
Microchip Technology - PIC18F13K22-I/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 17

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 256 x 8

Voltage - Supply (Vcc/Vdd) 2.3V ~ 5.5V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 20-VFQFN Exposed Pad

Supplier Device Package 20-QFN (4x4)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f13k22-i-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f13k22-i-ml-4387510
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F1XK22
2.12 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device
to continue operating should the external oscillator fail.
The FSCM can detect oscillator failure any time after
the Oscillator Start-up Timer (OST) has expired. The
FSCM is enabled by setting the FCMEN bit in the
CONFIG1H Configuration register. The FSCM is
applicable to all external oscillator modes (LP, XT, HS,
EC and RC).

FIGURE 2-6: FSCM BLOCK DIAGRAM

2.12.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by
comparing the external oscillator to the FSCM sample
clock. The sample clock is generated by dividing the
LFINTOSC by 64. See Figure 2-6. Inside the fail
detector block is a latch. The external clock sets the
latch on each falling edge of the external clock. The
sample clock clears the latch on each rising edge of the
sample clock. A failure is detected when an entire half-
cycle of the sample clock elapses before the primary
clock goes low.

2.12.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the
device clock to an internal clock source and sets the bit
flag OSCFIF of the PIR2 register. The OSCFIF flag will
generate an interrupt if the OSCFIE bit of the PIE2
register is also set. The device firmware can then take
steps to mitigate the problems that may arise from a
failed clock. The system clock will continue to be
sourced from the internal clock source until the device
firmware successfully restarts the external oscillator
and switches back to external operation. An automatic
transition back to the failed clock source will not occur.

The internal clock source chosen by the FSCM is
determined by the IRCF<2:0> bits of the OSCCON
register. This allows the internal oscillator to be
configured before a failure occurs.

2.12.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared by either one of the
following:

• Any Reset

• By toggling the SCS1 bit of the OSCCON register

Both of these conditions restart the OST. While the
OST is running, the device continues to operate from
the INTOSC selected in OSCCON. When the OST
times out, the Fail-Safe condition is cleared and the
device automatically switches over to the external clock
source. The Fail-Safe condition need not be cleared
before the OSCFIF flag is cleared.

2.12.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure
after the Oscillator Start-up Timer (OST) has expired.
The OST is used after waking up from Sleep and after
any type of Reset. The OST is not used with the EC or
RC Clock modes so that the FSCM will be active as
soon as the Reset or wake-up has completed. When
the FSCM is enabled, the Two-Speed Start-up is also
enabled. Therefore, the device will always be executing
code while the OST is operating.

External

LFINTOSC
÷ 64

S

R

Q

31 kHz
(~32 s)

488 Hz
(~2 ms)

Clock Monitor
Latch

Clock
Failure

Detected

Oscillator

Clock

Q

Sample Clock

Note: Due to the wide range of oscillator start-up
times, the Fail-Safe circuit is not active
during oscillator start-up (i.e., after exiting
Reset or Sleep). After an appropriate
amount of time, the user should check the
OSTS bit of the OSCCON register to verify
the oscillator start-up and that the system
clock switchover has successfully
completed.
DS40001365F-page 22  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
3.3.2 ACCESS BANK

While the use of the BSR with an embedded 8-bit
address allows users to address the entire range of
data memory, it also means that the user must always
ensure that the correct bank is selected. Otherwise,
data may be read from or written to the wrong location.
This can be disastrous if a GPR is the intended target
of an operation, but an SFR is written to instead.
Verifying and/or changing the BSR for each read or
write to data memory can become very inefficient.

To streamline access for the most commonly used data
memory locations, the data memory is configured with
an Access Bank, which allows users to access a
mapped block of memory without specifying a BSR.
The Access Bank consists of the first 96 bytes of
memory (00h-5Fh) in Bank 0 and the last 160 bytes of
memory (60h-FFh) in Block 15. The lower half is known
as the “Access RAM” and is composed of GPRs. This
upper half is also where the device’s SFRs are mapped.
These two areas are mapped contiguously in the
Access Bank and can be addressed in a linear fashion
by an 8-bit address (Figure 3-5 and Figure 3-6).

