

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

201010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f14k22-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3.5 STATUS REGISTER

The STATUS register, shown in Register 3-2, contains the arithmetic status of the ALU. As with any other SFR, it can be the operand for any instruction.

If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the STATUS register is updated according to the instruction performed. Therefore, the result of an instruction with the STATUS register as its destination may be different than intended. As an example, CLRF STATUS will set the Z bit and leave the remaining Status bits unchanged ('000u uluu').

It is recommended that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions that do not affect Status bits, see the instruction set summaries in Table 24-2 and Table 24-3.

Note: The <u>C</u> and <u>DC</u> bits operate as the borrow and digit borrow bits, respectively, in subtraction.

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	N	OV	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit (
Legend:							
R = Readable		W = Writable			mented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7-5	Unimpleme	nted: Read as '	0'				
bit 4	N: Negative This bit is use (ALU MSB =	ed for signed ar	ithmetic (two'	s complement)	. It indicates wh	ether the result	was negative
	1 = Result was negative 0 = Result was positive						
bit 3	OV: Overflow bit This bit is used for signed arithmetic (two's complement). It indicates an overflow of the 7-bit magnitude which causes the sign bit (bit 7 of the result) to change state.						e 7-bit
	 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred 						
bit 2	Z: Zero bit						
		It of an arithme	÷ .				
hit 1		It of an arithme	0 1			(1)	
bit 1 DC: Digit Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾ 1 = A carry-out from the 4th low-order bit of the result occurred					· /		
	•	-out from the 4t					
bit 0	C: Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾						
		out from the Mos -out from the M					
	or Borrow, the percond operand. I	•				•	

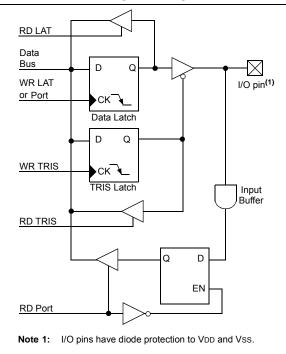
bit of the source register.

REGISTER	7-9: IPRZ:	PERIPHERA	LINIERRU	PIPRIORI	REGISTER	2			
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0		
OSCFIP	C1IP	C2IP	EEIP	BCLIP		TMR3IP			
bit 7							bit (
Legend:									
R = Readable		W = Writable		•	mented bit, read				
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkno	own		
bit 7		cillator Fail Inte	rrunt Priority I	hit					
	1 = High prices		nuprinonty	on					
	0 = Low prio	•							
bit 6	C1IP: Compa	arator C1 Interr	upt Priority bit	t					
	1 = High priority								
	0 = Low prio	ority							
bit 5	•	C2IP: Comparator C2 Interrupt Priority bit							
	1 = High priority								
	0 = Low prio	•	W. 1. O						
bit 4		EEIP: Data EEPROM/Flash Write Operation Interrupt Priority bit 1 = High priority							
	1 = High priority 0 = Low priority								
bit 3 BCLIP: Bus Collision Interrupt Pr		upt Priority bit							
	1 = High priority								
	0 = Low prio								
bit 2	Unimplemented: Read as '0'								
bit 1 TMR3IP:		R3 Overflow In	terrupt Priority	y bit					
	1 = High pric								
	0 = Low prio	•							
bit 0	Unimplemer	nted: Read as '	0'						

REGISTER 7-9: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

8.0 I/O PORTS

There are up to three ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.


Each port has three registers for its operation. These registers are:

- TRIS register (data direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (output latch)

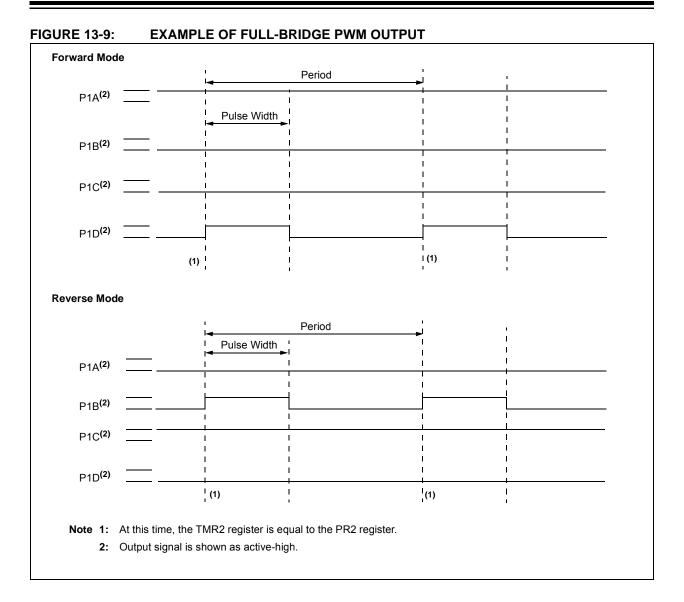
The PORTA Data Latch (LATA register) is useful for read-modify-write operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 8-1.

