

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f14k22-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	6				
2.0	Oscillator Module					
3.0	Memory Organization					
4.0	Flash Program Memory					
5.0	Data EEPROM Memory					
6.0	8 x 8 Hardware Multiplier					
7.0	Interrupts	60				
8.0	I/O Ports					
9.0	Timer0 Module					
10.0	Timer1 Module					
11.0	Timer2 Module	100				
12.0	Timer3 Module	102				
13.0	Enhanced Capture/Compare/PWM (ECCP) Module	106				
14.0	Master Synchronous Serial Port (MSSP) Module	127				
15.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	170				
16.0	Analog-to-Digital Converter (ADC) Module	197				
17.0	Comparator Module					
18.0	Power-Managed Modes					
19.0	SR Latch					
20.0	Fixed Voltage Reference (FVR)					
21.0	Digital-to-Analog Converter (DAC) Module					
22.0	Reset					
23.0	Special Features of the CPU					
24.0	Instruction Set Summary					
25.0	Development Support					
26.0	Electrical Specifications					
27.0	DC and AC Characteristics Graphs and Charts					
28.0	Packaging Information					
Appe	endix A: Revision History					
Appe	endix B: Device Differences					
The N	Microchip WebSite					
Custo	Customer Change Notification Service					
Custo	Sustomer Support					
Produ	uct Identification System					
World	dwide Sales and Service					

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form of indexed addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

3.4.3.3 Operations by FSRs on FSRs

Indirect addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that FSR0H:FSR0L contains FE7h, the address of INDF1. Attempts to read the value of the INDF1 using INDF0 as an operand will return 00h. Attempts to write to INDF1 using INDF0 as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to either the INDF2 or POSTDEC2 register will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses indirect addressing.

Similarly, operations by indirect addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device.

3.5 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different; this is due to the introduction of a new addressing mode for the data memory space.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect addressing with FSR0 and FSR1 also remain unchanged.

3.5.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of indirect addressing using the FSR2 register pair within Access RAM. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented instructions – can invoke a form of indexed addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset, or Indexed Literal Offset mode.

When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0) and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in direct addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

3.5.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use direct addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they do not use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is shown in Figure 3-9.

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 24.2.1** "Extended Instruction Syntax".

4.5 Writing to Flash Program Memory

The programming block size is 8 or 16 bytes, depending on the device (See Table 4-1). Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are only as many holding registers as there are bytes in a write block (See Table 4-1).

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 8, or 16 times, depending on the device, for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. After all the holding registers have been written, the programming operation of that block of memory is started by configuring the EECON1 register for a program memory write and performing the long write sequence. The long write is necessary for programming the internal Flash. Instruction execution is halted during a long write cycle. The long write will be terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all holding registers before executing a long write operation.

4.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the block erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- 6. Write the 8 or 16 byte block into the holding registers with auto-increment.
- 7. Set the EECON1 register for the write operation:
 - set EEPGD bit to point to program memory;
 - clear the CFGS bit to access program memory;
 - set WREN to enable byte writes.

- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Repeat steps 6 to 13 for each block until all 64 bytes are written.
- 15. Verify the memory (table read).

This procedure will require about 6 ms to update each write block of memory. An example of the required code is given in Example 4-3.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the bytes in the holding registers.

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	U-0	U-0
WPUB7	WPUB6	WPUB5	WPUB4		—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		

REGISTER 8-9: WPUB: WEAK PULL-UP PORTB REGISTER

bit 7-4 WPUB<7:4>: Weak Pull-up Enable bit 1 = Pull-up enabled 0 = Pull-up disabled

bit 3-0 Unimplemented: Read as '0'

REGISTER 8-10: IOCB: INTERRUPT-ON-CHANGE PORTB REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
IOCB7	IOCB6	IOCB5	IOCB4	—	—	—	—
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 **IOCB<7:4>**: Interrupt-on-change bits

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

bit 3-0 Unimplemented: Read as '0'

8.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., disable the output driver). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin).

The PORTC Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register read and write the latched output value for PORTC.

All the pins on PORTC are implemented with Schmitt Trigger input buffer. Each pin is individually configurable as an input or output.

Note:	On a Power-on Reset, RC<7:6> and
	RC<3:0> are configured as analog inputs
	and read as '0'.