The Access Bank is used by core PIC18 instructions
that include the Access RAM bit (the ‘a’ parameter in
the instruction). When ‘a’ is equal to ‘1’, the instruction
uses the BSR and the 8-bit address included in the
opcode for the data memory address. When ‘a’ is ‘0’,
however, the instruction is forced to use the Access
Bank address map; the current value of the BSR is
ignored entirely.

Using this “forced” addressing allows the instruction to
operate on a data address in a single cycle, without
updating the BSR first. For 8-bit addresses of 60h and
above, this means that users can evaluate and operate
on SFRs more efficiently. The Access RAM below 60h
is a good place for data values that the user might need
to access rapidly, such as immediate computational
results or common program variables. Access RAM
also allows for faster and more code efficient context
saving and switching of variables.

The mapping of the Access Bank is slightly different
when the extended instruction set is enabled (XINST
Configuration bit = 1). This is discussed in more detail
in Section 3.5.3 “Mapping the Access Bank in
Indexed Literal Offset Mode”.

3.3.3 GENERAL PURPOSE REGISTER
FILE

PIC18 devices may have banked memory in the GPR
area. This is data RAM, which is available for use by all
instructions. GPRs start at the bottom of Bank 0
(address 000h) and grow upwards towards the bottom of
the SFR area. GPRs are not initialized by a Power-on
Reset and are unchanged on all other Resets.

3.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers
used by the CPU and peripheral modules for controlling
the desired operation of the device. These registers are
implemented as static RAM. SFRs start at the top of
data memory (FFFh) and extend downward to occupy
the top portion of Bank 15 (F60h to FFFh). A list of
these registers is given in Table 3-1 and Table 3-2.

The SFRs can be classified into two sets: those
associated with the “core” device functionality (ALU,
Resets and interrupts) and those related to the
peripheral functions. The Reset and Interrupt registers
are described in their respective chapters, while the
ALU’s STATUS register is described later in this
section. Registers related to the operation of a
peripheral feature are described in the chapter for that
peripheral.

The SFRs are typically distributed among the
peripherals whose functions they control. Unused SFR
locations are unimplemented and read as ‘0’s.
DS40001365F-page 34  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
4.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and
erasable during normal operation over the entire VDD

range.

A read from program memory is executed one byte at
a time. A write to program memory is executed on
blocks of 16 or 8 bytes at a time depending on the
specific device (See Table 4-1). Program memory is
erased in blocks of 64 bytes at a time. The difference
between the write and erase block sizes requires from
4 to 8 block writes to restore the contents of a single
block erase. A Bulk Erase operation can not be issued
from user code.

TABLE 4-1: WRITE/ERASE BLOCK SIZES

Writing or erasing program memory will cease
instruction fetches until the operation is complete. The
program memory cannot be accessed during the write
or erase, therefore, code cannot execute. An internal
programming timer terminates program memory writes
and erases.

A value written to program memory does not need to be
a valid instruction. Executing a program memory
location that forms an invalid instruction results in a
NOP.

4.1 Table Reads and Table Writes

In order to read and write program memory, there are
two operations that allow the processor to move bytes
between the program memory space and the data RAM:

• Table Read (TBLRD)

• Table Write (TBLWT)

The program memory space is 16-bit wide, while the
data RAM space is 8-bit wide. Table reads and table
writes move data between these two memory spaces
through an 8-bit register (TABLAT).

The table read operation retrieves one byte of data
directly from program memory and places it into the
TABLAT register. Figure 4-1 shows the operation of a
table read.

The table write operation stores one byte of data from the
TABLAT register into a write block holding register. The
procedure to write the contents of the holding registers
into program memory is detailed in Section 4.5 “Writing
to Flash Program Memory”. Figure 4-2 shows the
operation of a table write with program memory and data
RAM.

Table operations work with byte entities. Tables
containing data, rather than program instructions, are
not required to be word-aligned. Therefore, a table can
start and end at any byte address. If a table write is being
used to write executable code into program memory,
program instructions will need to be word-aligned.

