

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f14k22-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

3.4 Data Addressing Modes

Note:	The execution of some instructions in the
	core PIC18 instruction set are changed
	when the PIC18 extended instruction set is
	enabled. See Section 3.5 "Data Memory
	and the Extended Instruction Set" for
	more information.

While the program memory can be addressed in only one way – through the program counter – information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in **Section 3.5.1 "Indexed Addressing with Literal Offset**".

3.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an additional explicit argument in the opcode. This is known as Literal Addressing mode because they require some literal value as an argument. Examples include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

3.4.2 DIRECT ADDRESSING

Direct addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byteoriented instructions use some version of direct addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (**Section 3.3.3 "General** **Purpose Register File**") or a location in the Access Bank (**Section 3.3.2 "Access Bank**") as the data source for the instruction.

The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 3.3.1 "Bank Select Register (BSR)") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

3.4.3 INDIRECT ADDRESSING

Indirect addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations which are to be read or written. Since the FSRs are themselves located in RAM as Special File Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures, such as tables and arrays in data memory.

The registers for indirect addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code, using loops, such as the example of clearing an entire RAM bank in Example 3-5.

EXAMPLE 3-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0, 100h	;	
NEXT	CLRF	POSTINC0	;	Clear INDF
			;	register then
			;	inc pointer
	BTFSS	FSROH, 1	;	All done with
			;	Bank1?
	BRA	NEXT	;	NO, clear next
CONTINU	E		;	YES, continue

5.6 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to Section 23.0 "Special Features of the CPU" for additional information.

5.7 Protection Against Spurious Write

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, parameter 33).

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

5.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM without exceeding the total number of write cycles to a single byte. If this is the case, then an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 5-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification.

EXAMPLE 5-3: DATA EEPROM REFRESH ROUTINE

	CLRF	EEADR	; Start at address 0
	BCF	EECON1, CFGS	; Set for memory
	BCF	EECON1, EEPGD	; Set for Data EEPROM
	BCF	INTCON, GIE	; Disable interrupts
	BSF	EECON1, WREN	; Enable writes
Loop			; Loop to refresh array
	BSF	EECON1, RD	; Read current address
	MOVLW	55h	;
	MOVWF	EECON2	; Write 55h
	MOVLW	0AAh	;
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BTFSC	EECON1, WR	; Wait for write to complete
	BRA	\$-2	
	INCFSZ	EEADR, F	; Increment address
	BRA	LOOP	; Not zero, do it again
	BCF	EECON1, WREN	; Disable writes
	BSF	INTCON, GIE	; Enable interrupts

TABLE 5-1: REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
EEADR	EEADR7	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	247
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	247
EECON2	EEPROM Co	ontrol Registe	r 2 (not a p	hysical regi	ster)				247
EEDATA	EEPROM Da	ata Register							247
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	245
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCLIP	_	TMR3IP	—	248
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCLIE	_	TMR3IE	—	248
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCLIF	_	TMR3IF	_	248

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

7.8 RCON Register

The RCON register contains flag bits which are used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the IPEN bit which enables interrupt priorities.

The operation of the SBOREN bit and the Reset flag bits is discussed in more detail in **Section 22.1** "**RCON Register**".

REGISTER 7-10: RCON: RESET CONTROL REGISTER

R/W-0	R/W-1	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	SBOREN ⁽¹⁾	_	RI	TO	PD	POR ⁽²⁾	BOR ⁽³⁾
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	IPEN: Interrupt Priority Enable bit 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6	SBOREN: BOR Software Enable bit ⁽¹⁾ <u>If BOREN<1:0> = 01:</u> 1 = BOR is enabled 0 = BOR is disabled
	$\frac{\text{If BOREN<1:0> = 00, 10 or 11:}}{\text{Bit is disabled and read as '0'.}}$
bit 5	Unimplemented: Read as '0'
bit 4	RI: RESET Instruction Flag bit
	 1 = The RESET instruction was not executed (set by firmware or Power-on Reset) 0 = The RESET instruction was executed causing a device Reset (must be set in firmware after a code-executed Reset occurs)
bit 3	TO: Watchdog Time-out Flag bit
	 1 = Set by power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT Time-out occurred
bit 2	PD: Power-down Detection Flag bit
	 1 = Set by power-up or by the CLRWDT instruction 0 = Set by execution of the SLEEP instruction
bit 1	POR: Power-on Reset Status bit ⁽²⁾
	 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit ⁽³⁾
	 1 = A Brown-out Reset has not occurred (set by firmware only) 0 = A Brown-out Reset occurred (must be set by firmware after a POR or Brown-out Reset occurs)
Note 1:	If SBOREN is enabled, its Reset state is '1'; otherwise, it is '0'.
2:	The actual Reset value of POR is determined by the type of device Reset. See the notes following this register and Section 22.6 "Reset State of Registers" for additional information.

