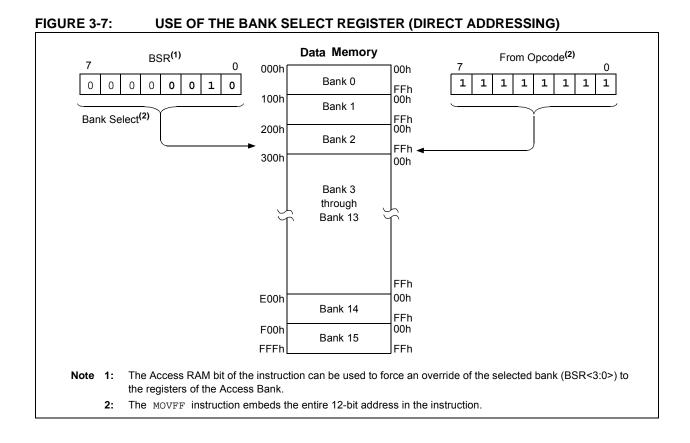


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f14k22t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4 Erasing Flash Program Memory

The minimum erase block is 32 words or 64 bytes. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

When initiating an erase sequence from the Microcontroller itself, a block of 64 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. The TBLPTR<5:0> bits are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

The write initiate sequence for EECON2, shown as steps 4 through 6 in **Section 4.4.1** "**Flash Program Memory Erase Sequence**", is used to guard against accidental writes. This is sometimes referred to as a long write.

A long write is necessary for erasing the internal Flash. Instruction execution is halted during the long write cycle. The long write is terminated by the internal programming timer.

4.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory is:

- 1. Load Table Pointer register with address of block being erased.
- 2. Set the EECON1 register for the erase operation:
 - set EEPGD bit to point to program memory;
 - · clear the CFGS bit to access program memory;
 - set WREN bit to enable writes;
 - set FREE bit to enable the erase.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write 0AAh to EECON2.
- 6. Set the WR bit. This will begin the block erase cycle.
- 7. The CPU will stall for duration of the erase (about 2 ms using internal timer).
- 8. Re-enable interrupts.

	MOVLW	CODE_ADDR_UPPER	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
ERASE_BL	OCK		
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable block Erase operation
	BCF	INTCON, GIE	; disable interrupts
Required	MOVLW	55h	
Sequence	MOVWF	EECON2	; write 55h
	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts

EXAMPLE 4-2: ERASING A FLASH PROGRAM MEMORY BLOCK

8.4 **Port Analog Control**

Some port pins are multiplexed with analog functions such as the Analog-to-Digital Converter and comparators. When these I/O pins are to be used as analog inputs it is necessary to disable the digital input buffer to avoid excessive current caused by improper biasing of the digital input. Individual control of the digital input buffers on pins which share analog functions is provided by the ANSEL and ANSELH registers. Setting an ANSx bit high will disable the associated digital input buffer and cause all reads of that pin to return '0' while allowing analog functions of that pin to operate correctly.

The state of the ANSx bits has no affect on digital output functions. A pin with the associated TRISx bit clear and ANSx bit set will still operate as a digital output but the Input mode will be analog.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
bit 7	·						bit
Legend:							
R = Readal		W = Writable		•	mented bit, re		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7	ANS7: RC3	Analog Select (Control bit				
		nput buffer of RC					
	0	nput buffer of RC					
bit 6	ANS6: RC2	Analog Select C	Control bit				
		nput buffer of RC					
	0 = Digital ii	nput buffer of RC	2 is enabled				
bit 5	ANS5: RC1	Analog Select C	Control bit				
		nput buffer of RC					
	0 = Digital ii	nput buffer of RC	1 is enabled				
bit 4		Analog Select C					
	•	nput buffer of RC					
	•	nput buffer of RC					
bit 3		Analog Select C					
		nput buffer of RA					
1.1.0	0	nput buffer of RA					
bit 2		Analog Select C					
		nput buffer of RA nput buffer of RA					
bit 1	•	Analog Select C					
		nput buffer of RA					
	0	nput buffer of RA					
bit 0	•	Analog Select C					
		nput buffer of RA					
	0						

	REGISTER 8-14:	ANSEL: ANALOG SELECT REGISTER
--	----------------	-------------------------------

0 = Digital input buffer of RA0 is enabled

13.4.8 OPERATION IN POWER-MANAGED MODES

In Sleep mode, all clock sources are disabled. Timer2 will not increment and the state of the module will not change. If the ECCP pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state. If Two-Speed Start-ups are enabled, the initial start-up frequency from HFINTOSC and the postscaler may not be stable immediately.

