

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf13k22-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.4.1 PRIMARY EXTERNAL OSCILLATOR SHUTDOWN

The Primary External Oscillator can be enabled or disabled via software. To enable software control of the Primary External Oscillator, the PCLKEN bit of the CONFIG1H Configuration register must be set. With the PCLKEN bit set, the Primary External Oscillator is controlled by the PRI_SD bit of the OSCCON2 register. The Primary External Oscillator will be enabled when the PRI_SD bit is set, and disabled when the PRI_SD bit is clear.

Note: The Primary External Oscillator cannot be shut down when it is selected as the System Clock. To shut down the oscillator, the system clock source must be either the Secondary Oscillator or the Internal Oscillator.

2.4.2 LP, XT AND HS OSCILLATOR MODES

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 2-2). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is best suited to drive resonators with a low drive level specification, for example, tuning fork type crystals.

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 2-2 and Figure 2-3 show typical circuits for quartz crystal and ceramic resonators, respectively.

FIGURE 2-2: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

Note 1: A series resistor (Rs) may be required for quartz crystals with low drive level.

- 2: The value of RF varies with the Oscillator mode selected (typically between 2 M Ω to 10 M Ω).
- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PICmicro[®] Devices (DS00826)
 - AN849, Basic PICmicro[®] Oscillator Design (DS00849)
 - AN943, Practical PICmicro[®] Oscillator Analysis and Design (DS00943)
 - AN949, Making Your Oscillator Work (DS00949)

13.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE

In half-bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (shoot-through current) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 13-14 for illustration. The lower seven bits of the associated PWM1CON register (Register 13-3) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 13-14: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

- **Note 1:** At this time, the TMR2 register is equal to the PR2 register.
 - **2:** Output signals are shown as active-high.

FIGURE 13-15: EXAMPLE OF HALF-BRIDGE APPLICATIONS

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WCOL	. SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0		
bit 7						- -	bit 0		
Legend:									
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
 bit 7 WCOL: Write Collision Detect bit (Transmit mode only) 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared by software) 0 = No collision 									
 bit 6 SSPOV: Receive Overflow Indicator bit⁽¹⁾ SPI Slave mode: 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must rear the SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared b software). 0 = No overflow 									
bit 5	SSPEN: Synd 1 = Enables s 0 = Disables s	chronous Serial Port Enable bit ⁽²⁾ serial port and configures SCK, SDO, SDI and SS as serial port pins serial port and configures these pins as I/O port pins							
bit 4	CKP: Clock F 1 = Idle state 0 = Idle state	Polarity Select b for clock is a h for clock is a lo	bit igh level ow level						
bit 3-0	SSPM<3:0>: 0101 = SPI S 0100 = SPI S 0011 = SPI M 0010 = SPI M 0001 = SPI M 0000 = SPI M	Synchronous S Slave mode, clo Slave mode, clo Master mode, cl Master mode, cl Master mode, cl Master mode, cl	Serial Port Moo ck = SCK pin, ck = SCK pin, ock = TMR2 o ock = FOSC/64 ock = FOSC/16 ock = FOSC/4	de Select bits ⁽³⁾ \overline{SS} pin control SS pin control utput/2) disabled, SS c enabled	an be used as	I/O pin		
Note 1:	In Master mode, th writing to the SSPI	ne overflow bit BUF register.	is not set since	e each new rec	eption (and tra	nsmission) is ir	nitiated by		
2:	When enabled, the	ese pins must t	pe properly cor	nfigured as inp	ut or output.	1. 120			
3:	Bit combinations n	ot specifically l	isted here are	either reserved	d or implement	ed in I [∠] C mode	e only.		

REGISTER 14-2: SSPCON1: MSSP CONTROL 1 REGISTER (SPI MODE)

14.3.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit of the SSPCON2 register is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit of the SSPCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPSTAT register will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out

- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

14.3.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 14-20: REPEAT START CONDITION WAVEFORM

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSP-CON2 is disabled until the Repeated Start condition is complete.