8.1 PORTA, TRISA and LATA Registers

PORTA is a 6-bit wide, bidirectional port, with the exception of RA3, which is input-only and its TRIS bit will always read as '1'. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the PORT latch.


The PORTA Data Latch (LATA) register is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

All of the PORTA pins are individually configurable as interrupt-on-change pins. Control bits in the IOCA register enable (when set) or disable (when clear) the interrupt function for each pin.

When set, the RABIE bit of the INTCON register enables interrupts on all pins which also have their corresponding IOCA bit set. When clear, the RABIE bit disables all interrupt-on-changes.

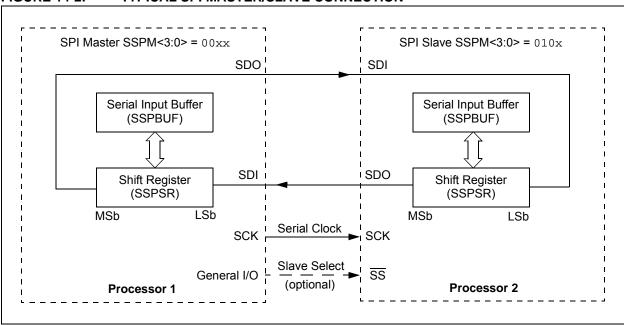
Only pins configured as inputs can cause this interrupt to occur (i.e., any pin configured as an output is excluded from the interrupt-on-change comparison).

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTA. The 'mismatch' outputs of the last read are OR'd together to set the PORTA Change Interrupt flag bit (RABIF) in the INTCON register.

© 2009-2016 Microchip Technology Inc.

14.2.3 ENABLING SPI I/O

To enable the serial port, SSP Enable bit, SSPEN of the SSPCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, reinitialize the SSPCON registers and then set the <u>SSPEN</u> bit. This configures the SDI, SDO, SCK and <u>SS</u> pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:


- SDI is automatically controlled by the SPI module
- · SDO must have corresponding TRIS bit cleared
- SCK (Master mode) must have corresponding
 TRIS bit cleared
- SCK (Slave mode) must have corresponding
 TRIS bit set
- SS must have corresponding TRIS bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

14.2.4 TYPICAL CONNECTION

Figure 14-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- · Master sends data Slave sends dummy data
- · Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 14-2: TYPICAL SPI MASTER/SLAVE CONNECTION

14.3.3.4 SSP Mask Register

An SSP Mask (SSPMSK) register is available in I^2C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero ('0') bit in the SSPMSK register has the effect of making the corresponding bit in the SSPSR register a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

This register must be initiated prior to setting SSPM<3:0> bits to select the I^2C Slave mode (7-bit or 10-bit address).

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

MSK7 MSK6 MSK5 MSK4 MSK3 MSK2 MSK1 MSK0 ⁽¹⁾ bit 7 bit 0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
bit 7 bit 0	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0 ⁽¹⁾
	bit 7					· · · · · · · · · · · · · · · · · · ·		bit 0

REGISTER 14-6:	SSPMSK: SSP MASK REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1 MSK<7:1>: Mask bits

1 = The received address bit n is compared to SSPADD<n> to detect I^2C address match

0 = The received address bit n is not used to detect I²C address match

bit 0 **MSK<0>:** Mask bit for I²C Slave mode, 10-bit Address⁽¹⁾ I²C Slave mode, 10-bit Address (SSPM<3:0> = 0111): 1 = The received address bit 0 is compared to SSPADD<0> to detect I²C address match

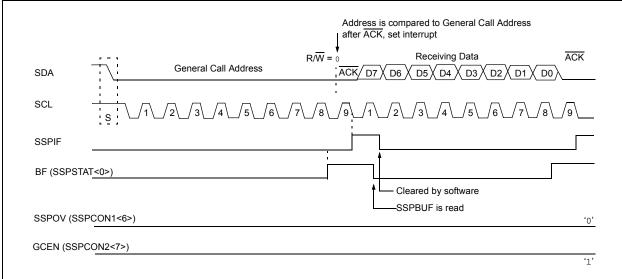
0 = The received address bit 0 is not used to detect I^2C address match

Note 1: The MSK0 bit is used only in 10-bit Slave mode. In all other modes, this bit has no effect.