FIGURE 4-1: TABLE READ OPERATION

Device
Write Block
Size (bytes)

Erase Block
Size (bytes)

PIC18(L)F13K22 8 64

PIC18(L)F14K22 16 64

Table Pointer(1)

Table Latch (8-bit)
Program Memory

TBLPTRH TBLPTRL
TABLAT

TBLPTRU

Instruction: TBLRD*

Note 1: Table Pointer register points to a byte in program memory.

Program Memory
(TBLPTR)
 2009-2016 Microchip Technology Inc. DS40001365F-page 45

PIC18(L)F1XK22

REGISTER 4-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

R/W-x R/W-x U-0 R/W-0 R/W-x R/W-0 R/S-0 R/S-0

EEPGD CFGS — FREE WRERR WREN WR RD

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit

S = Bit can be set by software, but not cleared U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 EEPGD: Flash Program or Data EEPROM Memory Select bit

1 = Access Flash program memory
0 = Access data EEPROM memory

bit 6 CFGS: Flash Program/Data EEPROM or Configuration Select bit

1 = Access Configuration registers
0 = Access Flash program or data EEPROM memory

bit 5 Unimplemented: Read as ‘0’

bit 4 FREE: Flash Row (Block) Erase Enable bit

1 = Erase the program memory block addressed by TBLPTR on the next WR command
(cleared by completion of erase operation)

0 = Perform write-only

bit 3 WRERR: Flash Program/Data EEPROM Error Flag bit(1)

1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal
operation, or an improper write attempt)

0 = The write operation completed

bit 2 WREN: Flash Program/Data EEPROM Write Enable bit

1 = Allows write cycles to Flash program/data EEPROM
0 = Inhibits write cycles to Flash program/data EEPROM

bit 1 WR: Write Control bit

1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.
(The operation is self-timed and the bit is cleared by hardware once write is complete.
The WR bit can only be set (not cleared) by software.)

0 = Write cycle to the EEPROM is complete

bit 0 RD: Read Control bit

1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared by hardware. The RD bit can only
be set (not cleared) by software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.)

0 = Does not initiate an EEPROM read

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the
error condition.
 2009-2016 Microchip Technology Inc. DS40001365F-page 47

PIC18(L)F1XK22
REGISTER 8-13: LATC: PORTC DATA LATCH REGISTER

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 LATC<7:0>: RB<7:0> Port I/O Output Latch Register bits
 2009-2016 Microchip Technology Inc. DS40001365F-page 85

PIC18(L)F1XK22
13.3 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is
constantly compared against either the TMR1 or TMR3
register pair value. When a match occurs, the CCP1
pin can be:

• Driven high

• Driven low

• Toggled (high-to-low or low-to-high)

• Remain unchanged (that is, reflects the state of
the I/O latch)

The action on the pin is based on the value of the mode
select bits (CCP1M<3:0>). At the same time, the
interrupt flag bit, CCP1IF, is set.

13.3.1 CCP PIN CONFIGURATION

The user must configure the CCP1 pin as an output by
clearing the appropriate TRIS bit.

13.3.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode
or Synchronized Counter mode if the CCP module is
using the compare feature. In Asynchronous Counter
mode, the compare operation will not work reliably.

13.3.3 SOFTWARE INTERRUPT MODE

When the Generate Software Interrupt mode is chosen
(CCP1M<3:0> = 1010), the CCP1 pin is not affected.
Only the CCP1IF interrupt flag is affected.

13.3.4 SPECIAL EVENT TRIGGER

The CCP module is equipped with a Special Event
Trigger. This is an internal hardware signal generated
in Compare mode to trigger actions by other modules.
The Special Event Trigger is enabled by selecting
the Compare Special Event Trigger mode
(CCP1M<3:0> = 1011).

The Special Event Trigger resets the timer register pair
for whichever timer resource is currently assigned as the
module’s time base. This allows the CCPR1 registers to
serve as a programmable period register for either timer.

The Special Event Trigger can also start an A/D
conversion. In order to do this, the A/D converter must
already be enabled.

