCL pulled low after BRG
time-out

Set SSPIF

‘0’

SDA pulled low by other master.
Reset BRG and assert SDA.

Set SEN, enable START
sequence if SDA = 1, SCL = 1
DS40001365F-page 166  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
15.3 EUSART Baud Rate Generator
(BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit
timer that is dedicated to the support of both the
asynchronous and synchronous EUSART operation.
By default, the BRG operates in 8-bit mode. Setting the
BRG16 bit of the BAUDCON register selects 16-bit
mode.

The SPBRGH:SPBRG register pair determines the
period of the free running baud rate timer. In
Asynchronous mode the multiplier of the baud rate
period is determined by both the BRGH bit of the TXSTA
register and the BRG16 bit of the BAUDCON register. In
Synchronous mode, the BRGH bit is ignored.

Table 15-3 contains the formulas for determining the
baud rate. Example 15-1 provides a sample calculation
for determining the baud rate and baud rate error.

Typical baud rates and error values for various
asynchronous modes have been computed for your
convenience and are shown in Table 15-5. It may be
advantageous to use the high baud rate (BRGH = 1),
or the 16-bit BRG (BRG16 = 1) to reduce the baud rate
error. The 16-bit BRG mode is used to achieve slow
baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRG register
pair causes the BRG timer to be reset (or cleared). This
ensures that the BRG does not wait for a timer overflow
before outputting the new baud rate.

If the system clock is changed during an active receive
operation, a receive error or data loss may result. To
avoid this problem, check the status of the RCIDL bit to
make sure that the receive operation is Idle before
changing the system clock.

EXAMPLE 15-1: CALCULATING BAUD
RATE ERROR

TABLE 15-3: BAUD RATE FORMULAS

TABLE 15-4: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

For a device with FOSC of 16 MHz, desired baud rate
of 9600, Asynchronous mode, 8-bit BRG:

Solving for SPBRGH:SPBRG:

Desired Baud Rate
FOSC

64 [SPBRGH:SPBRG] 1+ 
---=

 25.042  25= =

Calculated Baud Rate
16000000

64 25 1+ 
---------------------------=

 9615=

Error
Calc. Baud Rate Desired Baud Rate –

Desired Baud Rate
--=

9615 9600– 

9600
---------------------------------- 0.16%= =

FOSC
X = 64* (Desired Baud Rate)

-1()
16,000,000

 = 64* 9600
-1()

Configuration Bits
BRG/EUSART Mode Baud Rate Formula

SYNC BRG16 BRGH

0 0 0 8-bit/Asynchronous FOSC/[64 (n+1)]

0 0 1 8-bit/Asynchronous
FOSC/[16 (n+1)]

0 1 0 16-bit/Asynchronous

0 1 1 16-bit/Asynchronous

FOSC/[4 (n+1)]1 0 x 8-bit/Synchronous

1 1 x 16-bit/Synchronous

Legend: x = Don’t care, n = value of SPBRGH, SPBRG register pair

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset Values

on page

BAUDCON ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 247

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 247

SPBRG EUSART Baud Rate Generator Register, Low Byte 247

SPBRGH EUSART Baud Rate Generator Register, High Byte 247

TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 247

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.
DS40001365F-page 182  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
TABLE 15-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

BAUDCON ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 247

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RABIE TMR0IF INT0IF RABIF 245

IPR1 — ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 248

PIE1 — ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 248

PIR1 — ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 248

RCREG EUSART Receive Register 247

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 247

SPBRG EUSART Baud Rate Generator Register, Low Byte 247

SPBRGH EUSART Baud Rate Generator Register, High Byte 247

TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 247

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.
DS40001365F-page 194  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22

REGISTER 17-2: CM2CON0: COMPARATOR 2 CONTROL REGISTER 0

R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

C2ON C2OUT C2OE C2POL C2SP C2R C2CH1 C2CH0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 C2ON: Comparator C2 Enable bit

1 = Comparator C2 is enabled
0 = Comparator C2 is disabled

bit 6 C2OUT: Comparator C2 Output bit

If C2POL = 1 (inverted polarity):
C2OUT = 0 when C2VIN+ > C2VIN-
C2OUT = 1 when C2VIN+ < C2VIN-
If C2POL = 0 (non-inverted polarity):
C2OUT = 1 when C2VIN+ > C2VIN-
C2OUT = 0 when C2VIN+ < C2VIN-

bit 5 C2OE: Comparator C2 Output Enable bit

1 = C2OUT is present on C2OUT pin(1)