14.3.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all '0's with R/W = 0.


The general call address is recognized when the GCEN bit of the SSPCON2 is set. Following a Start bit detect, eight bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

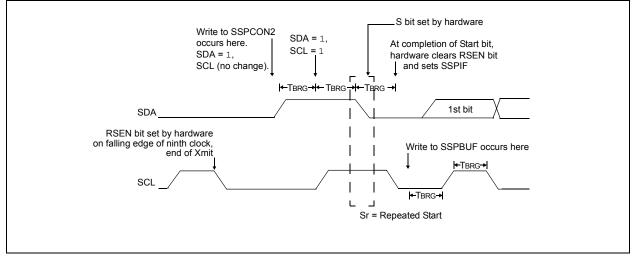
If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit of the SSPSTAT register is set. If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-bit Address mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 14-15).

14.3.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit of the SSPCON2 register is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit of the SSPCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPSTAT register will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out


- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

14.3.9.1 WCOL Status Flag

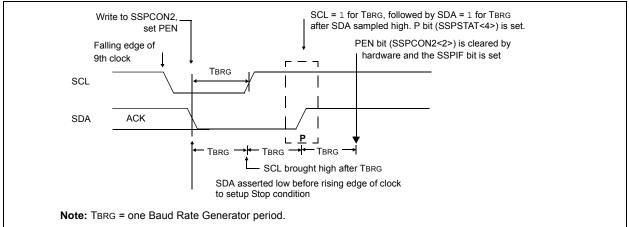

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 14-20: REPEAT START CONDITION WAVEFORM

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSP-CON2 is disabled until the Repeated Start condition is complete.

14.3.14 SLEEP OPERATION

While in Sleep mode, the I²C Slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

14.3.15 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

14.3.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit of the SSPSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

14.3.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the I^2C port to its Idle state (Figure 14-25).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

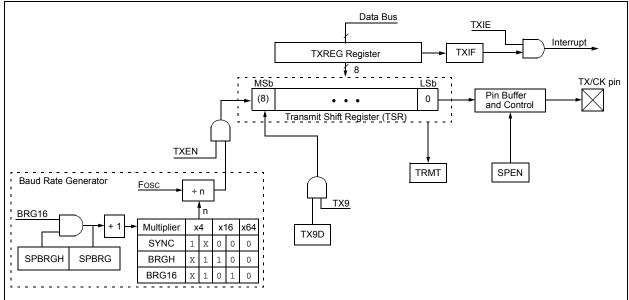
A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

15.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:


- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- · Received character framing error detection
- Half-duplex synchronous master
- Half-duplex synchronous slave
- · Programmable clock and data polarity

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- · 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 15-1 and Figure 15-2.

U-0 U-0 U-0 U-0 U-0 U-0 R/C-1 R/C-1 CP1 CP0 _ _ ____ ____ ____ bit 7 bit 0

REGISTER 23-6: CONFIG5L: CONFIGURATION REGISTER 5 LOW

Legend:	
R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit
······································	

bit 7-2	Unimplemented: Read as '0'
bit 1	CP1: Code Protection bit
	1 = Block 1 not code-protected
	0 = Block 1 code-protected
bit 0	CP0: Code Protection bit
	1 = Block 0 not code-protected
	0 = Block 0 code-protected

.. .

. .. - .

REGISTER 23-7: CONFIG5H: CONFIGURATION REGISTER 5 HIGH

. .

R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
CPD	CPB	—	—	—		_	—
bit 7							bit 0

Legend:	
R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit

bit 7	CPD: Data EEPROM Code Protection bit 1 = Data EEPROM not code-protected 0 = Data EEPROM code-protected
bit 6	CPB: Boot Block Code Protection bit 1 = Boot block not code-protected 0 = Boot block code-protected

bit 5-0 Unimplemented: Read as '0'