EXAMPLE 8-3: INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

REGISTER 8-11: PORTC: PORTC REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RC0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **RC<7:0>:** PORTC I/O Pin bits 1 = Port pin is > VIH

0 = Port pin is < VIL

REGISTER 8-12: TRISC: PORTC TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

TRISC<7:0>: PORTC Tri-State Control bits 1 = PORTC pin configured as an input (tri-stated) 0 = PORTC pin configured as an output

TABLE 8-5: PORTC I/O SUMMARY

Pin	Function	TRIS Setting	I/O	l/O Type	Description
RC0/AN4/C2IN+	RC0	0	0	DIG	LATC<0> data output.
		1	I	ST	PORTC<0> data input.
	AN4	1	Ι	ANA	A/D input channel 4.
	C2IN+	1	I	ANA	Comparators C2 noninverting input.
RC1/AN5/	RC1	0	0	DIG	LATC<1> data output.
C12IN1-		1	I	ST	PORTC<1> data input.
	AN5	1	Ι	ANA	A/D input channel 5.
	C12IN1-	1	I	ANA	Comparators C1 and C2 inverting input, channel 1.
RC2/AN6/	RC2	0	0	DIG	LATC<2> data output.
C12IN2-/P1D		1	I	ST	PORTC<2> data input.
	AN6	1	I	ANA	A/D input channel 6.
	C12IN2-	1	I	ANA	Comparators C1 and C2 inverting input, channel 2.
	P1D	0	0	DIG	ECCP1 Enhanced PWM output, channel D.
RC3/AN7/	RC3	0	0	DIG	LATC<3> data output.
C12IN3-/P1C/		1	I	ST	PORTC<3> data input.
PGM	AN7	1	I	ANA	A/D input channel 7.
	C12IN3-	1	I	ANA	Comparators C1 and C2 inverting input, channel 3.
	P1C	0	0	DIG	ECCP1 Enhanced PWM output, channel C.
	PGM	x	I	ST	Single-Supply Programming mode entry (ICSP™). Enabled by LVP Configuration bit; all other pin functions disabled.
RC4/C2OUT/P1B/	RC4	0	0	DIG	LATC<4> data output.
SRNQ		1	I	ST	PORTC<4> data input.
	C2OUT	0	0	DIG	Comparator 2 output.
	P1B	0	0	DIG	ECCP1 Enhanced PWM output, channel B.
	SRNQ	0	0	DIG	SR Latch inverted output
RC5/CCP1/P1A	RC5	0	0	DIG	LATC<5> data output.
		1	I	ST	PORTC<5> data input.
	CCP1	0	0	DIG	ECCP1 compare or PWM output.
		1	I	ST	ECCP1 capture input.
	P1A	0	0	DIG	ECCP1 Enhanced PWM output, channel A.
RC6/AN8/SS	RC6	0	0	DIG	LATC<6> data output.
		1	I	ST	PORTC<6> data input.
	AN8	1	I	ANA	A/D input channel 8.
	SS	1	I	TTL	Slave select input for SSP (MSSP module)
RC7/AN9/SDO	RC7	0	0	DIG	LATC<7> data output.
		1	Ι	ST	PORTC<7> data input.
	AN9	1	I	ANA	A/D input channel 9.
	SDO	0	0	DIG	SPI data output (MSSP module).

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

9.1 Timer0 Operation

Timer0 can operate as either a timer or a counter; the mode is selected with the T0CS bit of the T0CON register. In Timer mode (T0CS = 0), the module increments on every clock by default unless a different prescaler value is selected (see Section 9.3 "Prescaler"). Timer0 incrementing is inhibited for two instruction cycles following a TMR0 register write. The user can work around this by adjusting the value written to the TMR0 register to compensate for the anticipated missing increments.

The Counter mode is selected by setting the T0CS bit (= 1). In this mode, Timer0 increments either on every rising or falling edge of the T0CKI pin. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE of the T0CON register; clearing this bit selects the rising edge. Restrictions on the external clock input are discussed below.

An external clock source can be used to drive Timer0; however, it must meet certain requirements (see Table 26-17) to ensure that the external clock can be synchronized with the internal phase clock (Tosc). There is a delay between synchronization and the onset of incrementing the timer/counter.

