
Microchip Technology - PIC18F14K22-I/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 17

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2.3V ~ 5.5V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 20-VFQFN Exposed Pad

Supplier Device Package 20-QFN (4x4)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f14k22-i-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f14k22-i-ml-4385421
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F1XK22
TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip’s Worldwide Website; http://www.microchip.com
• Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.
 2009-2016 Microchip Technology Inc. DS40001365F-page 5

PIC18(L)F1XK22
3.4 Data Addressing Modes

While the program memory can be addressed in only
one way – through the program counter – information
in the data memory space can be addressed in several
ways. For most instructions, the addressing mode is
fixed. Other instructions may use up to three modes,
depending on which operands are used and whether or
not the extended instruction set is enabled.

The addressing modes are:

• Inherent

• Literal

• Direct

• Indirect

An additional addressing mode, Indexed Literal Offset,
is available when the extended instruction set is
enabled (XINST Configuration bit = 1). Its operation is
discussed in greater detail in Section 3.5.1 “Indexed
Addressing with Literal Offset”.

3.4.1 INHERENT AND LITERAL
ADDRESSING

Many PIC18 control instructions do not need any
argument at all; they either perform an operation that
globally affects the device or they operate implicitly on
one register. This addressing mode is known as
Inherent Addressing. Examples include SLEEP, RESET
and DAW.

Other instructions work in a similar way but require an
additional explicit argument in the opcode. This is
known as Literal Addressing mode because they
require some literal value as an argument. Examples
include ADDLW and MOVLW, which respectively, add or
move a literal value to the W register. Other examples
include CALL and GOTO, which include a 20-bit
program memory address.

3.4.2 DIRECT ADDRESSING

Direct addressing specifies all or part of the source
and/or destination address of the operation within the
opcode itself. The options are specified by the
arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-
oriented instructions use some version of direct
addressing by default. All of these instructions include
some 8-bit literal address as their Least Significant
Byte. This address specifies either a register address in
one of the banks of data RAM (Section 3.3.3 “General

Purpose Register File”) or a location in the Access
Bank (Section 3.3.2 “Access Bank”) as the data
source for the instruction.

The Access RAM bit ‘a’ determines how the address is
interpreted. When ‘a’ is ‘1’, the contents of the BSR
(Section 3.3.1 “Bank Select Register (BSR)”) are
used with the address to determine the complete 12-bit
address of the register. When ‘a’ is ‘0’, the address is
interpreted as being a register in the Access Bank.
Addressing that uses the Access RAM is sometimes
also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire
12-bit address (either source or destination) in their
opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation’s results is determined
by the destination bit ‘d’. When ‘d’ is ‘1’, the results are
stored back in the source register, overwriting its
original contents. When ‘d’ is ‘0’, the results are stored
in the W register. Instructions without the ‘d’ argument
have a destination that is implicit in the instruction; their
destination is either the target register being operated
on or the W register.

3.4.3 INDIRECT ADDRESSING

Indirect addressing allows the user to access a location
in data memory without giving a fixed address in the
instruction. This is done by using File Select Registers
(FSRs) as pointers to the locations which are to be read
or written. Since the FSRs are themselves located in
RAM as Special File Registers, they can also be
directly manipulated under program control. This
makes FSRs very useful in implementing data
structures, such as tables and arrays in data memory.

The registers for indirect addressing are also
implemented with Indirect File Operands (INDFs) that
permit automatic manipulation of the pointer value with
auto-incrementing, auto-decrementing or offsetting
with another value. This allows for efficient code, using
loops, such as the example of clearing an entire RAM
bank in Example 3-5.

EXAMPLE 3-5: HOW TO CLEAR RAM
(BANK 1) USING
INDIRECT ADDRESSING

Note: The execution of some instructions in the
core PIC18 instruction set are changed
when the PIC18 extended instruction set is
enabled. See Section 3.5 “Data Memory
and the Extended Instruction Set” for
more information.

LFSR FSR0, 100h ;
NEXT CLRF POSTINC0 ; Clear INDF

; register then
; inc pointer

BTFSS FSR0H, 1 ; All done with
; Bank1?

BRA NEXT ; NO, clear next
CONTINUE ; YES, continue
DS40001365F-page 40  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
5.6 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in
Configuration Words. External read and write
operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the
internal data EEPROM, regardless of the state of the
code-protect Configuration bit. Refer to Section 23.0
“Special Features of the CPU” for additional
information.

5.7 Protection Against Spurious Write

There are conditions when the user may not want to
write to the data EEPROM memory. To protect against
spurious EEPROM writes, various mechanisms have
been implemented. On power-up, the WREN bit is
cleared. In addition, writes to the EEPROM are blocked
during the Power-up Timer period (TPWRT,
parameter 33).