0 = C2OUT is internal only

bit 4 C2POL: Comparator C2 Output Polarity Select bit

1 = C2OUT logic is inverted
0 = C2OUT logic is not inverted

bit 3 C2SP: Comparator C2 Speed/Power Select bit

1 = C2 operates in normal power, higher speed mode
0 = C2 operates in low-power, low-speed mode

bit 2 C2R: Comparator C2 Reference Select bits (noninverting input)

1 = C2VIN+ connects to C2VREF

0 = C2VIN+ connects to C2IN+ pin

bit 1-0 C2CH<1:0>: Comparator C2 Channel Select bits

00 = C12IN0- pin of C2 connects to C2VIN-
01 = C12IN1- pin of C2 connects to C2VIN-
10 = C12IN2- pin of C2 connects to C2VIN-
11 = C12IN3- pin of C2 connects to C2VIN-

Note 1: Comparator output requires the following three conditions: C2OE = 1, C2ON = 1 and corresponding port
TRIS bit = 0.
 2009-2016 Microchip Technology Inc. DS40001365F-page 217

PIC18(L)F1XK22
TABLE 17-2: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

ANSEL ANS7 ANS6 ANS5 ANS4 ANS3 ANS2 ANS1 ANS0 248

CM1CON0 C1ON C1OUT C1OE C1POL C1SP C1R C1CH1 C1CH0 248

CM2CON0 C2ON C2OUT C2OE C2POL C2SP C2R C2CH1 C2CH0 248

CM2CON1 MC1OUT MC2OUT C1RSEL C2RSEL C1HYS C2HYS C1SYNC C2SYNC 248

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RABIE TMR0IF INT0IF RABIF 245

IPR2 OSCFIP C1IP C2IP EEIP BCLIP — TMR3IP — 248

LATC LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 248

PIE2 OSCFIE C1IE C2IE EEIE BCLIE — TMR3IE — 248

PIR2 OSCFIF C1IF C2IF EEIF BCLIF — TMR3IF — 248

PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 248

VREFCON0 FVR1EN FVR1ST FVR1S<1:0> — — — — 247

VREFCON1 D1EN D1LPS DAC1OE --- D1PSS<1:0> — D1NSS 247

TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 248

TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 248

Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the comparator module.
Note 1: Unimplemented, read as ‘1’.
 2009-2016 Microchip Technology Inc. DS40001365F-page 221

PIC18(L)F1XK22
18.3 Sleep Mode

The Power-Managed Sleep mode in the
PIC18(L)F1XK22 devices is identical to the legacy
Sleep mode offered in all other PIC microcontroller
devices. It is entered by clearing the IDLEN bit of the
OSCCON register and executing the SLEEP instruction.
This shuts down the selected oscillator (Figure 18-1)
and all clock source status bits are cleared.

Entering the Sleep mode from either Run or Idle mode
does not require a clock switch. This is because no
clocks are needed once the controller has entered
Sleep. If the WDT is selected, the LFINTOSC source
will continue to operate. If the Timer1 oscillator is
enabled, it will also continue to run.

When a wake event occurs in Sleep mode (by interrupt,
Reset or WDT time-out), the device will not be clocked
until the clock source selected by the SCS<1:0> bits
becomes ready (see Figure 18-2), or it will be clocked
from the internal oscillator block if either the Two-Speed
Start-up or the Fail-Safe Clock Monitor are enabled
(see Section 23.0 “Special Features of the CPU”). In
either case, the OSTS bit is set when the primary clock
is providing the device clocks. The IDLEN and SCS bits
are not affected by the wake-up.

18.4 Idle Modes

The Idle modes allow the controller’s CPU to be
selectively shut down while the peripherals continue to
operate. Selecting a particular Idle mode allows users
to further manage power consumption.

If the IDLEN bit is set to a ‘1’ when a SLEEP instruction is
executed, the peripherals will be clocked from the clock
source selected by the SCS<1:0> bits; however, the CPU
will not be clocked. The clock source status bits are not
affected. Setting IDLEN and executing a SLEEP
instruction provides a quick method of switching from a
given Run mode to its corresponding Idle mode.

If the WDT is selected, the LFINTOSC source will
continue to operate. If the Timer1 oscillator is enabled,
it will also continue to run.