9.2 Timer0 Reads and Writes in 16-Bit Mode

TMR0H is not the actual high byte of Timer0 in 16-bit mode; it is actually a buffered version of the real high byte of Timer0 which is neither directly readable nor writable (refer to Figure 9-2). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without the need to verify that the read of the high and low byte were valid. Invalid reads could otherwise occur due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. Writing to TMR0H does not directly affect Timer0. Instead, the high byte of Timer0 is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

FIGURE 9-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)

13.3 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against either the TMR1 or TMR3 register pair value. When a match occurs, the CCP1 pin can be:

- Driven high
- Driven low
- Toggled (high-to-low or low-to-high)
- Remain unchanged (that is, reflects the state of the I/O latch)

The action on the pin is based on the value of the mode select bits (CCP1M<3:0>). At the same time, the interrupt flag bit, CCP1IF, is set.

13.3.1 CCP PIN CONFIGURATION

The user must configure the CCP1 pin as an output by clearing the appropriate TRIS bit.

Note:	Clea	ring the C	CCP1CON r	egister wil	I force
	the	CCP1	compare	output	latch
	(dep	ending or	n device con	figuration) to the
	defa	ult low le	vel. This is	not the P	ORTC
	1/O [DATA late	ch.		

13.3.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation will not work reliably.

13.3.3 SOFTWARE INTERRUPT MODE

When the Generate Software Interrupt mode is chosen (CCP1M<3:0> = 1010), the CCP1 pin is not affected. Only the CCP1IF interrupt flag is affected.

13.3.4 SPECIAL EVENT TRIGGER

The CCP module is equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCP1M<3:0> = 1011).

The Special Event Trigger resets the timer register pair for whichever timer resource is currently assigned as the module's time base. This allows the CCPR1 registers to serve as a programmable period register for either timer.

The Special Event Trigger can also start an A/D conversion. In order to do this, the A/D converter must already be enabled.

FIGURE 13-2: COMPARE MODE OPERATION BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is ur			x = Bit is unki	nown			
bit 7	WCOL: Write In Master Tra 1 = A write t transmis 0 = No collis	e Collision Dete <u>insmit mode:</u> to the SSPBUI sion to be start ion	ct bit ⁼ register was ed (must be cl	attempted wheared by softw	nile the I ² C container)	nditions were r	not valid for a
	In Slave Tran 1 = The SSF software 0 = No collis	<u>ismit mode:</u> PBUF register is) ion	s written while	it is still transm	itting the previo	ous word (must	be cleared by
	<u>In Receive m</u> This is a "dor	<u>ode (Master or</u> n't care" bit.	Slave modes)	<u></u>			
bit 6	SSPOV: Rec	eive Overflow I	ndicator bit				
	In Receive m 1 = A byte is by softwa 0 = No overf	i <u>ode:</u> received while are) flow	the SSPBUF	register is still	holding the pro	evious byte (m	ust be cleared
	<u>In Transmit m</u> This is a "dor	<u>node:</u> n't care" bit in T	ransmit mode.				
bit 5	SSPEN: Syn	chronous Seria	I Port Enable I	oit			
	1 = Enables t 0 = Disables When enable	the serial port a serial port and ed, the SDA and	nd configures configures the SCL pins mu	the SDA and S se pins as I/O st be properly	SCL pins as the port pins configured as i	e serial port pin nputs.	S
bit 4	CKP: SCK R	elease Control	bit				
	In Slave mod 1 = Release 0 = Holds clo	l <u>e:</u> clock ock low (clock s	tretch), used to	o ensure data s	setup time		
	<u>In Master mo</u> Unused in thi	<u>ide:</u> is mode.					
bit 3-0	SSPM<3:0>: 1111 = I ² C S 1110 = I ² C S 1011 = I ² C F 1000 = I ² C M 0111 = I ² C S 0110 = I ² C S Bit combination	Synchronous S Slave mode, 10- Slave mode, 7-b Firmware Contro Aaster mode, cl Slave mode, 10- Slave mode, 7-b ons not specific	Serial Port Mo bit address with olled Master m ock = Fosc/(4 bit address ot address cally listed here	de Select bits th Start and Sto ode (Slave Idle * (SSPADD + e are either res	op bit interrupts p bit interrupts e) 1)) served or imple	s enabled enabled mented in SPI	mode only.