The write initiate sequence and the WREN bit together
help prevent an accidental write during brown-out,
power glitch or software malfunction.

5.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte
addressable array that has been optimized for the
storage of frequently changing information (e.g.,
program variables or other data that are updated often).
When variables in one section change frequently, while
variables in another section do not change, it is possible
to exceed the total number of write cycles to the
EEPROM without exceeding the total number of write
cycles to a single byte. If this is the case, then an array
refresh must be performed. For this reason, variables
that change infrequently (such as constants, IDs,
calibration, etc.) should be stored in Flash program
memory.

A simple data EEPROM refresh routine is shown in
Example 5-3.

EXAMPLE 5-3: DATA EEPROM REFRESH ROUTINE

TABLE 5-1: REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Note: If data EEPROM is only used to store
constants and/or data that changes rarely,
an array refresh is likely not required. See
specification.

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

EEADR EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 247

EECON1 EEPGD CFGS — FREE WRERR WREN WR RD 247

EECON2 EEPROM Control Register 2 (not a physical register) 247

EEDATA EEPROM Data Register 247

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RABIE TMR0IF INT0IF RABIF 245

IPR2 OSCFIP C1IP C2IP EEIP BCLIP — TMR3IP — 248

PIE2 OSCFIE C1IE C2IE EEIE BCLIE — TMR3IE — 248

PIR2 OSCFIF C1IF C2IF EEIF BCLIF — TMR3IF — 248

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during Flash/EEPROM access.

CLRF EEADR ; Start at address 0
BCF EECON1, CFGS ; Set for memory
BCF EECON1, EEPGD ; Set for Data EEPROM
BCF INTCON, GIE ; Disable interrupts
BSF EECON1, WREN ; Enable writes

Loop ; Loop to refresh array
BSF EECON1, RD ; Read current address
MOVLW 55h ;
MOVWF EECON2 ; Write 55h
MOVLW 0AAh ;
MOVWF EECON2 ; Write 0AAh
BSF EECON1, WR ; Set WR bit to begin write
BTFSC EECON1, WR ; Wait for write to complete
BRA $-2
INCFSZ EEADR, F ; Increment address
BRA LOOP ; Not zero, do it again

BCF EECON1, WREN ; Disable writes
BSF INTCON, GIE ; Enable interrupts
 2009-2016 Microchip Technology Inc. DS40001365F-page 57

PIC18(L)F1XK22
7.8 RCON Register

The RCON register contains flag bits which are used to
determine the cause of the last Reset or wake-up from
Idle or Sleep modes. RCON also contains the IPEN bit
which enables interrupt priorities.

The operation of the SBOREN bit and the Reset flag
bits is discussed in more detail in Section 22.1 “RCON
Register”.

REGISTER 7-10: RCON: RESET CONTROL REGISTER

R/W-0 R/W-1 U-0 R/W-1 R-1 R-1 R/W-0 R/W-0

IPEN SBOREN(1) — RI TO PD POR(2) BOR(3)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 IPEN: Interrupt Priority Enable bit

1 = Enable priority levels on interrupts
0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)

bit 6 SBOREN: BOR Software Enable bit(1)

If BOREN<1:0> = 01:
1 = BOR is enabled
0 = BOR is disabled

If BOREN<1:0> = 00, 10 or 11:
Bit is disabled and read as ‘0’.

bit 5 Unimplemented: Read as ‘0’

bit 4 RI: RESET Instruction Flag bit

1 = The RESET instruction was not executed (set by firmware or Power-on Reset)
0 = The RESET instruction was executed causing a device Reset (must be set in firmware after a

code-executed Reset occurs)

bit 3 TO: Watchdog Time-out Flag bit

1 = Set by power-up, CLRWDT instruction or SLEEP instruction
0 = A WDT Time-out occurred

bit 2 PD: Power-down Detection Flag bit

1 = Set by power-up or by the CLRWDT instruction
0 = Set by execution of the SLEEP instruction

bit 1 POR: Power-on Reset Status bit(2)

1 = No Power-on Reset occurred
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOR: Brown-out Reset Status bit(3)

1 = A Brown-out Reset has not occurred (set by firmware only)
0 = A Brown-out Reset occurred (must be set by firmware after a POR or Brown-out Reset occurs)

Note 1: If SBOREN is enabled, its Reset state is ‘1’; otherwise, it is ‘0’.

2: The actual Reset value of POR is determined by the type of device Reset. See the notes following this
register and Section 22.6 “Reset State of Registers” for additional information.