FIGURE 13-2: COMPARE MODE OPERATION BLOCK DIAGRAM

Note: Clearing the CCP1CON register will force
the CCP1 compare output latch
(depending on device configuration) to the
default low level. This is not the PORTC
I/O DATA latch.

TMR1H TMR1L

TMR3H TMR3L

CCPR1H CCPR1L

Comparator

T3CCP1

Set CCP1IF

1

0

QS

R

Output
Logic

Special Event Trigger

CCP1 pin

TRIS

CCP1CON<3:0>

Output Enable4

(Timer1/Timer3 Reset, A/D Trigger)

Compare
Match
 2009-2016 Microchip Technology Inc. DS40001365F-page 109

PIC18(L)F1XK22
14.2.1 REGISTERS

The MSSP module has four registers for SPI mode
operation. These are:

• SSPCON1 – Control Register

• SSPSTAT – STATUS register

• SSPBUF – Serial Receive/Transmit Buffer

• SSPSR – Shift Register (Not directly accessible)

SSPCON1 and SSPSTAT are the control and STATUS
registers in SPI mode operation. The SSPCON1
register is readable and writable. The lower six bits of
the SSPSTAT are read-only. The upper two bits of the
SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in and
out. SSPBUF provides indirect access to the SSPSR
register. SSPBUF is the buffer register to which data
bytes are written, and from which data bytes are read.

In receive operations, SSPSR and SSPBUF together
create a double-buffered receiver. When SSPSR
receives a complete byte, it is transferred to SSPBUF
and the SSPIF interrupt is set.

During transmission, the SSPBUF is not
double-buffered. A write to SSPBUF will write to both
SSPBUF and SSPSR.

REGISTER 14-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0

SMP CKE D/A P S R/W UA BF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 SMP: Sample bit

SPI Master mode:
1 = Input data sampled at end of data output time
0 = Input data sampled at middle of data output time

SPI Slave mode:
SMP must be cleared when SPI is used in Slave mode.

bit 6 CKE: SPI Clock Select bit(1)

1 = Transmit occurs on transition from active to Idle clock state
0 = Transmit occurs on transition from Idle to active clock state

bit 5 D/A: Data/Address bit

Used in I2C mode only.

bit 4 P: Stop bit

Used in I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.

bit 3 S: Start bit

Used in I2C mode only.

bit 2 R/W: Read/Write Information bit

Used in I2C mode only.

bit 1 UA: Update Address bit

Used in I2C mode only.

bit 0 BF: Buffer Full Status bit (Receive mode only)

1 = Receive complete, SSPBUF is full
0 = Receive not complete, SSPBUF is empty

Note 1: Polarity of clock state is set by the CKP bit of the SSPCON1 register.
DS40001365F-page 128  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
FIGURE 14-27: BUS COLLISION DURING START CONDITION (SCL = 0)

FIGURE 14-28: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

SDA

SCL

SEN
bus collision occurs. Set BCLIF.
SCL = 0 before SDA = 0,

Set SEN, enable Start
sequence if SDA = 1, SCL = 1

TBRG TBRG

SDA = 0, SCL = 1

BCLIF

S

SSPIF

Interrupt cleared
by software

bus collision occurs. Set BCLIF.
SCL = 0 before BRG time-out,

‘0’ ‘0’

‘0’‘0’

SDA

SCL

SEN

Set S
Less than TBRG

TBRG

SDA = 0, SCL = 1

BCLIF

S

SSPIF

S

Interrupts cleared
by softwareset SSPIF

SDA = 0, SCL = 1,

SCL pulled low after BRG
time-out

Set SSPIF

‘0’

SDA pulled low by other master.
Reset BRG and assert SDA.

Set SEN, enable START
sequence if SDA = 1, SCL = 1
DS40001365F-page 166  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
17.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a
digital circuit by comparing two analog voltages and
providing a digital indication of their relative magnitudes.
The comparators are very useful mixed signal building
blocks because they provide analog functionality
independent of the program execution. The Analog
Comparator module includes the following features:

• Independent comparator control

• Programmable input selection

• Comparator output is available internally/externally

• Programmable output polarity

• Interrupt-on-Change

• Wake-up from Sleep

• Programmable Speed/Power optimization

• PWM shutdown

• Programmable and fixed voltage reference

17.1 Comparator Overview

A single comparator is shown in Figure 17-1 along with
the relationship between the analog input levels and
the digital output. When the analog voltage at VIN+ is
less than the analog voltage at VIN-, the output of the
comparator is a digital low level. When the analog
voltage at VIN+ is greater than the analog voltage at
VIN-, the output of the comparator is a digital high level.