3: See Table 22-3.

In addition to the expanded range of modes available through the CCP1CON register and ECCP1AS register, the ECCP module has two additional registers associated with Enhanced PWM operation and auto-shutdown features. They are:

- PWM1CON (Dead-band delay)
- PSTRCON (Output steering)

13.1 ECCP Outputs and Configuration

The enhanced CCP module may have up to four PWM outputs, depending on the selected operating mode. These outputs, designated P1A through P1D, are multiplexed with I/O pins on PORTC. The outputs that are active depend on the CCP operating mode selected. The pin assignments are summarized in Table 13-2.

To configure the I/O pins as PWM outputs, the proper PWM mode must be selected by setting the P1M<1:0> and CCP1M<3:0> bits. The appropriate TRISC direction bits for the port pins must also be set as outputs.

13.1.1 CCP MODULE AND TIMER RESOURCES

The CCP modules utilize Timers 1, 2 or 3, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode.

TABLE 13-1:CCP MODE – TIMER
RESOURCE

CCP/ECCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

The assignment of a particular timer to a module is determined by the Timer-to-CCP enable bits in the T3CON register (Register 12-1). The interactions between the two modules are summarized in Figure 13-1. In Asynchronous Counter mode, the capture operation will not work reliably.

13.2 Capture Mode

In Capture mode, the CCPR1H:CCPR1L register pair captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on the corresponding CCP1 pin. An event is defined as one of the following:

- Every falling edge
- Every rising edge
- · Every 4th rising edge
- · Every 16th rising edge

The event is selected by the mode select bits, CCP1M<3:0> of the CCP1CON register. When a capture is made, the interrupt request flag bit, CCP1IF, is set; it must be cleared by software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

13.2.1 CCP PIN CONFIGURATION

In Capture mode, the appropriate CCP1 pin should be configured as an input by setting the corresponding TRIS direction bit.

Note: If the CCP1 pin is configured as an output, a write to the port can cause a capture condition.

13.2.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature (Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer to be used with each CCP module is selected in the T3CON register (see Section 13.1.1 "CCP Module and Timer Resources").

13.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP1IE interrupt enable bit clear to avoid false interrupts. The interrupt flag bit, CCP1IF, should also be cleared following any such change in operating mode.

13.4.1 HALF-BRIDGE MODE

In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCP1/P1A pin, while the complementary PWM output signal is output on the P1B pin (see Figure 13-6). This mode can be used for half-bridge applications, as shown in Figure 13-7, or for full-bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in half-bridge power devices. The value of the PDC<6:0> bits of the PWM1CON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 13.4.6 "Programmable Dead-Band Delay Mode"** for more details of the dead-band delay operations. Since the P1A and P1B outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure P1A and P1B as outputs.

FIGURE 13-6: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 13-7: EXAMPLE OF HALF-BRIDGE APPLICATIONS

14.2.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 14-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPCON1 register. This then, would give waveforms for SPI communication as shown in Figure 14-3, Figure 14-5 and Figure 14-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- · Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 64 MHz) of 16.00 Mbps.

Figure 14-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 14-3: SPI MODE WAVEFORM (MASTER MODE)

15.1.2.9 Asynchronous Reception Set-up

- Initialize the SPBRGH:SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 15.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit and the RX/DT pin TRIS bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE interrupt enable bit and set the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the DTRXP if inverted receive polarity is desired.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

15.1.2.10 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 15.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE interrupt enable bit and set the GIE and PEIE bits of the INTCON register.
- 4. Enable 9-bit reception by setting the RX9 bit.
- 5. Enable address detection by setting the ADDEN bit.
- 6. Set the DTRXP if inverted receive polarity is desired.
- 7. Enable reception by setting the CREN bit.
- 8. The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

RX/DT pin	Start bit / bit 0 / bit 1 / 5 / bit 7/8 / Stop bit / bit 0 / 5 / bit 7/8 / Stop bit / 5 / bit 7/8 / Stop bit
Rcv Shift Reg Rcv Buffer Reg	Word 1 Word 2 Scheme Sc
RCIDL Read Roy	
Buffer Reg RCREG	
RCIF (Interrupt Flag)	
OERR bit	
Note: This cause	timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word, sing the OERR (overrun) bit to be set.