3: See Table 22-3.
 2009-2016 Microchip Technology Inc. DS40001365F-page 71

PIC18(L)F1XK22
In addition to the expanded range of modes available
through the CCP1CON register and ECCP1AS
register, the ECCP module has two additional registers
associated with Enhanced PWM operation and
auto-shutdown features. They are:

• PWM1CON (Dead-band delay)

• PSTRCON (Output steering)

13.1 ECCP Outputs and Configuration

The enhanced CCP module may have up to four PWM
outputs, depending on the selected operating mode.
These outputs, designated P1A through P1D, are
multiplexed with I/O pins on PORTC. The outputs that
are active depend on the CCP operating mode
selected. The pin assignments are summarized in
Table 13-2.

To configure the I/O pins as PWM outputs, the proper
PWM mode must be selected by setting the P1M<1:0>
and CCP1M<3:0> bits. The appropriate TRISC
direction bits for the port pins must also be set as
outputs.

13.1.1 CCP MODULE AND TIMER
RESOURCES

The CCP modules utilize Timers 1, 2 or 3, depending
on the mode selected. Timer1 and Timer3 are available
to modules in Capture or Compare modes, while
Timer2 is available for modules in PWM mode.

TABLE 13-1: CCP MODE – TIMER
RESOURCE

The assignment of a particular timer to a module is
determined by the Timer-to-CCP enable bits in the
T3CON register (Register 12-1). The interactions
between the two modules are summarized in
Figure 13-1. In Asynchronous Counter mode, the
capture operation will not work reliably.

13.2 Capture Mode

In Capture mode, the CCPR1H:CCPR1L register pair
captures the 16-bit value of the TMR1 or TMR3
registers when an event occurs on the corresponding
CCP1 pin. An event is defined as one of the following:

• Every falling edge

• Every rising edge

• Every 4th rising edge

• Every 16th rising edge

The event is selected by the mode select bits,
CCP1M<3:0> of the CCP1CON register. When a
capture is made, the interrupt request flag bit, CCP1IF,
is set; it must be cleared by software. If another capture
occurs before the value in register CCPR1 is read, the
old captured value is overwritten by the new captured
value.

13.2.1 CCP PIN CONFIGURATION

In Capture mode, the appropriate CCP1 pin should be
configured as an input by setting the corresponding
TRIS direction bit.

13.2.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature
(Timer1 and/or Timer3) must be running in Timer mode or
Synchronized Counter mode. In Asynchronous Counter
mode, the capture operation may not work. The timer to
be used with each CCP module is selected in the T3CON
register (see Section 13.1.1 “CCP Module and Timer
Resources”).

13.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture
interrupt may be generated. The user should keep the
CCP1IE interrupt enable bit clear to avoid false
interrupts. The interrupt flag bit, CCP1IF, should also
be cleared following any such change in operating
mode.

CCP/ECCP Mode Timer Resource

Capture Timer1 or Timer3

Compare Timer1 or Timer3

PWM Timer2

Note: If the CCP1 pin is configured as an output,
a write to the port can cause a capture
condition.
 2009-2016 Microchip Technology Inc. DS40001365F-page 107

PIC18(L)F1XK22
13.4.1 HALF-BRIDGE MODE

In Half-Bridge mode, two pins are used as outputs to
drive push-pull loads. The PWM output signal is output
on the CCP1/P1A pin, while the complementary PWM
output signal is output on the P1B pin (see
Figure 13-6). This mode can be used for half-bridge
applications, as shown in Figure 13-7, or for full-bridge
applications, where four power switches are being
modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay
can be used to prevent shoot-through current in
half-bridge power devices. The value of the PDC<6:0>
bits of the PWM1CON register sets the number of
instruction cycles before the output is driven active. If the
value is greater than the duty cycle, the corresponding
output remains inactive during the entire cycle. See
Section 13.4.6 “Programmable Dead-Band Delay
Mode” for more details of the dead-band delay
operations.

Since the P1A and P1B outputs are multiplexed with
the PORT data latches, the associated TRIS bits must
be cleared to configure P1A and P1B as outputs.

FIGURE 13-6: EXAMPLE OF
HALF-BRIDGE PWM
OUTPUT

FIGURE 13-7: EXAMPLE OF HALF-BRIDGE APPLICATIONS

Period

Pulse Width

td

td

(1)

P1A(2)

P1B(2)

td = Dead-Band Delay

Period

(1) (1)

Note 1: At this time, the TMR2 register is equal to the
PR2 register.

2: Output signals are shown as active-high.

P1A

P1B

FET
Driver

FET
Driver

Load

+

-

+

-

FET
Driver

FET
Driver

V+

Load

FET
Driver

FET
Driver

P1A

P1B

Standard Half-Bridge Circuit (“Push-Pull”)

Half-Bridge Output Driving a Full-Bridge Circuit
 2009-2016 Microchip Technology Inc. DS40001365F-page 113

PIC18(L)F1XK22
14.2.5 MASTER MODE

The master can initiate the data transfer at any time
because it controls the SCK. The master determines
when the slave (Processor 2, Figure 14-2) is to
broadcast data by the software protocol.