FIGURE 17-1: SINGLE COMPARATOR

–

+VIN+

VIN-
Output

Output

VIN+
VIN-

Note: The black areas of the output of the
comparator represents the uncertainty
due to input offsets and response time.
DS40001365F-page 210  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
FIGURE 21-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

FIGURE 21-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

3
2

-t
o

-1
 M

U
X

DAC1R<4:0>

R

VREF-

D1NSS

R

R

R

R

R

R

32
DAC Output

CVREF/DAC1OUT

5

(to Comparators and
ADC Modules)

DAC1OE

VDD

VREF+

D1PSS<1:0>

2

D1EN

Steps

Digital-to-Analog Converter (DAC)

FVR1BUF1

R

VSRC-

VSRC+

VSS

D1LPS

11111

11110

00001

00000

1

0

Reserved 11
10

01
00

DAC1OUT Buffered DAC Output
+
–

DAC
Module

Voltage
Reference

Output
Impedance

R

PIC® MCU
DS40001365F-page 234  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
FIGURE 23-2: CODE-PROTECTED PROGRAM MEMORY FOR PIC18(L)F1XK22

Device

Address (from/to) 14K22 13K22

BBSIZ = 1 BBSIZ = 0 BBSIZ = 1 BBSIZ = 0

0000h
03FFh

Boot Block, 4 KB
CPB, WRTB, EBTRB

Boot Block, 2 KB
CPB, WRTB, EBTRB

Boot Block, 2 KB
CPB, WRTB, EBTRB

Boot Block, 1 KB CPB,
WRTB, EBTRB

0400h
07FFh

Block 0
1.512 KB

CP0, WRT0, EBTR00800h
0BFFh

Block 0
6 KB

CP0, WRT0, EBTR0

Block 0
2 KB

CP0, WRT0, EBTR00C00h
0FFFh

1000h
1FFFh

Block 0
4 KB

CP0, WRT0, EBTR0

Block 1
4 KB

CP1, WRT1, EBTR1

Block 1
4 KB

CP1, WRT1, EBTR1

2000h
3FFFh

Block 1
8 KB

CP1, WRT1, EBTR1

Block 1
8 KB

CP1, WRT1, EBTR1

Reads all ‘0’s Reads all ‘0’s

4000h
4FFEh

Reads all ‘0’s Reads all ‘0’s

5000h
5FFEh

6000h
6FFEh

7000h
7FFEh

8000h
8FFEh

9000h
9FFEh

A000h
AFFEh

B000h
BFFEh

C000h
CFFEh

D000h
DFFEh

E000h
EFFEh

F000h
FFFEh

H000h
HFFEh

Note: Refer to the test section for requirements on test memory mapping.
 2009-2016 Microchip Technology Inc. DS40001365F-page 261

PIC18(L)F1XK22
FIGURE 23-4: EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED

FIGURE 23-5: EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED

WRTB, EBTRB = 11

WRT0, EBTR0 = 10

WRT1, EBTR1 = 11

WRT2, EBTR2 = 11

WRT3, EBTR3 = 11

TBLRD*

TBLPTR = 0008FFh

PC = 003FFEh

Results: All table reads from external blocks to Blockn are disabled whenever EBTRn = 0.
TABLAT register returns a value of ‘0’.

Register Values Program Memory Configuration Bit Settings

000000h

0007FFh
000800h

001FFFh
002000h

003FFFh
004000h

005FFFh
006000h

007FFFh

WRTB, EBTRB = 11

WRT0, EBTR0 = 10

WRT1, EBTR1 = 11

WRT2, EBTR2 = 11

WRT3, EBTR3 = 11

TBLRD*

TBLPTR = 0008FFh

PC = 001FFEh

Register Values Program Memory Configuration Bit Settings

Results: Table reads permitted within Blockn, even when EBTRBn = 0.
TABLAT register returns the value of the data at the location TBLPTR.