AND W wi	ith f		BC	Branch if	Carry	
ANDWF	f {,d {,a}}		Syntax:	BC n		
$0 \leq f \leq 255$			Operands:	-128 ≤ n ≤	127	
$d \in [0,1]$ $a \in [0,1]$			Operation:			
(W) .AND. (f) \rightarrow dest		Status Affected:	None		
N, Z			Encoding:	1110	0010 nn:	nn nnnn
0001	01da ff	ff ffff	Ũ	If the CARE		
register 'f. I in W. If 'd' is in register 'f If 'a' is '0', tt If 'a' is '1', tt GPR bank (If 'a' is '0' an set is enabl in Indexed I mode when	f 'd' is '0', the is '1', the result ' (default). he Access Ba he BSR is use (default). hd the extend ed, this instru- Literal Offset A ever $f \le 95$ (5	result is stored is stored back is selected. id to select the ed instruction ction operates Addressing Fh). See	• •	The 2's cor added to th incremente instruction, PC + 2 + 2 2-cycle inst 1 1(2)	nplement num e PC. Since th d to fetch the the new addre n. This instruc	e PC will have next ess will be
			•	$\cap 2$	03	Q4
Literal Offs	et Mode" for	details.				Write to PC
1			200040	'n'	Data	
1			No	No	No	No
				operation	operation	operation
Q2	Q3	Q4	•	$\cap 2$	03	Q4
Read register 'f'	Process Data	Write to destination	Decode	Read literal	Process Data	No operation
ANDWF tion = 17h = C2h	REG, 0, 0		PC	= ad	BC 5 dress (HERE)
	ANDWF $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ (W) .AND. (N, Z 0001 The content register 'f. I in W. If 'd' is in register 'f. I if 'a' is '0', ti If 'a' is '0', ti GPR bank (If 'a' is '0', ti If 'a' is	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $(W) .AND. (f) \rightarrow dest$ N, Z $\boxed{0001 01da ff}$ The contents of W are AN register 'f'. If 'd' is '0', the 1 in W. If 'd' is '1', the result in register 'f' (default). If 'a' is '0', the Access Ba If 'a' is '1', the BSR is use GPR bank (default). If 'a' is '0' and the extend set is enabled, this instru- in Indexed Literal Offset A mode whenever $f \le 95$ (5 Section 24.2.3 "Byte-Or Bit-Oriented Instruction Literal Offset Mode" for 1 1 $Q2 \qquad Q3$ Read Process register 'f' Data ANDWF REG, 0, 0 tion = 17h = C2h	ANDWF $f\{,d\{,a\}\}$ $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ (W) .AND. $(f) \rightarrow dest$ N, Z 0001 01da ffff fff The contents of W are AND'ed with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. 1 1 Q2 Q3 Q4 Read Process Write to destination ANDWF REG, 0, 0 tion = 17h = C2h	ANDWF $f\{.d\{.a\}\}$ Syntax: $0 \le f \le 255$ $G \in [0,1]$ $Operands:$ $a \in [0,1]$ $a \in [0,1]$ $Operation:$ $a \in [0,1]$ $Operation:$ $Operation:$ (W) .AND. (f) \rightarrow dest N, Z $Operation:$ $Ooll$ $Olda$ $ffff$ $ffff$ $The contents of W are AND'ed withDescription:Description:The contents of W are AND'ed withDescription:Description:Mi G' i is '1', the result is storedIf 'a' is '0' and the extended instructionVords:Set is enabled, this instruction operatesQ'Q'Mode whenever f \leq 95 (5Fh). SeeQ'Q'Set ion 24.2.3 "Byte-Oriented andDecode1Decode'Q'$	ANDWF $f\{.d\{.a\}\}$ Syntax:BCn $0 \le f \le 255$ $d \in [0,1]$ $f \le 255$ $d \in [0,1]$ $f \subseteq 0,1]$ $f \subseteq 0,$	ANDWFf {,d {a}} $0 \le f \le 255$ $G = [0,1]$ $a \in [0,1]$ $G = [0,1]$ $0 = [0,1]$ $G = $

RLNCF	Rotate Le	eft f (No	Carry)		
Syntax:	RLNCF	f {,d {,a}}			
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]			
Operation:	$(f \le n >) \rightarrow d$ $(f \le 7 >) \rightarrow d$		>,		
Status Affected:	N, Z				
Encoding:	0100	01da	ffff	ffff	
	one bit to the is placed in stored back If 'a' is '0', the If 'a' is '1', the GPR bank If 'a' is '0' and set is enable in Indexed mode when Section 24 Bit-Oriente Literal Offer	w. If 'd' k in regist he Acces he BSR is (default). and the ex led, this ir Literal Of never f ≤ ' J.2.3 "By ed Instru set Mode	is '1', the ter 'f' (defa s Bank is s used to s ktended ir nstruction ffset Addr 95 (5Fh). te-Orient ctions in	result is ault). selected. select the astruction operates essing See ed and Indexed	
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	•	Q4	
Decode	Read register 'f'	Proce: Data		Vrite to stination	
Example: Before Instruct REG After Instructio	= 1010 1	reg, .011	1, 0		
REG	= 0101 0	111			