REGISTER	5-2. RC31/	A. RECEIVE	STATUS AN				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7						_	bit 0
							
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	SPEN: Serial 1 = Serial po 0 = Serial po	Port Enable bit ort enabled (con ort disabled (hele	: figures RX/D d in Reset)	T and TX/CK p	pins as serial po	rt pins)	
bit 6	RX9: 9-bit Re	eceive Enable b	it				
	1 = Selects $90 = $ Selects 8	9-bit reception 3-bit reception					
bit 5	SREN: Single Asynchronou Don't care Synchronous 1 = Enables 0 = Disables This bit is clea Synchronous Don't care	e Receive Enab <u>s mode</u> : <u>mode – Master</u> single receive single receive ared after recep <u>mode – Slave</u>	le bit :- otion is comp	lete.			
bit 4	CREN: Conti	nuous Receive	Enable bit				
	Asynchronouu 1 = Enables 0 = Disables Synchronous 1 = Enables 0 = Disables	<u>s mode</u> : receiver receiver <u>mode</u> : continuous rece continuous rece	eive until ena eive	ble bit CREN is	s cleared (CREN	N overrides SR	EN)
bit 3	ADDEN: Add	Iress Detect Ena	able bit				
	Asynchronou 1 = Enables 0 = Disables Asynchronou Don't care	<u>s mode 9-bit (R</u> address detecti address detect <u>s mode 8-bit (R</u>	<u>X9 = 1</u>): on, enable in ion, all bytes <u>X9 = 0</u>):	terrupt and loa are received a	ad the receive bu and ninth bit can	uffer when RSF be used as pa	<<8> is set rity bit
bit 2	FERR: Frami	ng Error bit					
	1 = Framing 0 = No framin	error (can be u ng error	pdated by rea	ading RCREG	register and rec	eive next valid	byte)
bit 1	OERR: Overr	run Error bit					
	1 = Overrun 0 = No overr	error (can be cl un error	eared by clea	aring bit CREN))		
bit 0	RX9D: Ninth This can be a	bit of Received address/data bit	Data or a parity bi	t and must be	calculated by us	ser firmware.	

REGISTER 15-2-ROSTA: RECEIVE STATUS AND CONTROL REGISTER

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc = 48.000 MHz			Fosc = 18.432 MHz			Fosc = 12.000 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300							_		_	_			
1200		_	_	1200	0.00	239	1202	0.16	155	1200	0.00	143	
2400		_	_	2400	0.00	119	2404	0.16	77	2400	0.00	71	
9600	9615	0.16	77	9600	0.00	29	9375	-2.34	19	9600	0.00	17	
10417	10417	0.00	71	10286	-1.26	27	10417	0.00	17	10165	-2.42	16	
19.2k	19.23k	0.16	38	19.20k	0.00	14	18.75k	-2.34	9	19.20k	0.00	8	
57.6k	57.69k	0.16	12	57.60k	0.00	7	—	_	_	57.60k	0.00	2	
115.2k	—	—	—	—	—	_	_	—	—	_	—	—	

TABLE 15-5: BAUD RATES FOR ASYNCHRONOUS MODES

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	—	
9600	9615	0.16	12	—		—	9600	0.00	5	—	—	—	
10417	10417	0.00	11	10417	0.00	5	—	_	—	—	_	—	
19.2k	—	—	—	—		—	19.20k	0.00	2	—	_	—	
57.6k	—	_	—	—	—	—	57.60k	0.00	0	—	—	—	
115.2k	—	_	_	—	_	_	—	_	_	—	_	_	

	SYNC = 0, BRGH = 1, BRG16 = 0													
BAUD	Fosc = 48.000 MHz			Fosc = 18.432 MHz			Foso	; = 12.00	0 MHz	Fosc = 11.0592 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	—	—	—	_	—		—		_	_	—	—		
1200	—	—	—	—	—	—	—	—	—	—	—	—		
2400	_	_	_	—	_	_	_	—	_	—	_	_		
9600		_	_	9600	0.00	119	9615	0.16	77	9600	0.00	71		
10417		_	_	10378	-0.37	110	10417	0.00	71	10473	0.53	65		
19.2k	19.23k	0.16	155	19.20k	0.00	59	19.23k	0.16	38	19.20k	0.00	35		
57.6k	57.69k	0.16	51	57.60k	0.00	19	57.69k	0.16	12	57.60k	0.00	11		
115.2k	115.38k	0.16	25	115.2k	0.00	9	—	_	_	115.2k	0.00	5		

16.1.6 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital Conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared by software.

Note: The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the global interrupt must be disabled. If the global interrupt is enabled, execution will switch to the Interrupt Service Routine. Please see **Section 16.1.6** "**Interrupts**" for more information.

TABLE 16-1: ADC CLOCK PERIOD (TAD) vs. DEVICE OPERATING FREQUENCIES

ADC Clock	Period (TAD)	Device Frequency (Fosc)							
ADC Clock Source	ADCS<2:0>	48 MHz	16 MHz	4 MHz	1 MHz				
Fosc/2	000	41.67 ns ⁽²⁾	125 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs				
Fosc/4	100	83.33 ns ⁽²⁾	250 ns ⁽²⁾	1.0 μs	4.0 μs				
Fosc/8	001	167 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	8.0 μs ⁽³⁾				
Fosc/16	101	333 ns ⁽²⁾	1.0 μs	4.0 μs	16.0 μs (3)				
Fosc/32	010	667 ns ⁽²⁾	2.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾				
Fosc/64	110	1.33 μs	4.0 μs	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾				
Frc	x11	1-4 μs ^(1,4)	1-4 μs ^(1,4)	1-4 μs ^(1,4)	1-4 μs ^(1,4)				

Legend: Shaded cells are outside of recommended range.