In PRI_IDLE mode, the primary clock will continue to clock the ECCP module without change. In all other power-managed modes, the selected power-managed mode clock will clock Timer2. Other power-managed mode clocks will most likely be different than the primary clock frequency.

13.4.8.1 Operation with Fail-Safe Clock Monitor

If the Fail-Safe Clock Monitor is enabled, a clock failure will force the device into the RC_RUN Power-Managed mode and the OSCFIF bit of the PIR2 register will be set. The ECCP will then be clocked from the internal oscillator clock source, which may have a different clock frequency than the primary clock.

See the previous section for additional details.

13.4.9 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force all ports to Input mode and the CCP registers to their Reset states.

This forces the enhanced CCP module to reset to a state compatible with the standard CCP module.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
CCPR1H	Capture/Co	mpare/PWM	Register 1, H	igh Byte					247	
CCPR1L	Capture/Co	mpare/PWM	Register 1, Lo	ow Byte					247	
CCP1CON	P1M1	P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0							247	
ECCP1AS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	247	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	245	
IPR1	_	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	248	
IPR2	OSCFIP	OSCFIP C1IP C2IP EEIP BCLIP _ TMR3IP _							248	
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	248	
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCLIE		TMR3IE	_	248	
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	248	
PIR2	OSCFIF C1IF C2IF EEIF BCLIF — TMR3IF —									
PR2	Timer2 Peri	Timer2 Period Register								
PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	247	
RCON	IPEN	SBOREN	-	RI	TO	PD	POR	BOR	246	
TMR1H	Timer1 Reg	ister, High By	rte						246	
TMR1L	Timer1 Reg	ister, Low By	te						246	
TMR2	Timer2 Reg	ister							246	
TMR3H	Timer3 Reg	ister, High By	rte						247	
TMR3L	Timer3 Reg	Timer3 Register, Low Byte								
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	248	
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	246	
T2CON		T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	246	
T3CON	RD16	_	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	247	

TABLE 13-3: REGISTERS ASSOCIATED WITH ECCP1 MODULE AND TIMER1 TO TIMER3

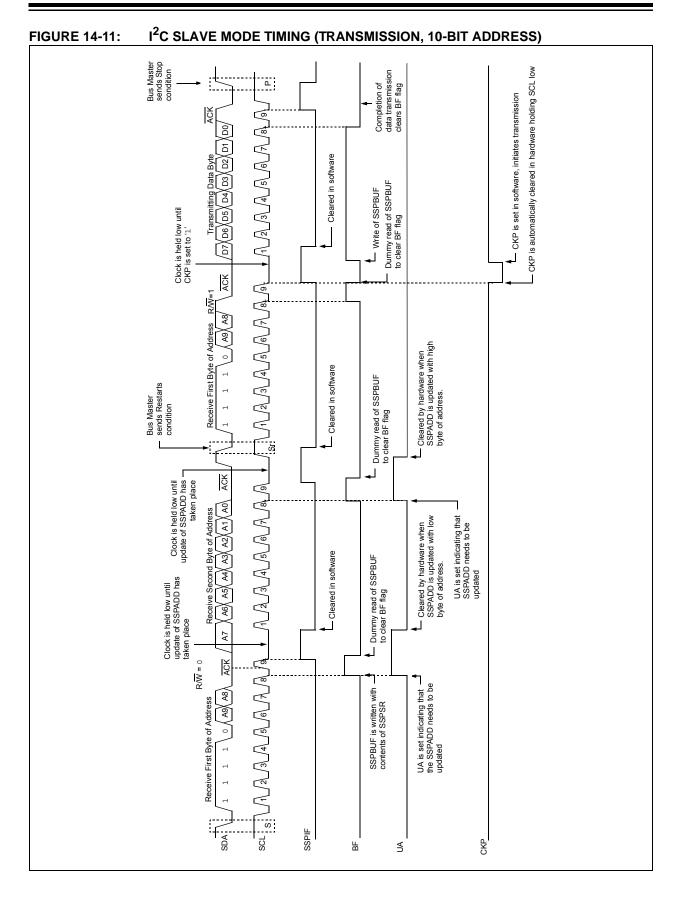
Legend: — = unimplemented, read as '0'. Shaded cells are not used during ECCP operation.