Since the CPU is not executing instructions, the only
exits from any of the Idle modes are by interrupt, WDT
time-out, or a Reset. When a wake event occurs, CPU
execution is delayed by an interval of TCSD while it
becomes ready to execute code. When the CPU
begins executing code, it resumes with the same clock
source for the current Idle mode. For example, when
waking from RC_IDLE mode, the internal oscillator
block will clock the CPU and peripherals (in other
words, RC_RUN mode). The IDLEN and SCS bits are
not affected by the wake-up.

While in any Idle mode or the Sleep mode, a WDT
time-out will result in a WDT wake-up to the Run mode
currently specified by the SCS<1:0> bits.

FIGURE 18-1: TRANSITION TIMING FOR ENTRY TO SLEEP MODE

FIGURE 18-2: TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL)

Q4Q3Q2

OSC1

Peripheral

Sleep

Program

Q1Q1

Counter

Clock

CPU
Clock

PC + 2PC

Q3 Q4 Q1 Q2

OSC1

Peripheral

Program PC

PLL Clock

Q3 Q4

Output

CPU Clock

Q1 Q2 Q3 Q4 Q1 Q2

Clock

Counter PC + 6PC + 4

Q1 Q2 Q3 Q4

Wake Event

Note1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.

TOST(1)
TPLL(1)

OSTS bit set

PC + 2
DS40001365F-page 224  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
24.2.3 BYTE-ORIENTED AND
BIT-ORIENTED INSTRUCTIONS IN
INDEXED LITERAL OFFSET MODE

In addition to eight new commands in the extended set,
enabling the extended instruction set also enables
Indexed Literal Offset Addressing mode (Section 3.5.1
“Indexed Addressing with Literal Offset”). This has
a significant impact on the way that many commands of
the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses
embedded in opcodes are treated as literal memory
locations: either as a location in the Access Bank (‘a’ =
0), or in a GPR bank designated by the BSR (‘a’ = 1).
When the extended instruction set is enabled and ‘a’ =
0, however, a file register argument of 5Fh or less is
interpreted as an offset from the pointer value in FSR2
and not as a literal address. For practical purposes, this
means that all instructions that use the Access RAM bit
as an argument – that is, all byte-oriented and bit-
oriented instructions, or almost half of the core PIC18
instructions – may behave differently when the
extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the
Access RAM are essentially remapped to their original
values. This may be useful in creating backward
compatible code. If this technique is used, it may be
necessary to save the value of FSR2 and restore it
when moving back and forth between C and assembly
routines in order to preserve the Stack Pointer. Users
must also keep in mind the syntax requirements of the
extended instruction set (see Section 24.2.3.1
“Extended Instruction Syntax with Standard PIC18
Commands”).

Although the Indexed Literal Offset Addressing mode
can be very useful for dynamic stack and pointer
manipulation, it can also be very annoying if a simple
arithmetic operation is carried out on the wrong
register. Users who are accustomed to the PIC18
programming must keep in mind that, when the
extended instruction set is enabled, register addresses
of 5Fh or less are used for Indexed Literal Offset
Addressing.

Representative examples of typical byte-oriented and
bit-oriented instructions in the Indexed Literal Offset
Addressing mode are provided on the following page to
show how execution is affected. The operand
conditions shown in the examples are applicable to all
instructions of these types.

24.2.3.1 Extended Instruction Syntax with
Standard PIC18 Commands

When the extended instruction set is enabled, the file
register argument, ‘f’, in the standard byte-oriented and
bit-oriented commands is replaced with the literal offset
value, ‘k’. As already noted, this occurs only when ‘f’ is
less than or equal to 5Fh. When an offset value is used,
it must be indicated by square brackets (“[]”). As with
the extended instructions, the use of brackets indicates
to the compiler that the value is to be interpreted as an
index or an offset. Omitting the brackets, or using a
value greater than 5Fh within brackets, will generate an
error in the MPASM™ assembler.

If the index argument is properly bracketed for Indexed
Literal Offset Addressing, the Access RAM argument is
never specified; it will automatically be assumed to be
‘0’. This is in contrast to standard operation (extended
instruction set disabled) when ‘a’ is set on the basis of
the target address. Declaring the Access RAM bit in
this mode will also generate an error in the MPASM
assembler.

The destination argument, ‘d’, functions as before.

In the latest versions of the MPASM assembler,
language support for the extended instruction set must
be explicitly invoked. This is done with either the
command line option, /y, or the PE directive in the
source listing.