REGISTER 14-4: SSPCON1: MSSP CONTROL 1 REGISTER (I²C MODE)

REGISTER	5-2. RC31/	A. RECEIVE	STATUS AN				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7						_	bit 0
							
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	SPEN: Serial 1 = Serial po 0 = Serial po	Port Enable bit ort enabled (con ort disabled (hele	: figures RX/D d in Reset)	T and TX/CK p	pins as serial po	rt pins)	
bit 6	RX9: 9-bit Re	eceive Enable b	it				
	1 = Selects $90 = $ Selects 8	9-bit reception 3-bit reception					
bit 5	SREN: Single Asynchronou Don't care Synchronous 1 = Enables 0 = Disables This bit is clea Synchronous Don't care	e Receive Enab <u>s mode</u> : <u>mode – Master</u> single receive single receive ared after recep <u>mode – Slave</u>	le bit :- otion is comp	lete.			
bit 4	CREN: Conti	nuous Receive	Enable bit				
	Asynchronouu 1 = Enables 0 = Disables Synchronous 1 = Enables 0 = Disables	<u>s mode</u> : receiver receiver <u>mode</u> : continuous rece continuous rece	eive until ena eive	ble bit CREN is	s cleared (CREN	N overrides SR	EN)
bit 3	ADDEN: Add	lress Detect Ena	able bit				
	Asynchronou 1 = Enables 0 = Disables Asynchronou Don't care	<u>s mode 9-bit (R</u> address detecti address detect <u>s mode 8-bit (R</u>	<u>X9 = 1</u>): on, enable in ion, all bytes <u>X9 = 0</u>):	terrupt and loa are received a	ad the receive bu and ninth bit can	uffer when RSF be used as pa	<<8> is set rity bit
bit 2	FERR: Frami	ng Error bit					
	1 = Framing 0 = No framin	error (can be u ng error	pdated by rea	ading RCREG	register and rec	eive next valid	byte)
bit 1	OERR: Overr	run Error bit					
	1 = Overrun 0 = No overr	error (can be cl un error	eared by clea	aring bit CREN))		
bit 0	RX9D: Ninth This can be a	bit of Received address/data bit	Data or a parity bi	t and must be	calculated by us	ser firmware.	

REGISTER 15-2-ROSTA: RECEIVE STATUS AND CONTROL REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	-	—			DAC1R<4:0>		
bit 7 bit						bit 0	
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
u = Bit is unch	anged	x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets					ther Resets

REGISTER 21-2: VREFCON2: VOLTAGE REFERENCE CONTROL REGISTER 1

bit 7-5 Unimplemented: Read as '0'

1' = Bit is set

bit 4-0 DAC1R<4:0>: DAC Voltage Output Select bits VOUT = ((VSRC+) - (VSRC-))*(DAC1R<4:0>/(2⁵)) + VSRC-

'0' = Bit is cleared

TABLE 21-1: REGISTERS ASSOCIATED WITH DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
VREFCON0	FVR1EN	FVR1ST	FVR1S	S<1:0>	—	—	—	—	232
VREFCON1	D1EN	D1LPS	DAC10E	_	D1PS	S<1:0>	—	D1NSS	235
VREFCON2	_	_	_			DAC1R<4:0	>		236

Legend: — = Unimplemented locations, read as '0'. Shaded bits are not used by the DAC module.

23.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped starting at program memory location 300000h.

The user will note that address 300000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h-3FFFFFh), which can only be accessed using table reads and table writes.

Programming the Configuration registers is done in a manner similar to programming the Flash memory. The WR bit in the EECON1 register starts a self-timed write to the Configuration register. In normal operation mode, a TBLWT instruction with the TBLPTR pointing to the Configuration register sets up the address and the data for the Configuration register write. Setting the WR bit starts a long write to the Configuration registers are written a byte at a time. To write or erase a configuration cell, a TBLWT instruction can write a '1' or a '0' into the cell. For additional details on Flash program Memory".