In Master mode, the data is transmitted/received as
soon as the SSPBUF register is written to. If the SPI is
only going to receive, the SDO output could be
disabled (programmed as an input). The SSPSR
register will continue to shift in the signal present on the
SDI pin at the programmed clock rate. As each byte is
received, it will be loaded into the SSPBUF register as
if a normal received byte (interrupts and Status bits
appropriately set).

The clock polarity is selected by appropriately
programming the CKP bit of the SSPCON1 register.
This then, would give waveforms for SPI
communication as shown in Figure 14-3, Figure 14-5
and Figure 14-6, where the MSB is transmitted first. In
Master mode, the SPI clock rate (bit rate) is user
programmable to be one of the following:

• FOSC/4 (or TCY)

• FOSC/16 (or 4 • TCY)

• FOSC/64 (or 16 • TCY)

• Timer2 output/2

This allows a maximum data rate (at 64 MHz) of
16.00 Mbps.

Figure 14-3 shows the waveforms for Master mode.
When the CKE bit is set, the SDO data is valid before
there is a clock edge on SCK. The change of the input
sample is shown based on the state of the SMP bit. The
time when the SSPBUF is loaded with the received
data is shown.

FIGURE 14-3: SPI MODE WAVEFORM (MASTER MODE)

SCK
(CKP = 0

SCK
(CKP = 1

SCK
(CKP = 0

SCK
(CKP = 1

4 Clock
Modes

Input
Sample

Input
Sample

SDI

bit 7 bit 0

SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

bit 7

SDI

SSPIF

(SMP = 1)

(SMP = 0)

(SMP = 1)

CKE = 1)

CKE = 0)

CKE = 1)

CKE = 0)

(SMP = 0)

Write to
SSPBUF

SSPSR to
SSPBUF

SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

(CKE = 0)

(CKE = 1)

bit 0
DS40001365F-page 132  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
15.1.2.9 Asynchronous Reception Set-up

1. Initialize the SPBRGH:SPBRG register pair and
the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 15.3 “EUSART
Baud Rate Generator (BRG)”).

2. Enable the serial port by setting the SPEN bit
and the RX/DT pin TRIS bit. The SYNC bit must
be clear for asynchronous operation.

3. If interrupts are desired, set the RCIE interrupt
enable bit and set the GIE and PEIE bits of the
INTCON register.

4. If 9-bit reception is desired, set the RX9 bit.

5. Set the DTRXP if inverted receive polarity is
desired.

6. Enable reception by setting the CREN bit.

7. The RCIF interrupt flag bit will be set when a
character is transferred from the RSR to the
receive buffer. An interrupt will be generated if
the RCIE interrupt enable bit was also set.

8. Read the RCSTA register to get the error flags
and, if 9-bit data reception is enabled, the ninth
data bit.

9. Get the received 8 Least Significant data bits
from the receive buffer by reading the RCREG
register.

10. If an overrun occurred, clear the OERR flag by
clearing the CREN receiver enable bit.

15.1.2.10 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems.
To set up an Asynchronous Reception with Address
Detect Enable:

1. Initialize the SPBRGH, SPBRG register pair and
the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 15.3 “EUSART
Baud Rate Generator (BRG)”).

2. Enable the serial port by setting the SPEN bit.
The SYNC bit must be clear for asynchronous
operation.

3. If interrupts are desired, set the RCIE interrupt
enable bit and set the GIE and PEIE bits of the
INTCON register.

4. Enable 9-bit reception by setting the RX9 bit.

5. Enable address detection by setting the ADDEN
bit.

6. Set the DTRXP if inverted receive polarity is
desired.

7. Enable reception by setting the CREN bit.

8. The RCIF interrupt flag bit will be set when a
character with the ninth bit set is transferred
from the RSR to the receive buffer. An interrupt
will be generated if the RCIE interrupt enable bit
was also set.

9. Read the RCSTA register to get the error flags.
The ninth data bit will always be set.

10. Get the received 8 Least Significant data bits
from the receive buffer by reading the RCREG
register. Software determines if this is the
device’s address.

11. If an overrun occurred, clear the OERR flag by
clearing the CREN receiver enable bit.

12. If the device has been addressed, clear the
ADDEN bit to allow all received data into the
receive buffer and generate interrupts.