14.2.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- SSPCON1 Control Register
- SSPSTAT STATUS register
- SSPBUF Serial Receive/Transmit Buffer
- SSPSR Shift Register (Not directly accessible)

SSPCON1 and SSPSTAT are the control and STATUS registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower six bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.


SSPSR is the shift register used for shifting data in and out. SSPBUF provides indirect access to the SSPSR register. SSPBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not double-buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 14-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7	·	•		•			bit
Legend:							
R = Reada		W = Writable		•	mented bit, rea		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 7	SMP: Samp	le bit					
	SPI Master r						
	1 = Input da	ta sampled at er					
	•	ta sampled at m	iddle of data	output time			
	SPI Slave m	iode: e cleared when					
h # C		lock Select bit ⁽¹⁾		n Slave mode.			
bit 6		t occurs on trans		tive to Idle clock	k state		
		t occurs on trans					
bit 5	D/A: Data/A	ddress bit					
	Used in I ² C	mode only.					
bit 4	P: Stop bit						
	Used in I ² C	mode only. This	bit is cleared	I when the MSS	P module is di	sabled, SSPEN	is cleared.
bit 3	S: Start bit						
	Used in I ² C						
bit 2		Write Information	n bit				
	Used in I ² C	,					
bit 1	UA: Update						
	Used in I ² C	,					
bit 0		ull Status bit (Re		only)			
		complete, SSP not complete, S		notv			
		•					
Note 1:	Polarity of clock s	state is set by th	e CKP bit of	the SSPCON1 r	register.		

15.4.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART. If the RX/DT or TX/CK pins are shared with an analog peripheral the analog I/O functions must be disabled by clearing the corresponding ANSEL bits.

RX/DT and TX/CK pin output drivers must be disabled by setting the corresponding TRIS bits.

15.4.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see **Section 15.4.1.3 "Synchronous Master Transmission")**, except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 15.4.2.2 Synchronous Slave Transmission Set-up
- 1. Set the SYNC and SPEN bits and clear the CSRC bit. Set the TRIS bits corresponding to the RX/DT and TX/CK I/O pins.
- 2. Clear the CREN and SREN bits.
- If using interrupts, ensure that the GIE and PEIE bits of the INTCON register are set and set the TXIE bit.
- 4. If 9-bit transmission is desired, set the TX9 bit.
- 5. Enable transmission by setting the TXEN bit.
- 6. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 7. Start transmission by writing the Least Significant eight bits to the TXREG register.

TABLE 13-3. REGISTERS ASSOCIATED WITTSTRETIKONOOG SERVE TRANSMISSION									
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
BAUDCON	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	247
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	245
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	248
PIE1		ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	248
PIR1		ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	248
RCSTA	SPEN	PEN RX9 SREN CREN ADDEN FERR OERR RX9D						247	
SPBRG	EUSART B	aud Rate Ge	enerator Re	gister, Low	Byte				247
SPBRGH	EUSART B	aud Rate Ge	enerator Re	gister, High	Byte				247
TRISC	TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0						248		
TXREG	EUSART T	ransmit Reg	ister						247
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	247
	• • •		(-1.0)				•		

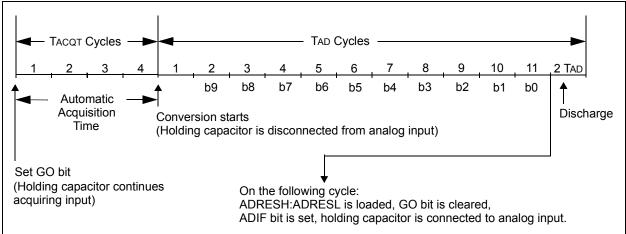
TABLE 15-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

16.2 ADC Operation

16.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will, depending on the ACQT bits of the ADCON2 register, either immediately start the Analog-to-Digital conversion or start an acquisition delay followed by the Analog-to-Digital conversion. Figure 16-3 shows the operation of the A/D converter after the GO bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into SLEEP mode before the conversion begins.