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H	IESO	FCMEN	PCLKEN	PLL_EN	FOSC3	FOSC2	FOSC1	FOSC0	0010 0111
300002h	CONFIG2L		_	_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111
300003h	CONFIG2H	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
300005h	CONFIG3H	MCLRE	—	_	—	HFOFST	_	-		1 1
300006h	CONFIG4L	BKBUG	ENHCPU	_	_	BBSIZ	LVP		STVREN	-0 01-1
300008h	CONFIG5L	_	_	_	_	_	_	CP1	CP0	11
300009h	CONFIG5H	CPD	CPB	_		_	—			11
30000Ah	CONFIG6L		_				_	WRT1	WRT0	11
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	-	_	—	_	_	111
30000Ch	CONFIG7L	_	—	—	-	_	—	EBTR1	EBTR0	11
30000Dh	CONFIG7H		EBTRB				_			-1
3FFFFEh	DEVID1 ⁽¹⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	qqqq qqqq (1)
3FFFFFh	DEVID2 ⁽¹⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 1100

TABLE 23-1: CONFIGURATION BITS AND DEVICE IDs

 $\label{eq:legend: second condition} \mbox{Legend: } x \mbox{ = unknown, } u \mbox{ = unchanged, } - \mbox{ = unimplemented, } q \mbox{ = value depends on condition.}$

Shaded cells are unimplemented, read as '0'

Note 1: See Register 23-12 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user.

MOVSS	Move Inc	lexed to	Indexed	l
Syntax:	MOVSS	[z _s], [z _d]		
Operands:	$0 \le z_s \le 12$ $0 \le z_d \le 12$	27 27		
Operation:	((FSR2) +	$z_s) \rightarrow ((F$	SR2) + z _d)
Status Affected:	None			
Encoding: 1st word (source) 2nd word (dest.)	1110 1111	1011 xxxx	lzzz xzzz	zzzz _s zzzz _d
Description	The conter moved to t addresses registers a 7-bit literal respective registers c the 4096-b (000h to F The MOVS: PCL, TOS destination If the resul an indirect value retur resultant d an indirect	nts of the the destin of the source determ offsets 'z ly, to the v an be loc oyte data FFh). s instructi U, TOSH n register. tant source addressi rmed will b lestination will exect	source reg ation regis urce and do ined by ac s' or 'zd', value of FS ated anyw memory sp on cannot or TOSL a ce address ng register be 00h. If th n address p ng register ute as a No	gister are iter. The estination dding the SR2. Both here in bace use the as the e points to r, the he oonts to r, the OP.
Words:	2			
Cycles:	2			
Q Cycle Activity:				
Q1	Q2	Q	3	Q4

Q1	QZ	Q3	Q4
Decode	Determine	Determine	Read
	source addr	source addr	source reg
Decode	Determine dest addr	Determine dest addr	Write to dest reg

Example:	MOVSS	[05h],	[06h]
Before Instructio FSR2	on =	80h	
of 85h	=	33h	
of 86h	=	11h	
After Instruction FSR2 Contents	=	80h	
of 85h	=	33h	
of 86h	=	33h	

PUS	HL	Store Liter	al at FSR	2, Decre	ment FSR2		
Synta	ax:	PUSHL k					
Oper	ands:	$0 \le k \le 255$					
Opera	ation:	$k \rightarrow (FSR2),$ FSR2 – 1 \rightarrow FSR2					
Status	s Affected:	None					
Enco	ding:	1110	1010	kkkk	kkkk		
Desc		is decrement This instruction onto a softw	dress spectress spectress spectress spectress spectress spectress and the spectress sp	after the o s users to	SR2. FSR2 peration. push values		
Word	s:	1					
Cycle	es:	1					
QC	ycle Activity	:					
	Q1	Q2		Q3	Q4		
	Decode	Read '	k' Pro	ocess lata	Write to destination		
<u>Exam</u>	n <u>ple</u> : Before Instr FSR2I Memo	PUSHL ruction H:FSR2L ry (01ECh)	08h = =	01ECh 00h			

After Instruction		
FSR2H:FSR2L Memory (01ECh)	=	01EBh 08h

SUBFSR Subtract Literal from FSR								
Synta	ax:	SUBFSR	SUBFSR f, k					
Oper	ands:	$0 \le k \le 63$	3					
		$f\in [0,1,$	f ∈ [0, 1, 2]					
Oper	ation:	FSR(f) – I	$k \rightarrow FSRf$					
Status Affected: None								
Enco	oding:	1110	1001	ffkk	kkkk			
Desc	ription:	The 6-bit the conter 'f'.	literal 'k' is nts of the	s subtra FSR sp	ecified by			
Word	ls:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	code Read Process Write register 'f' Data destina						
<u>Exan</u>	nple:	SUBFSR	2, 23h					