RRCF	Rotate Ri	ght f thr	ough C	arry
Syntax:	RRCF f{,	d {,a}}		
Operands:	$0 \leq f \leq 255$			
	$d \in [0,1]$			
Operation	$a \in [0,1]$	aten 1		
Operation:	$(f < n >) \rightarrow de$ $(f < 0 >) \rightarrow C$,	
	$(C) \rightarrow dest$			
Status Affected:	C, N, Z			
Encoding:	0011	00da	ffff	ffff
Description:	The conten one bit to th flag. If 'd' is If 'd' is '1', t register 'f' (If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a	e right thi '0', the re he result i default). he Access he BSR is (default). nd the ext	rough the sult is pla is placed s Bank is used to tended in	e CARRY aced in W back in selected select the
	set is enabl in Indexed mode when Section 24 Bit-Oriente Literal Offs	Literal Off lever f ≤ 9 .2.3 "Byte d Instruc set Mode'	set Addro 5 (5Fh). e-Oriento tions in	essing See ed and Indexed
Words:	in Indexed mode when Section 24 Bit-Oriente Literal Offs	Literal Off lever f ≤ 9 .2.3 "Byte d Instruc set Mode'	set Addro 5 (5Fh) e-Oriento tions in " for deta	essing See ed and Indexed
Words: Cycles:	in Indexed mode wher Section 24 Bit-Oriente Literal Offs	Literal Off lever f ≤ 9 .2.3 "Byte d Instruc set Mode'	set Addro 5 (5Fh) e-Oriento tions in " for deta	essing See ed and Indexed
	in Indexed mode when Section 24 Bit-Oriente Literal Offs C	Literal Off lever f ≤ 9 .2.3 "Byte d Instruc set Mode'	set Addro 5 (5Fh) e-Oriento tions in " for deta	essing See ed and Indexed
Cycles:	in Indexed mode when Section 24 Bit-Oriente Literal Offs C	Literal Off lever f ≤ 9 .2.3 "Byte d Instruc set Mode'	set Addro 5 (5Fh) e-Oriento tions in " for deta	essing See ed and Indexed
Cycles: Q Cycle Activity:	in Indexed mode when Section 24 Bit-Oriente Literal Offs C 1	Literal Off ever f ≤ 9 2.3 "Byte d Instruc set Mode" rec	set Addru 5 (5Fh). e-Oriento tions in " for deta gister f	essing See ed and Indexed ails.
Cycles: Q Cycle Activity: Q1 Decode	in Indexed mode wher Section 24 Bit-Oriente Literal Offs C 1 1 1 2 Q2 Read register 'f'	Literal Off ever f ≤ 9 .2.3 "Byte d Instruc set Mode" rec Q3 Proces Data	set Addru 5 (5Fh). e-Orientu titions in " for deta gister f	essing See ed and Indexed ails. Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example:	in Indexed mode when Section 24 Bit-Oriente Literal Offs C 1 1 1 2 Q2 Read register 'f' RRCF	Literal Off ever f ≤ 9 .2.3 "Byte d Instruction set Mode" → reg Q3 Proces	set Addru 5 (5Fh). e-Orientu titions in " for deta gister f	essing See ed and Indexed ails. Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct	in Indexed mode when Section 24 Bit-Oriente Literal Offs C 1 1 1 2 Q2 Read register 'f' RRCF	Literal Off ever f ≤ 9 .2.3 "Byte d Instruc set Mode" → rec Q3 Proces Data REG,	set Addru 5 (5Fh). e-Orientu titions in " for deta gister f	essing See ed and Indexed ails. Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C	in Indexed mode when Section 24 Bit-Oriente Literal Offs C 1 1 1 2 Q2 Read register 'f' RRCF ction = 1110 C = 0	Literal Off ever f ≤ 9 .2.3 "Byte d Instruc set Mode" → rec Q3 Proces Data REG,	set Addru 5 (5Fh). e-Orientu titions in " for deta gister f	essing See ed and Indexed hils. Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instructi	in Indexed mode when Section 24 Bit-Oriente Literal Offs 1 1 1 Q2 Read register 'f' RRCF ction = 1110 C = 0	Literal Off ever f ≤ 9 .2.3 "Byte d Instruct set Mode" → rec Q3 Proces Data REG, 110	set Addru 5 (5Fh). e-Orientu titions in " for deta gister f	essing See ed and Indexed hils. Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C	in Indexed mode when Section 24 Bit-Oriente Literal Offs C 1 1 1 Q2 Read register 'f' RRCF Ction = 1110 C on = 1110 C	Literal Off ever f ≤ 9 .2.3 "Byte d Instruct set Mode" → rec Q3 Proces Data REG, 110	set Addru 5 (5Fh). e-Orientu titions in " for deta gister f	essing See ed and Indexed iils. Q4 Write to