Figure 16-4 shows the operation of the A/D converter after the GO bit has been set and the ACQT<2:0> bits are set to '010' which selects a 4 TAD acquisition time before the conversion starts.

Note: The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section 16.2.9 "A/D Conversion Procedure".

FIGURE 16-3: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

T <u>cy - Tai</u>	D TAD1	TAD2	TAD3	TAD4	TAD5	TAD6	TAD7	TAD8	TAD9	TAD10	TAD11	2 TAD
≜ ↑	∱	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	↑ '
	Conver	sion sta	arts									Discharge
Holdin	ig capao	citor is	discon	nected	from a	analog i	input (t	ypically	/ 100 n	is)		
l Set GO	bit						\mathbf{I}					Į
	On the following cycle: ADRESH:ADRESL is loaded, GO bit is cleared,											
												eared, cted to analog input.
									9 00.00	0.10.10		eter te analog inpati

FIGURE 16-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

16.2.10 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

Note:	Analog pin control is performed by the
	ANSEL and ANSELH registers. For
	ANSEL and ANSELH registers, see
	Register 8-14 and Register 8-15,
	respectively.

REGISTER 16-1: ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—		CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON		
bit 7			•	•			bit 0		
Legend:									
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown						

bit 7-6 Unimplemented: Read as '0'

bit 5-2	CHS<3:0>: Analog Channel Select bits
	0000 = ANO
	0001 = AN1
	0010 = AN2
	0011 = AN3
	0100 = AN4
	0101 = AN5
	0110 = AN6
	0111 = AN7
	1000 = AN8
	1001 = AN9
	1010 = AN10
	1011 = AN11
	1100 = Reserved
	1101 = Reserved
	$1110 = DAC^{(2)}$
	$1111 = FVR^{(2)}$
bit 1	GO/DONE: A/D Conversion Status bit
	1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.
	This bit is automatically cleared by hardware when the A/D conversion has completed. 0 = A/D conversion completed/not in progress
bit 0	ADON: ADC Enable bit
	1 = ADC is enabled
	0 = ADC is disabled and consumes no operating current
Note 1:	Selecting reserved channels will yield unpredictable results as unimplemented input channels are left floating.
2:	See Section 20.0 "Fixed Voltage Reference (FVR)" for more information.

17.8 Additional Comparator Features

There are four additional comparator features:

- Simultaneous read of comparator outputs
- Internal reference selection
- · Hysteresis selection
- Output Synchronization

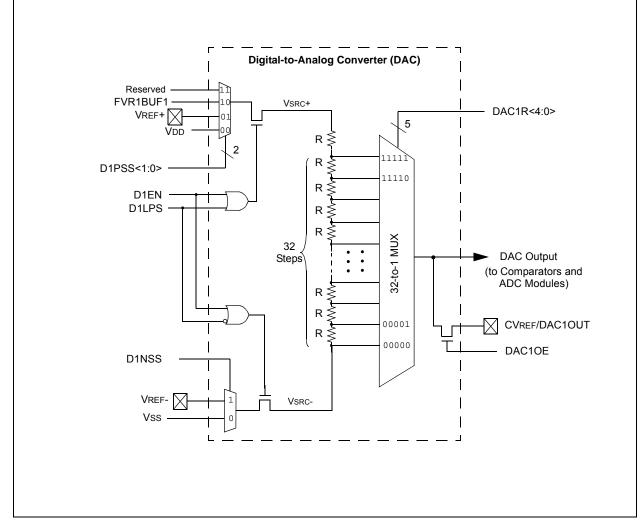
17.8.1 SIMULTANEOUS COMPARATOR OUTPUT READ

The MC1OUT and MC2OUT bits of the CM2CON1 register are mirror copies of both comparator outputs. The ability to read both outputs simultaneously from a single register eliminates the timing skew of reading separate registers.

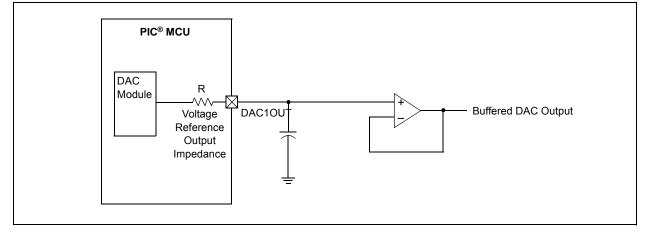
Note 1:	Obtaining	the	status	of	C1	IOUT	or
	C2OUT by	read	ling CM	2CO	N1	does	not
	affect the o	compa	arator in	terru	ıpt ı	misma	atch
	registers.						