FIGURE 15-5: ASYNCHRONOUS RECEPTION

Start
bit bit 7/8bit 1bit 0 bit 7/8 bit 0Stop

bit

Start
bit

Start
bitbit 7/8 Stop

bit
RX/DT pin

Reg
Rcv Buffer Reg

Rcv Shift

Read Rcv
Buffer Reg
RCREG

RCIF
(Interrupt Flag)

OERR bit

CREN

Word 1
RCREG

Word 2
RCREG

Stop
bit

Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,
causing the OERR (overrun) bit to be set.

RCIDL
 2009-2016 Microchip Technology Inc. DS40001365F-page 177

PIC18(L)F1XK22

DS4
TABLE 15-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

BAUDCON ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 247

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RABIE TMR0IF INT0IF RABIF 245

IPR1 — ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 248

PIE1 — ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 248

PIR1 — ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 248

RCREG EUSART Receive Register 247

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 247

SPBRG EUSART Baud Rate Generator Register, Low Byte 247

SPBRGH EUSART Baud Rate Generator Register, High Byte 247

TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 248

TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 247

Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.
0001365F-page 178  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
15.4.2.3 EUSART Synchronous Slave
Reception

The operation of the Synchronous Master and Slave
modes is identical (Section 15.4.1.6 “Synchronous
Master Reception”), with the following exceptions:

• Sleep

• CREN bit is always set, therefore the receiver is
never Idle

• SREN bit, which is a “don't care” in Slave mode

A character may be received while in Sleep mode by
setting the CREN bit prior to entering Sleep. Once the
word is received, the RSR register will transfer the data
to the RCREG register. If the RCIE enable bit is set, the
interrupt generated will wake the device from Sleep
and execute the next instruction. If the GIE bit is also
set, the program will branch to the interrupt vector.

15.4.2.4 Synchronous Slave Reception
Set-up

1. Set the SYNC and SPEN bits and clear the
CSRC bit. Set the TRIS bits corresponding to
the RX/DT and TX/CK I/O pins.

2. If using interrupts, ensure that the GIE and PEIE
bits of the INTCON register are set and set the
RCIE bit.

3. If 9-bit reception is desired, set the RX9 bit.

4. Set the CREN bit to enable reception.

5. The RCIF bit will be set when reception is
complete. An interrupt will be generated if the
RCIE bit was set.

6. If 9-bit mode is enabled, retrieve the Most
Significant bit from the RX9D bit of the RCSTA
register.

7. Retrieve the eight Least Significant bits from the
receive FIFO by reading the RCREG register.

8. If an overrun error occurs, clear the error by
either clearing the CREN bit of the RCSTA
register or by clearing the SPEN bit which resets
the EUSART.

TABLE 15-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

BAUDCON ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 247

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RABIE TMR0IF INT0IF RABIF 245

IPR1 — ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 248

PIE1 — ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 248

PIR1 — ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 248

RCREG EUSART Receive Register 247

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 247

SPBRG EUSART Baud Rate Generator Register, Low Byte 247

SPBRGH EUSART Baud Rate Generator Register, High Byte 247

TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 247

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.
DS40001365F-page 196  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22

REGISTER 16-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

ADRES9 ADRES8 ADRES7 ADRES6 ADRES5 ADRES4 ADRES3 ADRES2

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 ADRES<9:2>: ADC Result Register bits
Upper 8 bits of 10-bit conversion result

REGISTER 16-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

ADRES1 ADRES0 — — — — — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 ADRES<1:0>: ADC Result Register bits
Lower 2 bits of 10-bit conversion result

bit 5-0 Reserved: Do not use.

REGISTER 16-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

— — — — — — ADRES9 ADRES8

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits
Upper 2 bits of 10-bit conversion result

REGISTER 16-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

ADRES7 ADRES6 ADRES5 ADRES4 ADRES3 ADRES2 ADRES1 ADRES0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 ADRES<7:0>: ADC Result Register bits
Lower 8 bits of 10-bit conversion result
DS40001365F-page 206  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22

REGISTER 22-1: RCON: RESET CONTROL REGISTER

R/W-0 R/W-1 U-0 R/W-1 R-1 R-1 R/W-0 R/W-0

IPEN SBOREN(1) — RI TO PD POR(2) BOR

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 IPEN: Interrupt Priority Enable bit

1 = Enable priority levels on interrupts
0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)

bit 6 SBOREN: BOR Software Enable bit(1)

If BOREN<1:0> = 01:
1 = BOR is enabled
0 = BOR is disabled

If BOREN<1:0> = 00, 10 or 11:
Bit is disabled and read as ‘0’.