000000h

0007FFh
000800h

001FFFh
002000h

003FFFh
004000h

005FFFh
006000h

007FFFh
 2009-2016 Microchip Technology Inc. DS40001365F-page 263

PIC18(L)F1XK22

DECFSZ Decrement f, skip if 0

Syntax: DECFSZ f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) – 1  dest,
skip if result = 0

Status Affected: None

Encoding: 0010 11da ffff ffff

Description: The contents of register ‘f’ are
decremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is ‘0’, the next instruction,
which is already fetched, is discarded
and a NOP is executed instead, making
it a 2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE DECFSZ CNT, 1, 1
 GOTO LOOP
CONTINUE

Before Instruction
PC = Address (HERE)

After Instruction
CNT = CNT - 1
If CNT = 0;

PC = Address (CONTINUE)
If CNT  0;

PC = Address (HERE + 2)

DCFSNZ Decrement f, skip if not 0

Syntax: DCFSNZ f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) – 1  dest,
skip if result  0

Status Affected: None

Encoding: 0100 11da ffff ffff

Description: The contents of register ‘f’ are
decremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is not ‘0’, the next
instruction, which is already fetched, is
discarded and a NOP is executed
instead, making it a 2-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE DCFSNZ TEMP, 1, 0
ZERO :
NZERO :

Before Instruction
TEMP = ?

After Instruction
TEMP = TEMP – 1,
If TEMP = 0;

PC = Address (ZERO)
If TEMP  0;

PC = Address (NZERO)
 2009-2016 Microchip Technology Inc. DS40001365F-page 285

PIC18(L)F1XK22

INCFSZ Increment f, skip if 0

Syntax: INCFSZ f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) + 1  dest,
skip if result = 0

Status Affected: None

Encoding: 0011 11da ffff ffff

Description: The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is ‘0’, the next instruction,
which is already fetched, is discarded
and a NOP is executed instead, making
it a 2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE INCFSZ CNT, 1, 0
NZERO :
ZERO :

Before Instruction
PC = Address (HERE)

After Instruction
CNT = CNT + 1
If CNT = 0;
PC = Address (ZERO)
If CNT  0;
PC = Address (NZERO)

INFSNZ Increment f, skip if not 0

Syntax: INFSNZ f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) + 1  dest,
skip if result  0

Status Affected: None

Encoding: 0100 10da ffff ffff

Description: The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is not ‘0’, the next
instruction, which is already fetched, is
discarded and a NOP is executed
instead, making it a 2-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE INFSNZ REG, 1, 0
ZERO
NZERO

Before Instruction
PC = Address (HERE)

After Instruction
REG = REG + 1
If REG  0;
PC = Address (NZERO)
If REG = 0;
PC = Address (ZERO)
 2009-2016 Microchip Technology Inc. DS40001365F-page 287

PIC18(L)F1XK22

MOVFF Move f to f

Syntax: MOVFF fs,fd

Operands: 0  fs  4095
0  fd  4095

Operation: (fs)  fd

Status Affected: None

Encoding:
1st word (source)
2nd word (destin.)

1100
1111

ffff
ffff

ffff
ffff

ffffs
ffffd

Description: The contents of source register ‘fs’ are
moved to destination register ‘fd’.
Location of source ‘fs’ can be anywhere
in the 4096-byte data space (000h to
FFFh) and location of destination ‘fd’
can also be anywhere from 000h to
FFFh.
Either source or destination can be W
(a useful special situation).
MOVFF is particularly useful for
transferring a data memory location to a
peripheral register (such as the transmit
buffer or an I/O port).
The MOVFF instruction cannot use the
PCL, TOSU, TOSH or TOSL as the
destination register.