17.8.2 INTERNAL REFERENCE SELECTION

There are two internal voltage references available to the noninverting input of each comparator. One of these is the Fixed Voltage Reference (FVR) and the other is the variable Digital-to-Analog Converter (CVREF/DAC). The CxRSEL bit of the CM2CON register determines which of these references is routed to the Digital-to-Analog Converter output (CVREF/DAC). Further routing to the comparator is accomplished by the CxR bit of the CMxCON0 register. See **20.0** "**Fixed Voltage Reference (FVR)**" and Figure 17-2 and Figure 17-3 for more detail.


17.8.3 COMPARATOR HYSTERESIS

The Comparator Cx have selectable hysteresis. The hysteresis can be enabled by setting the CxHYS bit of the CM2CON1 register. See **Section 26.0** "**Electrical Specifications**" for more details.


17.8.4 SYNCHRONIZING COMPARATOR OUTPUT TO TIMER 1

The Comparator Cx output can be synchronized with Timer1 by setting the CxSYNC bit of the CM2CON1 register. When enabled, the Cx output is latched on the rising edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the rising edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 17-2 and Figure 17-3) and the Timer1 Block Diagram (Figure 17-2) for more information.

FIGURE 21-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

22.2 Master Clear (MCLR)

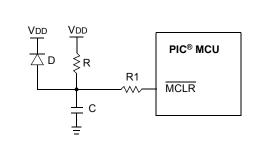
The MCLR pin provides a method for triggering an external Reset of the device. A Reset is generated by holding the pin low. These devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The MCLR pin is not driven low by any internal Resets, including the WDT.

In PIC18(L)F1XK22 devices, the MCLR input can be disabled with the MCLRE Configuration bit. When MCLR is disabled, the pin becomes a digital input. See **Section 8.1 "PORTA, TRISA and LATA Registers"** for more information.

22.3 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.


To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the POR bit of the RCON register. The state of the bit is set to '0' whenever a POR occurs; it does not change for any other Reset event. POR is not reset to '1' by any hardware event. To capture multiple events, the user must manually set the bit to '1' by software following any POR.

FIGURE 22-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.
 - 3: $\underline{R1 \ge 1} \ k\Omega$ will limit any current flowing into \overline{MCLR} from external capacitor C, in the event of \overline{MCLR}/VPP pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

				REGISTER 2						
U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1			
—	—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN			
bit 7							bit			
Legend:										
R = Readable bit P = Programmable bit			U = Unimplemented bit, read as '0'							
-n = Value when device is unprogrammed			x = Bit is unkr	nown						
		0								
bit 7-5	Unimplement	ted: Read as	ʻ0'							
bit 4-1	WDTPS<3:0>: Watchdog Timer Postscale Select bits									
	1111 = 1:32,7	68								
	1110 = 1:16,3	384								
	1101 = 1:8,1 9									
	1100 = 1:4,0 9									
	1011 = 1:2,0 4									
	1010 = 1:1,024									
	1001 = 1:512									
	1000 = 1:256									
	0111 = 1:128									
	0110 = 1:64 0101 = 1:32									
	0101 = 1.32 0100 = 1.16									
	0100 = 1.10 0011 = 1.8									
	0011 = 1.8 0010 = 1.4									
	0010 = 1.4 0001 = 1.2									
	0000 = 1:1									
bit 0		obdog Timor I	Enable bit							
	WDTEN: Watchdog Timer Enable bit 1 = WDT is always enabled. SWDTEN bit has no effect									
	0 = WDT is controlled by SWDTEN bit of the WDTCON register									