24.2.4 CONSIDERATIONS WHEN
ENABLING THE EXTENDED
INSTRUCTION SET

It is important to note that the extensions to the
instruction set may not be beneficial to all users. In
particular, users who are not writing code that uses a
software stack may not benefit from using the
extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing
mode may create issues with legacy applications
written to the PIC18 assembler. This is because
instructions in the legacy code may attempt to address
registers in the Access Bank below 5Fh. Since these
addresses are interpreted as literal offsets to FSR2
when the instruction set extension is enabled, the
application may read or write to the wrong data
addresses.

When porting an application to the PIC18(L)F1XK22, it
is very important to consider the type of code. A large,
re-entrant application that is written in ‘C’ and would
benefit from efficient compilation will do well when
using the instruction set extensions. Legacy
applications that heavily use the Access Bank will most
likely not benefit from using the extended instruction
set.

Note: Enabling the PIC18 instruction set
extension may cause legacy applications
to behave erratically or fail entirely.
DS40001365F-page 312  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22

ADDWF
ADD W to Indexed
(Indexed Literal Offset mode)

Syntax: ADDWF [k] {,d}

Operands: 0  k  95
d  [0,1]

Operation: (W) + ((FSR2) + k)  dest

Status Affected: N, OV, C, DC, Z

Encoding: 0010 01d0 kkkk kkkk

Description: The contents of W are added to the
contents of the register indicated by
FSR2, offset by the value ‘k’.
If ‘d’ is ‘0’, the result is stored in W. If ‘d’
is ‘1’, the result is stored back in
register ‘f’ (default).

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read ‘k’ Process
Data

Write to
destination

Example: ADDWF [OFST] , 0

Before Instruction

W = 17h
OFST = 2Ch
FSR2 = 0A00h
Contents
of 0A2Ch = 20h

After Instruction

W = 37h
Contents
of 0A2Ch = 20h

BSF
Bit Set Indexed
(Indexed Literal Offset mode)

Syntax: BSF [k], b

Operands: 0  f  95
0  b  7

Operation: 1  ((FSR2) + k)

Status Affected: None

Encoding: 1000 bbb0 kkkk kkkk

Description: Bit ‘b’ of the register indicated by FSR2,
offset by the value ‘k’, is set.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: BSF [FLAG_OFST], 7

Before Instruction
FLAG_OFST = 0Ah
FSR2 = 0A00h
Contents
of 0A0Ah = 55h

After Instruction
Contents
of 0A0Ah = D5h

SETF
Set Indexed
(Indexed Literal Offset mode)

Syntax: SETF [k]

Operands: 0  k  95

Operation: FFh  ((FSR2) + k)

Status Affected: None

Encoding: 0110 1000 kkkk kkkk

Description: The contents of the register indicated by
FSR2, offset by ‘k’, are set to FFh.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read ‘k’ Process
Data

Write
register

Example: SETF [OFST]

Before Instruction
OFST = 2Ch
FSR2 = 0A00h
Contents
of 0A2Ch = 00h

After Instruction
Contents
of 0A2Ch = FFh
 2009-2016 Microchip Technology Inc. DS40001365F-page 313

PIC18(L)F1XK22
26.2 Standard Operating Conditions

The standard operating conditions for any device are defined as:

Operating Voltage: VDDMIN VDD VDDMAX

Operating Temperature: TA_MIN TA TA_MAX

VDD — Operating Supply Voltage(1)

PIC18LF1XK22

VDDMIN (Fosc  16 MHz).. +1.8V

VDDMIN (Fosc  20 MHz).. +2.0V

VDDMIN (Fosc  64 MHz).. +3.0V

VDDMAX .. +3.6V

PIC18F1XK22

VDDMIN (Fosc  20 MHz).. +2.3V

VDDMIN (Fosc  64 MHz).. +3.0V

VDDMAX .. +5.5V

TA — Operating Ambient Temperature Range

Industrial Temperature

TA_MIN .. -40°C

TA_MAX .. +85°C

Extended Temperature

TA_MIN .. -40°C

TA_MAX .. +125°C

Note 1: See Parameter D001, DC Characteristics: Supply Voltage.
DS40001365F-page 320  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
TABLE 26-13: OSCILLATOR PARAMETERS
Standard Operating Conditions (unless otherwise stated)

Param.
No.

Sym. Characteristic
Freq.