FIGURE 15-5: ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
BAUDCON	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	247
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	245
IPR1	_	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	248
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	248
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	248
RCREG	EUSART R	Receive Regis	ster						247
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	247
SPBRG	EUSART Baud Rate Generator Register, Low Byte								247
SPBRGH	EUSART Baud Rate Generator Register, High Byte								247
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	248
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	247

TABLE 15-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

15.4.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 15.4.1.6 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 15.4.2.4 Synchronous Slave Reception Set-up
- Set the SYNC and SPEN bits and clear the CSRC bit. Set the TRIS bits corresponding to the RX/DT and TX/CK I/O pins.
- If using interrupts, ensure that the GIE and PEIE bits of the INTCON register are set and set the RCIE bit.
- 3. If 9-bit reception is desired, set the RX9 bit.
- 4. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- 6. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 7. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 8. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
BAUDCON	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16		WUE	ABDEN	247
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	245
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	248
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	248
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	248
RCREG	EUSART F	Receive Regi	ster						247
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	247
SPBRG	EUSART Baud Rate Generator Register, Low Byte								
SPBRGH	EUSART Baud Rate Generator Register, High Byte								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	247

TABLE 15-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

				-			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
ADRES9	ADRES8	ADRES7	ADRES6	ADRES5	ADRES4	ADRES3	ADRES2
bit 7							bit 0
Legend:							
R = Readable I	pit	W = Writable b	it	U = Unimpleme	ented bit, read a	is '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkno	own
bit 7-0	ADRES<9:2>	ADC Result Reg	pister bits				
	Opper 8 bits 0		intesuit				
REGISTER [·]	16-5: ADRI	ESL: ADC RE	SULT REGI	STER LOW (A	ADRESL) AD	DFM = 0	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
ADRES1	ADRES0		—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable b	it	U = Unimpleme	ented bit, read a	is '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkno	own
bit 7-6	ADRES<1:0>	ADC Result Reg	jister bits				
1.11.F.O.	Lower 2 bits o	r 10-bit conversio	n result				
DIT 5-0	Reserved: Do	not use.					
REGISTER '	16-6' ADRE		SULT REGI	STER HIGH (ADRESH) A	DFM = 1	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
						ADRES9	ADRES8
bit 7						, IBITEOU	bit 0
Legend:							
R = Readable I	oit	W = Writable b	it	U = Unimpleme	ented bit, read a	is '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	wn
bit 7-2	Reserved: Do	not use.					
bit 1-0	ADRES<9:8>	ADC Result Rec	uister bits				
	Upper 2 bits o	f 10-bit conversio	n result				
REGISTER [·]	16-7: ADRI	ESL: ADC RE	SULT REGI	STER LOW (A	ADRESL) AD	DFM = 1	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
ADRES7	ADRES6	ADRES5	ADRES4	ADRES3	ADRES2	ADRES1	ADRES0
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable b	it	U = Unimpleme	ented bit, read a	is '0'	

REGISTER 16-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower 8 bits of 10-bit conversion result

R/W-0	R/W-1	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	SBOREN ⁽¹⁾	_	RI	TO	PD	POR ⁽²⁾	BOR
bit 7							bit 0
							
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is cl	eared	x = Bit is unkr	nown
bit 7	IPEN: Interrup 1 = Enable pr	ot Priority Enal iority levels on	ole bit interrupts				
	0 = Disable pi	iority levels or	n interrupts (P	IC16CXXX Co	ompatibility mod	le)	
bit 6	SBOREN: BC <u>If BOREN<1:(</u> 1 = BOR is er 0 = BOR is dis <u>If BOREN<1:(</u> Bit is disabled	DR Software E <u>)> = 01;</u> habled sabled <u>)> = 00, 10 or</u> and read as '	nable bit ⁽¹⁾ _ <u>11:</u> 0'.				
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	RI: RESET INS	truction Flag b	bit				
	1 = The RESE 0 = The RESE code-exe	T instruction T instruction cuted Reset o	was not execu was executed ccurs)	uted (set by find d causing a de	mware or Powe evice Reset (m	r-on Reset) ust be set in fir	mware after a
bit 3	TO: Watchdog	g Time-out Fla	g bit				
	1 = Set by po 0 = A WDT ti	wer-up, CLRW	DT instruction ed	or SLEEP inst	ruction		
bit 2	PD: Power-do	wn Detection	Flag bit				
	1 = Set by po 0 = Set by ex	wer-up or by t ecution of the	he CLRWDT in SLEEP instru	struction ction			
bit 1	POR: Power-	on Reset Statu	ıs bit ⁽²⁾				
	1 = No Power 0 = A Power-0	on Reset occ	urred rred (must be	set in softwar	e after a Power	-on Reset occur	s)
bit 0	BOR: Brown-	out Reset Stat	us bit ⁽³⁾				
	1 = A Brown- 0 = A Brown-	out Reset has out Reset occ	not occurred urred (must b	(set by firmwa e set by firmwa	are only) are after a POR	or Brown-out R	leset occurs)
Note 1:	f SBOREN is enat	oled, its Reset	state is '1'; ot	herwise, it is '	0'.		