Example: Before Instruction

Delote institu		
FSR2	=	03FFh
After Instruct		
FSR2	=	03DCh

Syntax:	SL	SUBULNK k			
Operands:	0 ≤	$0 \le k \le 63$			
Operation:	FS	$R2 - k \rightarrow$	FSR2		
	(T($OS) \rightarrow PC$			
Status Affected	: No	ne			
Encoding:	1	L110	1001	11kk	kkkk
Contents of the FSR2 executed by loading 1 The instruction takes execute; a NOP is persecond cycle. This may be thought the SUBFSR instruction '11'); it operates only Words: 1 Cycles: 2 O Cycle Activity:				wo cycles	the TOS. s to uring the
Words: Cycles: Q Cycle Activ	Th the '11 1 2 ity:	is may be SUBFSR -'); it opera	thought o instruction ates only o	f as a spe n, where f on FSR2.	ecial case of f = 3 (binary
Words: Cycles: Q Cycle Activ Q1	Th the '11 1 2 ity:	is may be SUBFSR i '); it opera Q2	thought o instruction ates only o	f as a spe n, where f on FSR2. Q3	ecial case of f = 3 (binary Q4
Words: Cycles: Q Cycle Activ Q1 Decoc	Th the '11 1 2 ity:	is may be SUBFSR '); it opera Q2 Read register	thought o instruction ates only o 'f' [f as a spe n, where f on FSR2. Q3 ocess Data	Q4 Write to destination
Words: Cycles: Q Cycle Activ Q1 Decoc	Th the '11 1 2 ity:	is may be SUBFSR .'); it opera Q2 Read register No	thought o instruction ates only o 'f' [f as a spe n, where f on FSR2. Q3 ocess Data No	Q4 Write to destination

SUBULNK 23h

Before Instruction							
FSR2	=	03FFh					
PC	=	0100h					
After Instruction							
FSR2	=	03DCh					
PC	=	(TOS)					

TABLE 26-11: THERMAL CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)						
Param. No.	Sym.	Characteristic	Тур.	Units		

Param. No.	Sym.	Characteristic	Тур.	Units	Conditions
TH01	θJA	Thermal Resistance Junction to Ambient	62.2	°C/W	20-pin PDIP package
			75.0	°C/W	20-pin SOIC package
			89.3	°C/W	20-pin SSOP package
			43.0	°C/W	20-pin QFN 4x4mm package
TH02	θJC	Thermal Resistance Junction to Case	27.5	°C/W	20-pin PDIP package
			23.1	°C/W	20-pin SOIC package
			31.1	°C/W	20-pin SSOP package
			5.3	°C/W	20-pin QFN 4x4mm package
TH03	TJMAX	Maximum Junction Temperature	150	°C	
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$
TH07	Pder	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature.

3: T_J = Junction Temperature.

FIGURE 26-13: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 26-18: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic		Min.	Тур.†	Max.	Units	Conditions
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	—		ns	
			With Prescaler	20	_		ns	
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20	—		ns	
			With Prescaler	20	_	_	ns	
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u>	_		ns	N = prescale value (1, 4 or 16)
				N				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 26-19: PIC18(L)F1XK22 A/D CONVERTER (ADC) CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated) Operating temperature: Tested at 25°C								
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions	
AD01	NR	Resolution	—	_	10	bit		
AD02	EIL	Integral Error	_	_	±2	LSb	VREF = 3.0V	
AD03	Edl	Differential Error		_	±1.5	LSb	No missing codes VREF = 3.0V	
AD04	EOFF	Offset Error	_	_	±3	LSb	VREF = 3.0V	
AD05	Egn	Gain Error	—	_	±3	LSb	VREF = 3.0V	
AD06	VREF	Change in Reference Voltage = VREF+ - VREF- ^{(2), (3)}	1.8		Vdd	V	$1.8 \leq \text{VREF+} \leq \text{VDD}$ + 0.3V VSS - $0.3\text{V} \leq \text{VREF-} \leq \text{VREF+}$ - 1.8V	
AD07	VAIN	Full-Scale Range	Vss	_	VREF	V		
AD08	ZAIN	Recommended Impedance of Analog Voltage Source		_	10	kΩ	Can go higher if external 0.01 μF capacitor is present on input pin.	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: ADC VREF is from external VREF, VDD pin or FVR, whichever is selected as reference input.

3: FVR voltage selected must be 2.048V or 4.096V.

FIGURE 27-7: PIC18LF1XK22 TYPICAL RC_RUN 31 kHz IDD