Tolerance
Min. Typ.† Max. Units Conditions

OS08 HFOSC Internal Calibrated HFINTOSC
Frequency(2)

2%
3%

—
—

16.0
16.0

—
—

MHz
MHz

0°C  TA  60°C
60°C  TA  +85°C

5% — 16.0 — MHz

OS09 LFOSC Internal LFINTOSC Frequency 0 — 31.25 — kHz

OS10* TIOSC ST HFINTOSC
Wake-up from Sleep Start-up Time

— — 5 8 s VDD = 2.0V, -40°C to +85°C

— — 5 8 s VDD = 3.0V, -40°C to +85°C

— — 5 8 s VDD = 5.0V, -40°C to +85°C

* These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are

not tested.
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on

characterization data for that particular oscillator type under standard operating conditions with the device executing
code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current
consumption. All devices are tested to operate at “min” values with an external clock applied to the OSC1 pin. When an
external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.

2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as
possible. 0.1 F and 0.01 F values in parallel are recommended.

3: By design.

TABLE 26-14: PLL CLOCK TIMING SPECIFICATIONS (VDD = 1.8V TO 5.5V)

Param.
No.

Sym. Characteristic Min. Typ.† Max. Units Conditions

F10 FOSC Oscillator Frequency Range 4 — 5 MHz VDD = 1.8-3.0V

4 — 16 MHz VDD = 3.0-5.0V,
-40°C to +85°C

4 — 12 MHz VDD = 3.0-5.0V,
125°C

F11 FSYS On-Chip VCO System Frequency 16 — 20 MHz VDD = 1.8-3.0V

16 — 64 MHz VDD = 3.0-5.0V,
-40°C to +85°C

16 — 48 MHz VDD = 3.0-5.0V,
125°C

F12 trc PLL Start-up Time (Lock Time) — — 2 ms

F13* CLK CLKOUT Stability (Jitter) -0.25 — +0.25 %

* These parameters are characterized but not tested.

† Data in “Typ” column is at 3V, 25C unless otherwise stated. These parameters are for design guidance
only and are not tested.
DS40001365F-page 342  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
APPENDIX A: REVISION HISTORY

Revision A (February 2009)

Original data sheet for PIC18(L)F1XK22 devices.

Revision B (04/2009)

Revised data sheet title; Revised Peripheral Features
section; Revised Table 3-1, Table 3-2; Revised
Example 15-1; Revised Table 21-4.

Revision C (10/2009)

Updated Table 1-1; Updated the “Electrical
Specifications” section (Figures 25-1 to 25-4; sub-
sections 25.1, 25.2, 25.3, 25.4, 25.5, 25.6, 25.7, 25.8,
Added Param No. OS09 to Table 25-2; Added Param
No. D003A and Note 1 to Table 25-12); Added graphs
to the “DC and AC Characteristics Graphs and Charts”
section; Other minor corrections.

Revision D (05/2010)

Revised Section 1.3 (deleted #2); Revised Figure 1-1;
Added Table 2-4; Removed register EEADRH from
Tables 3-1 and 3-2; Revised Section 5 (Data EEPROM
Memory); Updated Example 5-2 and Table 5-1;
Revised Section 13.4.4 (Enhanced PWM Auto-Shut-
down Mode); Added Note 4 below Register 13-2;
Revised Figure 16-1; Revised Equation 20-1;
Removed sub-section 20.1.3 (Output Clamped to VSS);
Updated Figure 20-1; Revised Tables 21-4 and Table
22-1; Updated Register 22-5, Figure 25-5, Table 25-2,
Table 25-8, Table 25-10 and Table 25-12; Updated the
Electrical Specification section; Other minor
corrections.

Revision E (10/2011)

Updated data sheet to new format; Updated the Pin
Diagrams; Updated the Electrical Specifications
section; Updated the Packaging Information section;
Updated Table B-1; Updated the Product Identification
System section; Other minor corrections.

Revision F (04/2016)

Updated Analog Features section on page 1; Updated
Tables 1-2, 3-2, 8-5, 8-6, 16-2 and 22-4; Added Note 3
to Tables 3-2, 8-1 and 8-2; Added Note 1 to Tables 9-1,
10-2, 12-1 and 17-2, and Register 8-4; Updated
Figures 3-7, 9-1 and 9-2; Updated Registers 13-2,
16-2, 19-1; Updated Section 1.1.2, 7.9 and 8.1;
Replaced chapter 20.0 (Voltage References) with
chapter 20.0 (Fixed Voltage Reference) and 21.0
(Digital-to-Analog Converter (DAC) Module); Updated
Chapter 26.0 (Electrical Specifications); Other minor
corrections.
DS40001365F-page 382  2009-2016 Microchip Technology Inc.