REGISTER 22-1: RCON: RESET CONTROL REGISTER

2: The actual Reset value of POR is determined by the type of device Reset. See the notes following this register and Section 22.6 "Reset State of Registers" for additional information.

3: See Table 22-3.

23.2.1 CONTROL REGISTER

Register 23-14 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT enable Configuration bit, but only if the Configuration bit has disabled the WDT.

REGISTER 23-14: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	SWDTEN ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1 Unimplemented: Read as '0'

bit 0

SWDTEN: Software Enable or Disable the Watchdog Timer bit⁽¹⁾

1 = WDT is turned on

0 = WDT is turned off (Reset value)

TABLE 23-2: SUMMARY OF WATCHDOG TIMER REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CONFIG2H	_	—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	253
RCON	IPEN	SBOREN	_	RI	TO	PD	POR	BOR	246
WDTCON	_	_	_	—	—	—	—	SWDTEN	246

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

23.3 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 Flash devices differs significantly from other PIC microcontroller devices.

The user program memory is divided into five blocks. One of these is a boot block of 0.5K or 2K bytes, depending on the device. The remainder of the memory is divided into individual blocks on binary boundaries.

Each of the five blocks has three code protection bits associated with them. They are:

- Code-Protect bit (CPn)
- Write-Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

Figure 23-2 shows the program memory organization for 8, 16 and 32-Kbyte devices and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 23-3.

Mnemo	onic,	Description	Qualas	16-	Bit Instr	uction W	ord	Status	Natas
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BIT-ORIEN	TED OP	ERATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERA	TIONS						·	
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	k, s	Call subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	_	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	k	Go to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	_	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	xxxx	XXXX	XXXX	None	4
POP	—	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH, PEIE/GIEL	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	s	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

CPF	SGT	Compare	f with W, sk	ip if f > W			
Synta	ax:	CPFSGT	f {,a}				
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]					
Oper	ation:	(f) – (W), skip if (f) > (unsigned o	(W) comparison)				
Statu	is Affected:	None					
Enco	oding:	0110	0110 010a ffff ffff				
Desc	ription: ds:	Compares I location if it performing If the conte contents of instruction i executed in 2-cycle inst If 'a' is '0', t If 'a' is '0', t If 'a' is '0', t GPR bank If 'a' is '0' a set is enabl in Indexed mode wher Section 24 Bit-Oriente Literal Offs 1	Compares the contents of data memory location 'f' to the contents of the W by performing an unsigned subtraction. If the contents of 'f' are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
Cycle		' 1(2)					
Oyok		Note: 3 cy by a	vcles if skip and a 2-word instrue	d followed ction.			
QC	ycle Activity:			_			
	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Data	operation			
lf sk	ip:	. ogiotoi .	2414	oporation			
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
lf sk	ip and followe	d by 2-word in	struction:	04			
	Q1 No	Q2	Q3	Q4			
	operation	operation	operation	operation			
	No	No	No	No			
	operation	operation	operation	operation			
<u>Exan</u>	nple:	HERE NGREATER GREATER	CPFSGT RE : :	G, 0			
	Before Instruc	tion					
	PC	= Ad	Idress (HERE)			
	W	= ?					
	After Instruction	on					
	If REG	> W;	,				
	PC	= Ad	dress (GREAT	TER)			
	It REG PC	≤ W; = Ad	; dress (ngrea	ATER)			