bit 5 Unimplemented: Read as ‘0’

bit 4 RI: RESET Instruction Flag bit

1 = The RESET instruction was not executed (set by firmware or Power-on Reset)
0 = The RESET instruction was executed causing a device Reset (must be set in firmware after a

code-executed Reset occurs)

bit 3 TO: Watchdog Time-out Flag bit

1 = Set by power-up, CLRWDT instruction or SLEEP instruction
0 = A WDT time-out occurred

bit 2 PD: Power-down Detection Flag bit

1 = Set by power-up or by the CLRWDT instruction
0 = Set by execution of the SLEEP instruction

bit 1 POR: Power-on Reset Status bit(2)

1 = No Power-on Reset occurred
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOR: Brown-out Reset Status bit(3)

1 = A Brown-out Reset has not occurred (set by firmware only)
0 = A Brown-out Reset occurred (must be set by firmware after a POR or Brown-out Reset occurs)

Note 1: If SBOREN is enabled, its Reset state is ‘1’; otherwise, it is ‘0’.

2: The actual Reset value of POR is determined by the type of device Reset. See the notes following this
register and Section 22.6 “Reset State of Registers” for additional information.

3: See Table 22-3.
DS40001365F-page 238  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
23.2.1 CONTROL REGISTER

Register 23-14 shows the WDTCON register. This is a
readable and writable register which contains a control
bit that allows software to override the WDT enable
Configuration bit, but only if the Configuration bit has
disabled the WDT.

TABLE 23-2: SUMMARY OF WATCHDOG TIMER REGISTERS

23.3 Program Verification and
Code Protection

The overall structure of the code protection on the
PIC18 Flash devices differs significantly from other PIC
microcontroller devices.

The user program memory is divided into five blocks.
One of these is a boot block of 0.5K or 2K bytes,
depending on the device. The remainder of the
memory is divided into individual blocks on binary
boundaries.

Each of the five blocks has three code protection bits
associated with them. They are:

• Code-Protect bit (CPn)

• Write-Protect bit (WRTn)

• External Block Table Read bit (EBTRn)

Figure 23-2 shows the program memory organization
for 8, 16 and 32-Kbyte devices and the specific code
protection bit associated with each block. The actual
locations of the bits are summarized in Table 23-3.

REGISTER 23-14: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0

— — — — — — — SWDTEN(1)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-1 Unimplemented: Read as ‘0’

bit 0 SWDTEN: Software Enable or Disable the Watchdog Timer bit(1)
1 = WDT is turned on
0 = WDT is turned off (Reset value)

Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled.

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

CONFIG2H — — — WDTPS3 WDTPS2 WDTPS1 WDTPS0 WDTEN 253

RCON IPEN SBOREN — RI TO PD POR BOR 246

WDTCON — — — — — — — SWDTEN 246

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Watchdog Timer.
DS40001365F-page 260  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
BIT-ORIENTED OPERATIONS

BCF
BSF
BTFSC
BTFSS
BTG

f, b, a
f, b, a
f, b, a
f, b, a
f, b, a

Bit Clear f
Bit Set f
Bit Test f, Skip if Clear
Bit Test f, Skip if Set
Bit Toggle f

1
1
1 (2 or 3)
1 (2 or 3)
1

1001
1000
1011
1010
0111

bbba
bbba
bbba
bbba
bbba

ffff
ffff
ffff
ffff
ffff

ffff
ffff
ffff
ffff
ffff

None
None
None
None
None

1, 2
1, 2
3, 4
3, 4
1, 2

CONTROL OPERATIONS

BC
BN
BNC
BNN
BNOV
BNZ
BOV
BRA
BZ
CALL

CLRWDT
DAW
GOTO

NOP
NOP
POP
PUSH
RCALL
RESET
RETFIE

RETLW
RETURN
SLEEP

n
n
n
n
n
n
n
n
n
k, s

—
—
k

—
—
—
—
n

s

k
s
—

Branch if Carry
Branch if Negative
Branch if Not Carry
Branch if Not Negative
Branch if Not Overflow
Branch if Not Zero
Branch if Overflow
Branch Unconditionally
Branch if Zero
Call subroutine 1st word

2nd word
Clear Watchdog Timer
Decimal Adjust WREG
Go to address 1st word

2nd word
No Operation
No Operation
Pop top of return stack (TOS)
Push top of return stack (TOS)
Relative Call
Software device Reset
Return from interrupt enable

Return with literal in WREG
Return from Subroutine
Go into Standby mode

1 (2)
1 (2)
1 (2)
1 (2)
1 (2)
1 (2)
1 (2)
2
1 (2)
2

1
1
2

1
1
1
1
2
1
2

2
2
1

1110
1110
1110
1110
1110
1110
1110
1101
1110
1110
1111
0000
0000
1110
1111
0000
1111
0000
0000
1101
0000
0000