Words: 2

Cycles: 2 (3)

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

(src)

Process
Data

No
operation

Decode No
operation

No dummy
read

No
operation

Write
register ‘f’

(dest)

Example: MOVFF REG1, REG2

Before Instruction
REG1 = 33h
REG2 = 11h

After Instruction
REG1 = 33h
REG2 = 33h

MOVLB Move literal to low nibble in BSR

Syntax: MOVLB k

Operands: 0  k  255

Operation: k  BSR

Status Affected: None

Encoding: 0000 0001 0000 kkkk

Description: The 8-bit literal ‘k’ is loaded into the
Bank Select Register (BSR). The value
of BSR<7:4> always remains ‘0’,
regardless of the value of k7:k4.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write literal
‘k’ to BSR

Example: MOVLB 5

Before Instruction
BSR Register = 02h

After Instruction
BSR Register = 05h
DS40001365F-page 290  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22

MOVLW Move literal to W

Syntax: MOVLW k

Operands: 0  k  255

Operation: k  W

Status Affected: None

Encoding: 0000 1110 kkkk kkkk

Description: The 8-bit literal ‘k’ is loaded into W.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to W

Example: MOVLW 5Ah

After Instruction

W = 5Ah

MOVWF Move W to f

Syntax: MOVWF f {,a}

Operands: 0  f  255
a  [0,1]

Operation: (W)  f

Status Affected: None

Encoding: 0110 111a ffff ffff

Description: Move data from W to register ‘f’.
Location ‘f’ can be anywhere in the
256-byte bank.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: MOVWF REG, 0

Before Instruction

W = 4Fh
REG = FFh

After Instruction

W = 4Fh
REG = 4Fh
 2009-2016 Microchip Technology Inc. DS40001365F-page 291

PIC18(L)F1XK22

RETFIE Return from Interrupt

Syntax: RETFIE {s}

Operands: s  [0,1]

Operation: (TOS)  PC,
1  GIE/GIEH or PEIE/GIEL,
if s = 1
(WS)  W,
(STATUSS)  Status,
(BSRS)  BSR,
PCLATU, PCLATH are unchanged.

Status Affected: GIE/GIEH, PEIE/GIEL

Encoding: 0000 0000 0001 000s

Description: Return from interrupt. Stack is popped
and Top-of-Stack (TOS) is loaded into
the PC. Interrupts are enabled by
setting either the high or low priority
global interrupt enable bit. If ‘s’ = 1, the
contents of the shadow registers, WS,
STATUSS and BSRS, are loaded into
their corresponding registers, W,
Status and BSR. If ‘s’ = 0, no update of
these registers occurs (default).

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No
operation

No
operation

POP PC
from stack

Set GIEH or
GIEL

No
operation

No
operation

No
operation

No
operation

Example: RETFIE 1

After Interrupt
PC = TOS
W = WS
BSR = BSRS
Status = STATUSS
GIE/GIEH, PEIE/GIEL = 1

RETLW Return literal to W

Syntax: RETLW k

Operands: 0  k  255

Operation: k  W,
(TOS)  PC,
PCLATU, PCLATH are unchanged

Status Affected: None

Encoding: 0000 1100 kkkk kkkk

Description: W is loaded with the 8-bit literal ‘k’. The
program counter is loaded from the top
of the stack (the return address). The
high address latch (PCLATH) remains
unchanged.

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

POP PC
from stack,
Write to W

No
operation

No
operation

No
operation

No
operation

Example:

 CALL TABLE ; W contains table
 ; offset value
 ; W now has
 ; table value
 :
TABLE

ADDWF PCL ; W = offset
RETLW k0 ; Begin table
RETLW k1 ;

 :
 :

RETLW kn ; End of table

Before Instruction
W = 07h

After Instruction
W = value of kn
DS40001365F-page 296  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22

RETURN Return from Subroutine

Syntax: RETURN {s}

Operands: s  [0,1]

Operation: (TOS)  PC,
if s = 1
(WS)  W,
(STATUSS)  Status,
(BSRS)  BSR,
PCLATU, PCLATH are unchanged

Status Affected: None

Encoding: 0000 0000 0001 001s

Description: Return from subroutine. The stack is
popped and the top of the stack (TOS)
is loaded into the program counter. If
‘s’= 1, the contents of the shadow
registers, WS, STATUSS and BSRS,
are loaded into their corresponding
registers, W, Status and BSR. If
‘s’ = 0, no update of these registers
occurs (default).