CPF	SLT	Compare	f with W, sk	tip if f < W
Synta	ax:	CPFSLT	f {,a}	
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$		
Oper	ation:	(f) – (W), skip if (f) < (unsigned c	(W) comparison)	
Statu	is Affected:	None		
Enco	oding:	0110	000a ff:	ff ffff
Desc	ription:	Compares to location 'f' to performing If the contents of instruction in executed in 2-cycle inst If 'a' is '0', to If 'a' is '1', to GPR bank	the contents of o the contents an unsigned s nts of 'f' are le W, then the fe s discarded ar stead, making ruction. he Access Bar he BSR is use (default).	f data memory of W by ubtraction. ss than the etched nd a NOP is this a hk is selected. d to select the
Word	ls:	1	, , ,	
Cycle	es:	1(2) Note: Thi followed by	ree cycles if sk a 2-word instr	tip and ruction.
QC	ycle Activity:			
	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process Data	No operation
lf sk	ip:	. egietei i	2010	oporation
	Q1	Q2	Q3	Q4
	No	No	No	No
lf ok	operation	operation	operation	operation
11 56		02 Q2	Q3	Q4
	No	No	No	No
	operation	operation	operation	operation
	No operation	No operation	No operation	No operation
<u>Exan</u>	nple:	HERE (NLESS LESS	CPFSLT REG, :	1
	Before Instruc	tion		
	PC	= Ad = 2	dress (HERE)
	After Instructio	on - :		
	If REG	< W;		
	PC	= Ad	dress (LESS)
	It REG PC	≥ W; = ∆d	dress (NI.FG	S)
			(1.220	,

DECFSZ	Decremer	nt f, skip if O)	DCFS	SNZ	Decreme	nt f, skip if n	ot 0
Syntax:	DECFSZ f	f {,d {,a}}		Syntax	(:	DCFSNZ	f {,d {,a}}	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			Opera	nds:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$		
Operation:	(f) – 1 \rightarrow de skip if resul	est, t = 0		Opera	tion:	(f) – 1 \rightarrow d skip if resu	est, It ≠ 0	
Status Affected:	None			Status	Affected:	None		
Encoding:	0010	11da ffi	f ffff	Encod	ling:	0100	11da fff	f ffff
Description:	The conten decremente placed in W placed back If the result which is alru and a NOP i it a 2-cycle If 'a' is '0', tl If 'a' is '0', tl If 'a' is '0', tl GPR bank If 'a' is '0' a set is enabl in Indexed I mode when Section 24 Bit-Oriente Literal Offs	ts of register " ed. If 'd' is '0', /. If 'd' is '1', th k in register 'f' is '0', the nex eady fetched, is executed ins instruction. he Access Ban he BSR is use (default). nd the extend ed, this instruct Literal Offset / ever f \leq 95 (5 .2.3 "Byte-Or chinstruction set Mode " for	F are the result is (default). t instruction, is discarded stead, making hk is selected. d to select the ed instruction ction operates Addressing Fh). See iented and s in Indexed details.	Descri	ption:	The conter decrement placed in V placed bac If the result instruction, discarded a instead, mainstruction. If 'a' is '0', t If 'a' is '0', t GPR bank If 'a' is '0' a set is enab in Indexed mode when Section 24	the sof register 'f ed. If 'd' is '0', ' V. If 'd' is '1', th k in register 'f' t is not '0', the which is alrea and a NOP is ex aking it a 2-cyce the Access Bar the BSR is used (default). and the extended led, this instruct Literal Offset A never f ≤ 95 (5) 1.2.3 "Byte-Or ed Instructor	" are the result is (default). next dy fetched, is kecuted de hk is selected. d to select the ed instruction ction operates Addressing Fh). See iented and s in Indexed
Words:	1					Literal Off	set Mode" for	details.
Cycles:	1(2) Note: 3 cy by a	vcles if skip an a 2-word instru	d followed iction.	Words Cycles	s: 5:	1 1(2) Note: 3	cycles if skip a	nd followed
Q Cycle Activity:	02	02	04	Q Cv	cle Activitv:	by	a 2-word maa	
Decode	Read	Process	Write to]	Q1	Q2	Q3	Q4
200000	register 'f'	Data	destination	Γ	Decode	Read	Process	Write to
lf skip:				Ľ		register 'f'	Data	destination
Q1	Q2	Q3	Q4	lf skip):			
No	No	No	No	Г	Q1	Q2	Q3	Q4
operation	operation	operation	operation		N0 operation	N0 operation	NO	N0 operation
			04	lf skir	and followe	d by 2-word ir	struction:	operation
No	Q2	No.	Q4]	Q1	02	Q3	04
operation	operation	operation	operation	Г	No	No	No	No
No	No	No	No		operation	operation	operation	operation
operation	operation	operation	operation		No	No	No	No
Example:	HERE CONTINUE	DECFSZ GOTO	CNT, 1, 1 LOOP	<u>Exam</u> ţ	operation	operation HERE ZERO	Operation	operation
Before Instruc	ction					NZERO	:	
PC After Instructi CNT	= Address on = CNT - 1	S (HERE)		B	efore Instruc TEMP	tion = on	?	
If CNT PC If CNT PC	= 0; = Address ≠ 0; = Address	S (CONTINUE S (HERE + 2	:)		TEMP If TEMP PC If TEMP PC	= = = =	TEMP – 1, 0; Address (2 0; Address (1	ZERO) NZERO)