SUBLW	Subtract	W from	literal	
Syntax:	SUBLW I	<		
Operands:	$0 \le k \le 25$	5		
Operation:	$k-(W) \rightarrow$	$k-(W)\toW$		
Status Affected:	N, OV, C,	N, OV, C, DC, Z		
Encoding:	0000	1000	kkkk	kkkk
Description	W is subtr literal 'k'. T			
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read literal 'k'	Proces Data	s W	rite to W
Example 1:	SUBLW ()2h		
Before Instruc W C After Instructio W C Z	= 01h = ? on = 01h = 1 ; re = 0	esult is pos	sitive	
N Example 2:	= 0 SUBLW ()2h		
Example 2. Before Instruc W C After Instructio W C Z N	etion = 02h = ? on = 00h	esult is zer	°0	
Example 3:	SUBLW ()2h		
Before Instruc W C After Instructio W C Z N	= 03h = ? on = FFh;(2's comple esult is ne		

SUBWF	Sub	tract	W from f	
Syntax:	SUB	WF	f {,d {,a}}	
Operands:	0 ≤ f d ∈ [a ∈ [-	i	
Operation:	(f) —	(W) –	→ dest	
Status Affected:	N, O	V, C,	DC, Z	
Encoding:	01	01	11da fff	ff ffff
Description:	comp result (defa If 'a' select to see If 'a' set is oper Addr $f \leq 9$ "Byt Instr	bleme t is st t is st ult). is '0', cted. I lect th is '0' a s enal ates i essin 5 (5Ff e-Ori uctio	V from register int method). If ored in W. If 'd ored back in re- the Access Ba f 'a' is '1', the I he GPR bank (and the extendi- bled, this instru- n Indexed Liter g mode whene h). See Section ented and Bit- ns in Indexed details.	'd' is '0', the l' is '1', the egister 'f' ank is BSR is used 'default). ed instruction iction ral Offset ever n 24.2.3 Oriented
Words:	1 1	e tor	details.	
Cycles:	1			
Q Cycle Activity:	•			
Q1	Q2		Q3	Q4
Decode	Rea registe	d	Process Data	Write to destination
Example 1:	SUB	√F	REG, 1, 0	
Before Instruc REG W C After Instructic	tion = 3 = 2 = ?			
Red REG W C Z N	= 1 = 2 = 1 = 0 = 0	; re	esult is positive	2
Example 2:	SUB	√F	REG, 0, 0	
Before Instruc REG W C After Instructic REG	= 2 = 2 = ? on = 2			
W C Z N	= 0 = 1 = 1 = 0		esult is zero	
Example 3: Refere Instruc	SUBI	√F	REG, 1, 0	
Before Instruc REG W C	= 1 = 2 = ?			
After Instructio	= FF	h ;(2	's complement	t)
W C Z N	= 2 = 0 = 0 = 1	; re	esult is negativ	e

MOVSS	Move Indexed to Indexed					
Syntax:	MOVSS	[z _s], [z _d]				
Operands:	0	$\begin{array}{l} 0 \leq z_s \leq 127 \\ 0 \leq z_d \leq 127 \end{array}$				
Operation:	((FSR2) +	$z_s) \rightarrow ((F$	SR2) + z _d))		
Status Affected:	None					
Encoding: 1st word (source) 2nd word (dest.)	1110 1111	1011 xxxx	lzzz xzzz	zzzz _s zzzz _d		
Description	The conter moved to t addresses registers a 7-bit literal respective registers c the 4096-b (000h to F The MOVS: PCL, TOS destination If the resul an indirect value retur resultant d an indirect	the destin of the source determ offsets 'z ly, to the v an be loc oyte data in FFh). s instructi U, TOSH negister. tant source addressi ned will b estination addressi	ation regis urce and du- nined by ac s' or 'z _d ', value of FS ated anyw memory sp on cannot or TOSL a ce address ng register te 00h. If th a address p ng register	ter. The estination dding the SR2. Both here in bace use the as the points to r, the points to r, the		
Words:	2					
Cycles:	2					
Q Cycle Activity:				.		
Q1	Q2	Q3	5	Q4		

Q1	Q2	Q3	Q4
Decode	Determine	Determine	Read
	source addr	source addr	source reg
Decode	Determine dest addr	Determine dest addr	Write to dest reg