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No
operation

Process
Data

POP PC
from stack

No
operation

No
operation

No
operation

No
operation

Example: RETURN

After Instruction:
PC = TOS

RLCF Rotate Left f through Carry

Syntax: RLCF f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f<n>)  dest<n + 1>,
(f<7>)  C,
(C)  dest<0>

Status Affected: C, N, Z

Encoding: 0011 01da ffff ffff

Description: The contents of register ‘f’ are rotated
one bit to the left through the CARRY
flag. If ‘d’ is ‘0’, the result is placed in
W. If ‘d’ is ‘1’, the result is stored back
in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is
selected. If ‘a’ is ‘1’, the BSR is used to
select the GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f 95 (5Fh). See Section 24.2.3
“Byte-Oriented and Bit-Oriented
Instructions in Indexed Literal Offset
Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: RLCF REG, 0, 0

Before Instruction
REG = 1110 0110
C = 0

After Instruction
REG = 1110 0110
W = 1100 1100
C = 1

C register f
 2009-2016 Microchip Technology Inc. DS40001365F-page 297

PIC18(L)F1XK22
FIGURE 26-21: I2C BUS START/STOP BITS TIMING

TABLE 26-26: SPI MODE REQUIREMENTS

Param.
No.

Symbol Characteristic Min. Typ.† Max. Units Conditions

SP70* TSSL2SCH,
TSSL2SCL

SS to SCK or SCK input TCY — — ns

SP71* TSCH SCK input high time (Slave mode) TCY + 20 — — ns

SP72* TSCL SCK input low time (Slave mode) TCY + 20 — — ns

SP73* TDIV2SCH,
TDIV2SCL

Setup time of SDI data input to SCK edge 100 — — ns

SP74* TSCH2DIL,
TSCL2DIL

Hold time of SDI data input to SCK edge 100 — — ns

SP75* TDOR SDO data output rise time 3.0-5.5V — 10 25 ns

1.8-5.5V — 25 50 ns

SP76* TDOF SDO data output fall time — 10 25 ns

SP77* TSSH2DOZ SS to SDO output high-impedance 10 — 50 ns

SP78* TSCR SCK output rise time
(Master mode)

3.0-5.5V — 10 25 ns

1.8-5.5V — 25 50 ns

SP79* TSCF SCK output fall time (Master mode) — 10 25 ns

SP80* TSCH2DOV,
TSCL2DOV

SDO data output valid after
SCK edge

3.0-5.5V — — 50 ns

1.8-5.5V — — 145 ns

SP81* TDOV2SCH,
TDOV2SCL

SDO data output setup to SCK edge Tcy — — ns

SP82* TSSL2DOV SDO data output valid after SS edge — — 50 ns

SP83* TSCH2SSH,
TSCL2SSH

SS after SCK edge 1.5TCY + 40 — — ns

* These parameters are characterized but not tested.

† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance
only and are not tested.

Note: Refer to Figure 26-7 for load conditions.

SP91

SP92

SP93
SCL

SDA

Start
Condition

Stop
Condition

SP90
 2009-2016 Microchip Technology Inc. DS40001365F-page 353

PIC18(L)F1XK22
FIGURE 27-5: PIC18LF1XK22 ICOMP – TYPICAL IPD FOR COMPARATOR IN LOW-POWER
MODE

FIGURE 27-6: PIC18LF1XK22 ICOMP – TYPICAL IPD FOR COMPARATOR IN HIGH-POWER
MODE

-40°C

25°C

85°C

125°C

5.0

10.0

15.0

20.0

25.0

1.8 2 2.2 2.4 2.6 2.8 3

IP
D

 (
u

A
)

VDD (V)

-40°C

25°C

85°C
125°C

0

25

50

75

100

125

1.8 2 2.2 2.4 2.6 2.8 3

IP
D

 (
u

A
)

VDD (V)
 2009-2016 Microchip Technology Inc. DS40001365F-page 359