MO\	/LW	Move lite	eral to W	1		
Synta	ax:	MOVLW	k			
Oper	ands:	$0 \le k \le 25$	5			
Oper	ation:	$k\toW$				
Statu	is Affected:	None				
Enco	oding:	0000	1110	kkk	k	kkkk
Desc	ription:	The 8-bit I	iteral 'k' is	loade	ed in	to W.
Word	ls:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3	6		Q4
	Decode	Read literal 'k'	Proce Dat	ess a	W	rite to W
Exan	nple:	MOVLW	5Ah			
	After Instruction	on				
	W	= 5Ah				

MOVWF	Move W	to f				
Syntax:	MOVWF	f {,a}				
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5				
Operation:	$(W) \to f$					
Status Affected:	None					
Encoding:	0110	111a	ffff	ffff		
Description:	Move data Location 'f 256-byte b If 'a' is '0', If 'a' is '1', GPR bank If 'a' is '0' set is enab in Indexed mode whe Section 2 Bit-Orient Literal Off	Move data from W to register 'f'. Location 'f' can be anywhere in the 256-byte bank. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Proce Data	ess a re	Write egister 'f'		
Example:	MOVWF	REG, 0				
Before Instruc	tion					
W	= 4Fh					
REG After Instructio	= FFh					
W REG	= 4Fh = 4Fh					

RCA	LL	Relative C	Call					
Synta	ax:	RCALL n						
Oper	ands:	-1024 ≤ n ≤	$-1024 \le n \le 1023$					
Oper	ation:	(PC) + 2 → (PC) + 2 + 2	$(PC) + 2 \rightarrow TOS,$ (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None	None					
Enco	oding:	1101	1nnn	nnnr	n nnnn			
Desc	sription: Js:	Subroutine from the cui address (PC stack. Then number '2n' have incren instruction, PC + 2 + 2r 2-cycle instruction 1	Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC wil have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.					
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	}	Q4			
	Decode	Read literal 'n' PUSH PC to stack	Proce Dat	ass '	Write to PC			
	No	No	No)	No			
	operation	operation	opera	tion	operation			

Example: HERE RCALL Jump

Before Instruction PC = Address (HERE) After Instruction

PC = Address (Jump) TOS = Address (HERE + 2)

RESET		Reset				
Syntax:		RESET	RESET			
Operands:		None	None			
Operation:		Reset all re affected by	Reset all registers and flags that are affected by a MCLR Reset.			
Status Affected:		All	All			
Encoding:		0000	0000	1111	1111	
Description:		This instru execute a	This instruction provides a way to execute a MCLR Reset by software.			
Words:		1	1			
Cycles:		1	1			
Q Cycle Activity:						
	Q1	Q2	Q3	3	Q4	
	Decode	Start	No)	No	
		Reset	opera	tion o	peration	

Example:

After Instruction	
Registers =	Reset Value
Flags* =	Reset Value

RESET

© 2009-2016 Microchip Technology Inc.

24.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB® IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set of the PIC18(L)F1XK22 family of devices. This includes the MPLAB[®] C18 C compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project
- · A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

20-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

MILLIMETERS Units MIN NOM MAX **Dimension Limits** Number of Pins 20 Ν 0.50 BSC Pitch е **Overall Height** А 0.80 0.90 1.00 Standoff A1 0.00 0.02 0.05 **Contact Thickness** A3 0.20 REF 4.00 BSC Overall Width Е Exposed Pad Width E2 2.60 2.70 2.80 **Overall Length** 4.00 BSC D Exposed Pad Length D2 2.60 2.70 2.80 Contact Width 0.18 0.25 0.30 b 0.30 0.40 0.50 Contact Length L Contact-to-Exposed Pad Κ 0.20 _ _

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-126B