Example:	MOVSS	[05h],	[06h]
Before Instructio FSR2 Contents	on =	80h	
of 85h Contents	=	33h	
of 86h	=	11h	
After Instruction FSR2 Contents	=	80h	
of 85h Contents	=	33h	
of 86h	=	33h	

Syntax:	PUSHL k		•		
,					
Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow (FSR2),$ FSR2 – 1 \rightarrow FSR2				
Status Affected:	None				
Encoding:	1110	1010	kkkk	kkkk	
	is decremer This instruc			•	
Words:	onto a softv				
	onto a softw 1				
	onto a softw 1 1				
Words: Cycles: Q Cycle Activity Q1	onto a softw 1 1	vare stack.		Q4	
Cycles: Q Cycle Activity	onto a softw 1 1 /: Q2	vare stack. k' Pro			
Cycles: Q Cycle Activity Q1	onto a softw 1 1 /: Q2	vare stack. k' Pro	Q3 Dcess	Q4 Write to	

After Instruction		
FSR2H:FSR2L Memory (01ECh)	=	01EBh 08h

SUBFSR	Subtract	Subtract Literal from FSR				
Syntax:	SUBFSR	SUBFSR f, k				
Operands:	$0 \le k \le 63$	$0 \leq k \leq 63$				
	f ∈ [0, 1,	f ∈ [0, 1, 2]				
Operation:	FSR(f) – k	$s \rightarrow FSRf$				
Status Affected:	None					
Encoding:	1110	1001	ffkk	kkkk		
Description:	The 6-bit I the conter 'f'.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Proce Data		Write to destination		
Example:	SUBFSR	2, 23h				

Example: Before Instruction

Delote institu	CUOII	
FSR2	=	03FFh
After Instruct	ion	
FSR2	=	03DCh

Syntax	:	SUBULNK k						
Operar	nds:	$0 \le k \le 63$						
Operat	tion:	$FSR2 - k \rightarrow FSR2$						
		$(TOS) \rightarrow PC$						
Status	Affected:	None	e					
Encodi	ing:	11	10	100)1	11kk	kkkk	
		exec secc	ute; a nd cyc	NOP is		wo cycle ormed d		
Words: Cycles Q Cvc	:	the s '11') 1 2	SUBFSF	e instr	uctior	•	f =	al case o 3 (binary
Cycles	-	the s '11') 1 2	SUBFSF	e instr	only o	i, where	f =	
Cycles	: cle Activity	the s '11') 1 2 /:	SUBFSF	a instr rates	only o	n, where on FSR2	f =	3 (binary
Cycles	cle Activity Q1	the s '11') 1 2 /:	it ope	a instr rates	Pro	n, where on FSR2 Q3 ocess	f =	3 (binary Q4 Write to

SUBULNK 23h

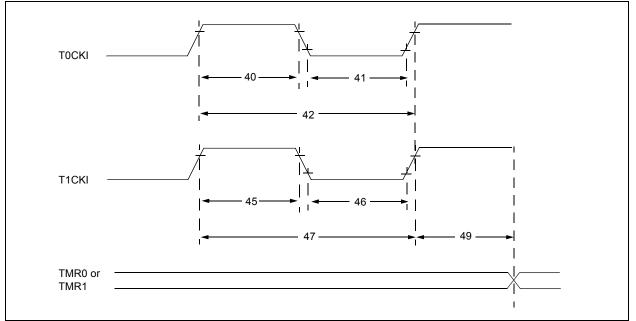
•							
Before Instruction							
FSR2	=	03FFh					
PC	=	0100h					
After Instructi	on						
FSR2	=	03DCh					
PC	=	(TOS)					

26.2 Standard Operating Conditions

The standard operating conditions for any device are defined as:	
Operating Voltage: $VDDMIN \le VDD \le VDDMAX$	
Operating Temperature: $TA_MIN \le TA \le TA_MAX$	
VDD — Operating Supply Voltage ⁽¹⁾	
PIC18LF1XK22	
VDDMIN (Fosc \leq 16 MHz)	+1.8V
VDDMIN (Fosc \leq 20 MHz)	+2.0V
VDDMIN (Fosc \leq 64 MHz)	+3.0V
VDDMAX	+3.6V
PIC18F1XK22	
VDDMIN (Fosc \leq 20 MHz)	+2.3V
VDDMIN (Fosc \leq 64 MHz)	+3.0V
VDDMAX	+5.5V
TA — Operating Ambient Temperature Range	
Industrial Temperature	
Та_мім	40°C
Та_мах	+85°C
Extended Temperature	
Та_мім	40°C
Та_мах	+125°C
Note 1: See Parameter D001, DC Characteristics: Supply Voltage.	