0000
0000
0000

0010
0110
0011
0111
0101
0001
0100
0nnn
0000
110s
kkkk
0000
0000
1111
kkkk
0000
xxxx
0000
0000
1nnn
0000
0000

1100
0000
0000

nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
kkkk
kkkk
0000
0000
kkkk
kkkk
0000
xxxx
0000
0000
nnnn
1111
0001

kkkk
0001
0000

nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
kkkk
kkkk
0100
0111
kkkk
kkkk
0000
xxxx
0110
0101
nnnn
1111
000s

kkkk
001s
0011

None
None
None
None
None
None
None
None
None
None

TO, PD
C
None

None
None
None
None
None
All
GIE/GIEH,
PEIE/GIEL
None
None
TO, PD

4

TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Mnemonic,
Operands

Description Cycles
16-Bit Instruction Word Status

Affected
Notes

MSb LSb

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value
present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an
external device, the data will be written back with a ‘0’.

2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if
assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is
executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the
first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory
locations have a valid instruction.
 2009-2016 Microchip Technology Inc. DS40001365F-page 269

PIC18(L)F1XK22

CPFSGT Compare f with W, skip if f > W

Syntax: CPFSGT f {,a}

Operands: 0  f  255
a  [0,1]

Operation: (f) –W),
skip if (f) > (W)
(unsigned comparison)

Status Affected: None

Encoding: 0110 010a ffff ffff

Description: Compares the contents of data memory
location ‘f’ to the contents of the W by
performing an unsigned subtraction.
If the contents of ‘f’ are greater than the
contents of WREG, then the fetched
instruction is discarded and a NOP is
executed instead, making this a
2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register ‘f’
Process

Data
No

operation
If skip:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE CPFSGT REG, 0
NGREATER :
GREATER :

Before Instruction
PC = Address (HERE)
W = ?

After Instruction

If REG  W;
PC = Address (GREATER)

If REG  W;
PC = Address (NGREATER)

CPFSLT Compare f with W, skip if f < W

Syntax: CPFSLT f {,a}

Operands: 0  f  255
a  [0,1]

Operation: (f) –W),
skip if (f) < (W)
(unsigned comparison)

Status Affected: None

Encoding: 0110 000a ffff ffff

Description: Compares the contents of data memory
location ‘f’ to the contents of W by
performing an unsigned subtraction.
If the contents of ‘f’ are less than the
contents of W, then the fetched
instruction is discarded and a NOP is
executed instead, making this a
2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).

Words: 1

Cycles: 1(2)
Note: Three cycles if skip and
followed by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE CPFSLT REG, 1
NLESS :
LESS :

Before Instruction
PC = Address (HERE)
W = ?

After Instruction

If REG < W;
PC = Address (LESS)
If REG  W;
PC = Address (NLESS)
 2009-2016 Microchip Technology Inc. DS40001365F-page 283

PIC18(L)F1XK22

DECFSZ Decrement f, skip if 0

Syntax: DECFSZ f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) – 1  dest,
skip if result = 0

Status Affected: None

Encoding: 0010 11da ffff ffff

Description: The contents of register ‘f’ are
decremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is ‘0’, the next instruction,
which is already fetched, is discarded
and a NOP is executed instead, making
it a 2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE DECFSZ CNT, 1, 1
 GOTO LOOP
CONTINUE

Before Instruction
PC = Address (HERE)

After Instruction
CNT = CNT - 1
If CNT = 0;

PC = Address (CONTINUE)
If CNT  0;

PC = Address (HERE + 2)

DCFSNZ Decrement f, skip if not 0

Syntax: DCFSNZ f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) – 1  dest,
skip if result  0

Status Affected: None

Encoding: 0100 11da ffff ffff

Description: The contents of register ‘f’ are
decremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is not ‘0’, the next
instruction, which is already fetched, is
discarded and a NOP is executed
instead, making it a 2-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE DCFSNZ TEMP, 1, 0
ZERO :
NZERO :

Before Instruction
TEMP = ?

After Instruction
TEMP = TEMP – 1,
If TEMP = 0;

PC = Address (ZERO)
If TEMP  0;

PC = Address (NZERO)
 2009-2016 Microchip Technology Inc. DS40001365F-page 285

PIC18(L)F1XK22

MOVLW Move literal to W

Syntax: MOVLW k

Operands: 0  k  255

Operation: k  W

Status Affected: None

Encoding: 0000 1110 kkkk kkkk

Description: The 8-bit literal ‘k’ is loaded into W.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to W

Example: MOVLW 5Ah

After Instruction

W = 5Ah

MOVWF Move W to f

Syntax: MOVWF f {,a}

Operands: 0  f  255
a  [0,1]