РОР		Рор Тор о	Pop Top of Return Stack					
Syntax	:	POP						
Operands:		None	None					
Operat	ion:	$(TOS) \rightarrow bi$	$(TOS) \rightarrow bit bucket$					
Status	Affected:	None	None					
Encodi	ing:	0000	0000	000	0	0110		
Description:		The TOS va stack and is then becom was pushed This instruc- the user to stack to inc	s discard nes the p d onto th ction is p properly	led. Th previou e retui rovide mana	ne To is va n st d to ge tl	OS value Ilue that ack. enable he return		
Words:		1						
Cycles:		1						
Q Cycle Activity:								
	Q1	Q2	Q	3		Q4		
	Decode	No operation	POP ⁻ valu		op	No peration		
<u>Examp</u>	<u>le</u> :	POP GOTO	NEW					
Before Instruction TOS Stack (1 level down After Instruction TOS PC		level down)	= (0031A: 014332 014332 NEW	2h			

PUSH		Push Top	Push Top of Return Stack					
Syntax:		PUSH						
Operands:		None						
Oper	ation:	$(PC + 2) \rightarrow$	$(PC + 2) \rightarrow TOS$					
Statu	s Affected:	None						
Enco	oding:	0000	0000	000	0	0101		
Description:		the return s value is pus This instruc software sta	The PC + 2 is pushed onto the top of the return stack. The previous TOS value is pushed down on the stack. This instruction allows implementing a software stack by modifying TOS and then pushing it onto the return stack.					
Word	ls:	1						
Cycles:		1						
Q Cycle Activity:								
	Q1	Q2	G	3		Q4		
	Decode	PUSH PC + 2 onto return stack		lo ation	op	No peration		
Exan	nple:	PUSH						
	Before Instruc TOS PC	ction	= =	345Ah 0124h				
	After Instruction	on	=	0126h				

25.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

25.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

25.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

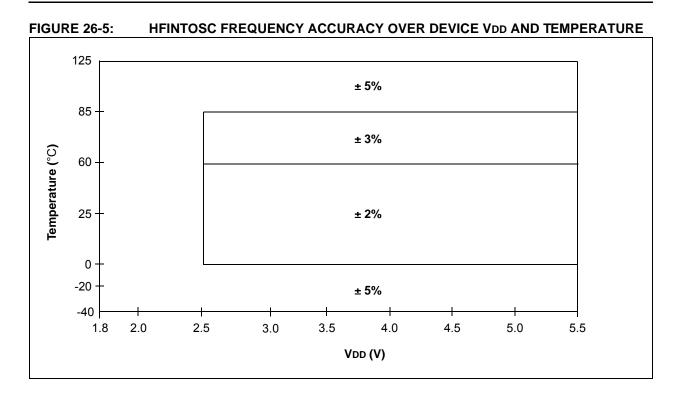
- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

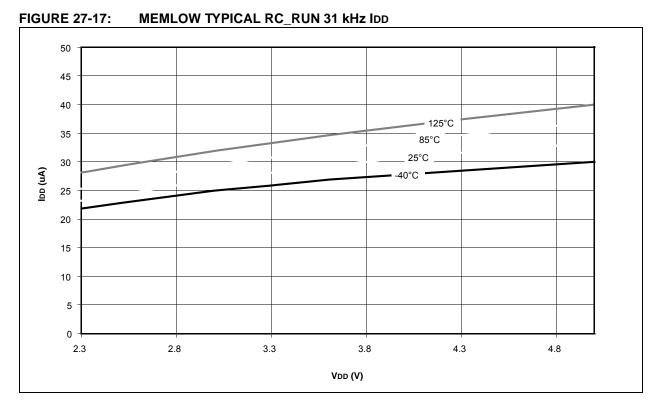
25.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

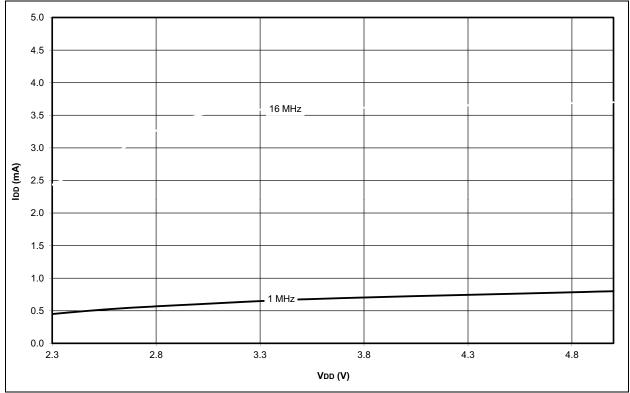
- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