26.3 DC Characteristics

TABLE 26-1:SUPPLY VOLTAGE

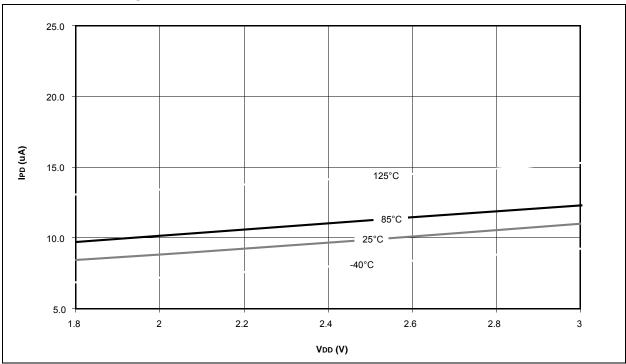

PIC18LF	1XK22		Standard Operating Conditions (unless otherwise stated)						
PIC18F1XK22				Standard Operating Conditions (unless otherwise stated)					
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions		
D001	Vdd	Supply Voltage							
		PIC18LF1XK22	1.8	_	3.6	V	Fosc ≤ 16 MHz		
			2.0		3.6	V	Fosc ≤ 20 MHz		
			3.0		3.6	V	$FOSC \le 64 \text{ MHz} \le 85^{\circ}C$		
			3.0	_	3.6	V	$Fosc \le 48 \text{ MHz} \le 125^{\circ}C$		
D001		PIC18F1XK22	2.3	-	5.5	V	Fosc ≤ 20 MHz		
			3.0		5.5	V	$FOSC \le 64 \text{ MHz} \le 85^{\circ}C$		
			3.0		5.5	V	$FOSC \le 48 \text{ MHz} \le 125^{\circ}C$		
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾							
		PIC18LF1XK22	1.5	_	_	V	Device in Sleep mode		
D002*		PIC18F1XK22	1.7	_	_	V	Device in Sleep mode		
	VPOR*	Power-on Reset Release Voltage		1.6	_	V			
	VPORR*	Power-on Reset Rearm Voltage	_	0.8	_	V			
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms			

* These parameters are characterized but not tested.

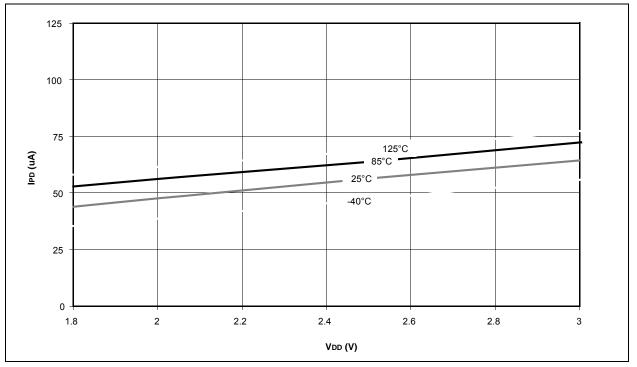
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

FIGURE 26-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS


TABLE 26-17:	TIMER0 AND TIMER	1 EXTERNAL CLC	OCK REQUIREMENTS
--------------	------------------	-----------------------	------------------

Standar	d Operating Co	onditions (u	nless otherwi	se stated)					
Param. No.	Sym.		Characteris	stic	Min.	Тур.†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High-Pulse Width No Prescaler			0.5 Tcy + 20	—		ns	
				With Prescaler	10	—	_	ns	
41*	T⊤0L	T0CKI Low-Pulse Width No Prescaler		0.5 Tcy + 20	—		ns		
		With Prescaler		10	_		ns		
42*	Ττ0Ρ	T0CKI Peri	od		Greater of: 20 or <u>Tcy + 40</u> N	_		ns	N = prescale value (2, 4,, 256)
45*	Тт1Н	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30	_		ns	
46*	T⊤1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20	—		ns	
			Synchronous, with Prescaler		15	—		ns	
			Asynchronous		30	_		ns	
47*	TT1P T1CKI Synchronous Input Period			Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (1, 2, 4, 8)	
				Asynchronous		—		ns	
48	F⊤1		illator Input Frequency Range enabled by setting bit T1OS-		32.4	32.76 8	33.1	kHz	
49*	TCKEZTMR1	Delay from Increment	External Clock Edge to Timer		2 Tosc	_	7 Tosc		Timers in Sync mode


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 27-5: PIC18LF1XK22 ICOMP – TYPICAL IPD FOR COMPARATOR IN LOW-POWER MODE