Operation: (W)  f

Status Affected: None

Encoding: 0110 111a ffff ffff

Description: Move data from W to register ‘f’.
Location ‘f’ can be anywhere in the
256-byte bank.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: MOVWF REG, 0

Before Instruction

W = 4Fh
REG = FFh

After Instruction

W = 4Fh
REG = 4Fh
 2009-2016 Microchip Technology Inc. DS40001365F-page 291

PIC18(L)F1XK22

RCALL Relative Call

Syntax: RCALL n

Operands: -1024  n  1023

Operation: (PC) + 2  TOS,
(PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1101 1nnn nnnn nnnn

Description: Subroutine call with a jump up to 1K
from the current location. First, return
address (PC + 2) is pushed onto the
stack. Then, add the 2’s complement
number ‘2n’ to the PC. Since the PC will
have incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is a
2-cycle instruction.

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

PUSH PC to
stack

Process
Data

Write to PC

No
operation

No
operation

No
operation

No
operation

Example: HERE RCALL Jump

Before Instruction
PC = Address (HERE)

After Instruction
PC = Address (Jump)
TOS = Address (HERE + 2)

RESET Reset

Syntax: RESET

Operands: None

Operation: Reset all registers and flags that are
affected by a MCLR Reset.

Status Affected: All

Encoding: 0000 0000 1111 1111

Description: This instruction provides a way to
execute a MCLR Reset by software.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Start
Reset

No
operation

No
operation

Example: RESET

After Instruction
Registers = Reset Value
Flags* = Reset Value
 2009-2016 Microchip Technology Inc. DS40001365F-page 295

PIC18(L)F1XK22
24.2.5 SPECIAL CONSIDERATIONS WITH
MICROCHIP MPLAB® IDE TOOLS

The latest versions of Microchip’s software tools have
been designed to fully support the extended instruction
set of the PIC18(L)F1XK22 family of devices. This
includes the MPLAB® C18 C compiler, MPASM
assembly language and MPLAB Integrated
Development Environment (IDE).

When selecting a target device for software
development, MPLAB IDE will automatically set default
Configuration bits for that device. The default setting for
the XINST Configuration bit is ‘0’, disabling the
extended instruction set and Indexed Literal Offset
Addressing mode. For proper execution of applications
developed to take advantage of the extended
instruction set, XINST must be set during
programming.

To develop software for the extended instruction set,
the user must enable support for the instructions and
the Indexed Addressing mode in their language tool(s).
Depending on the environment being used, this may be
done in several ways:

• A menu option, or dialog box within the
environment, that allows the user to configure the
language tool and its settings for the project

• A command line option

• A directive in the source code

These options vary between different compilers,
assemblers and development environments. Users are
encouraged to review the documentation accompanying
their development systems for the appropriate
information.
DS40001365F-page 314  2009-2016 Microchip Technology Inc.

PIC18(L)F1XK22
�������	
���
��	'���	(��
)	��	����	
��#�*�	�+��	�	,-,-�&.	��	����	�'(��

�

��
���
�� ������ �!"�����#
$�%
�&"�
�'��� ���(�)"&�'"!&�)
�����&
#�*�&����&�
���&��
#���
��
�� ���4��
��!�!�*�!���"��&
#�
-� ��'
�!���������#�&��
��������

�����.�0������

1�,2 1�!�����'
�!�������
��
&�������
$��&� ��"
�!��*��*�&��"&�&��
����
!�
�.32 �
%
�
��
���'
�!���(�"!"�����*�&��"&�&��
����
(�%�����%��'�&����
"�
�!
!������

��
�� 3���&�
�'�!&��"��
�&�
��4��
�#��*���!(�
�
�!
�!

�&�
���������
����4�������

��%���&��������&
#��&�
�&&
255***�'�������
���'5
��4�����

6��&! ��99��.�.��
��'
�!����9�'�&! ��7 7:� ��;

7"')
���%����! 7 ��
��&��
 �����1�,
:
�����8
���& � ��>� ���� ����
�&��#�%%� �� ���� ���� ����
,��&��&�����4�
!! �- ������.3
:
�����=�#&� . �����1�,
.$
�!
#���#�=�#&� .� ��?� ���� ��>�
:
�����9
��&� � �����1�,
.$
�!
#���#�9
��&� �� ��?� ���� ��>�
,��&��&�=�#&�) ���> ���� ��-�
,��&��&�9
��&� 9 ��-� ���� ����
,��&��&	&�	.$
�!
#���# A ���� < <

D
EXPOSED

PAD

E

E2

2

1

N

TOP VIEW NOTE 1

N

L

K

b

e

D2

2

1

A

A1A3

BOTTOM VIEW

��������
 �
�������� ���*��� ,��	��?1
DS40001365F-page 380  2009-2016 Microchip Technology Inc.