26.0 ELECTRICAL SPECIFICATIONS

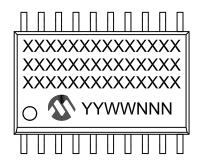

26.1 Absolute Maximum Ratings^(†)

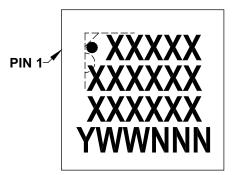

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC18F1XK22	0.3V to +6.5V
PIC18LF1XK22	-0.3V to +4.0V
on MCLR pin	-0.3V to +9.0V
on all other pins	0.3V to (VDD + 0.3V)
Maximum current ⁽¹⁾	
on Vss pin	
-40°C \leq TA \leq +85°C, Industrial	250 mA
-40°C \leq TA \leq +125°C, Extended	
on VDD pin	
-40°C \leq TA \leq +85°C,Industrial	250 mA
-40°C \leq TA \leq +125°C, Extended	
sunk by all ports	
sourced by all ports	
Maximum output current	
sunk by any I/O pin	±50 mA
sourced by any I/O pin	
Clamp current, Ik (VPIN < 0 or VPIN > VDD)	
Total power dissipation ⁽²⁾	
···· F · · · · · · · · · · · · · · · ·	

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 26-8 to calculate device specifications.

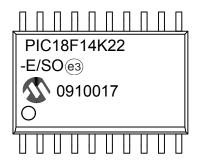

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD - Σ IOH} + Σ {VDD - VOH) x IOH} + Σ (VOL x IOI).

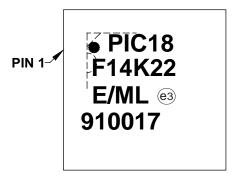
† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.





Package Marking Information (Continued)


20-Lead SOIC (7.50 mm)


20-Lead QFN (4x4x0.9 mm)

Example

Example

Legend	4: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.		
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.			

APPENDIX A: REVISION HISTORY

Revision A (February 2009)

Original data sheet for PIC18(L)F1XK22 devices.

Revision B (04/2009)

Revised data sheet title; Revised Peripheral Features section; Revised Table 3-1, Table 3-2; Revised Example 15-1; Revised Table 21-4.

Revision C (10/2009)

Updated Table 1-1; Updated the "Electrical Specifications" section (Figures 25-1 to 25-4; subsections 25.1, 25.2, 25.3, 25.4, 25.5, 25.6, 25.7, 25.8, Added Param No. OS09 to Table 25-2; Added Param No. D003A and Note 1 to Table 25-12); Added graphs to the "DC and AC Characteristics Graphs and Charts" section; Other minor corrections.

Revision D (05/2010)

Revised Section 1.3 (deleted #2); Revised Figure 1-1; Added Table 2-4; Removed register EEADRH from Tables 3-1 and 3-2; Revised Section 5 (Data EEPROM Memory); Updated Example 5-2 and Table 5-1; Revised Section 13.4.4 (Enhanced PWM Auto-Shutdown Mode); Added Note 4 below Register 13-2; Revised Figure 16-1; Revised Equation 20-1; Removed sub-section 20.1.3 (Output Clamped to Vss); Updated Figure 20-1; Revised Tables 21-4 and Table 22-1; Updated Register 22-5, Figure 25-5, Table 25-2, Table 25-8, Table 25-10 and Table 25-12; Updated the Electrical Specification section; Other minor corrections.

Revision E (10/2011)

Updated data sheet to new format; Updated the Pin Diagrams; Updated the Electrical Specifications section; Updated the Packaging Information section; Updated Table B-1; Updated the Product Identification System section; Other minor corrections.

Revision F (04/2016)

Updated Analog Features section on page 1; Updated Tables 1-2, 3-2, 8-5, 8-6, 16-2 and 22-4; Added Note 3 to Tables 3-2, 8-1 and 8-2; Added Note 1 to Tables 9-1, 10-2, 12-1 and 17-2, and Register 8-4; Updated Figures 3-7, 9-1 and 9-2; Updated Registers 13-2, 16-2, 19-1; Updated Section 1.1.2, 7.9 and 8.1; Replaced chapter 20.0 (Voltage References) with chapter 20.0 (Fixed Voltage Reference) and 21.0 (Digital-to-Analog Converter (DAC) Module); Updated Chapter 26.0 (Electrical Specifications); Other minor corrections.