- Note 1: The FRC source has a typical TAD time of 1.7 μ s.
 - **2:** These values violate the minimum required TAD time.
 - 3: For faster conversion times, the selection of another clock source is recommended.
 - 4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep.

16.1.7 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON2 register controls the output format.

Figure 16-2 shows the two output formats.

FIGURE 16-2: 10-BIT A/D CONVERSION RESULT FORMAT

17.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparators are very useful mixed signal building blocks because they provide analog functionality independent of the program execution. The Analog Comparator module includes the following features:

- · Independent comparator control
- Programmable input selection
- · Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-Change
- · Wake-up from Sleep
- Programmable Speed/Power optimization
- · PWM shutdown
- · Programmable and fixed voltage reference

17.1 Comparator Overview

A single comparator is shown in Figure 17-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

FIGURE 17-1: SINGLE COMPARATOR

FIGURE 21-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

REGISTER 23-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH

R/P-1	U-0	U-0	U-0	R/P-1	U-0	U-0	U-0			
MCLRE	_	_	_	HFOFST	_	_	_			
bit 7	bit 7 bit 0									
Legend:										
R = Readable b	bit	P = Programn	nable bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value whe	n device is unp	orogrammed		x = Bit is unk	nown					
bit 7 MCLRE: MCLR Pin Enable bit 1 = MCLR pin enabled; RA3 input pin disabled 0 = RA3 input pin enabled; MCLR disabled										
bit 6-4	Unimplemen	ted: Read as '	0'							
bit 3 HFOFST: HFINTOSC Fast Start-up bit 1 = HFINTOSC starts clocking the CPU without waiting for the oscillator to stabilize. 0 = The system clock is held off until the HFINTOSC is stable.										
bit 2-0	Unimplemen	ted: Read as '	0'							
REGISTER 23	3-5: CONF	IG4L: CONFI	GURATION	REGISTER 4	LOW					

R/W-1 ⁽¹⁾	R/W-0	U-0	U-0	R/P-0	R/P-1	U-0	R/P-1
BKBUG	ENHCPU	_	—	BBSIZ	LVP	_	STVREN
bit 7							bit 0

Legend:										
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'								
-n = Value when device is unp	programmed	x = Bit is unknown								

bit 6ENHCPU: Enhanced CPU Enable bit 1 = Enhanced CPU enabled 0 = Enhanced CPU disabledbit 5-4Unimplemented: Read as '0'bit 3BBSIZ: Boot BLock Size Select bit 1 = 2 kW boot block size for PIC18(L)F14K22 (1 kW boot block size for PIC18(L)F13K22) 0 = 1 kW boot block size for PIC18(L)F14K22 (512 W boot block size for PIC18(L)F13K22)bit 2LVP: Single-Supply ICSP™ Enable bit 1 = Single-Supply ICSP enabled 0 = Single-Supply ICSP disabledbit 1Unimplemented: Read as '0'bit 2STVREN: Stack Full/Underflow Reset Enable bit 1 = Stack full/underflow will cause Reset 0 = Stack full/underflow will not cause Reset	bit 7	BKBUG : Background Debugger Enable bit ⁽¹⁾ 1 = Background Debugger disabled 0 = Background Debugger functions enabled
bit 5-4Unimplemented: Read as '0'bit 3BBSIZ: Boot BLock Size Select bit 1 = 2 kW boot block size for PIC18(L)F14K22 (1 kW boot block size for PIC18(L)F13K22) 0 = 1 kW boot block size for PIC18(L)F14K22 (512 W boot block size for PIC18(L)F13K22)bit 2LVP: Single-Supply ICSP™ Enable bit 1 = Single-Supply ICSP enabled 0 = Single-Supply ICSP disabledbit 1Unimplemented: Read as '0'bit 0STVREN: Stack Full/Underflow Reset Enable bit 	bit 6	ENHCPU: Enhanced CPU Enable bit 1 = Enhanced CPU enabled 0 = Enhanced CPU disabled
bit 3 BBSIZ: Boot BLock Size Select bit 1 = 2 kW boot block size for PIC18(L)F14K22 (1 kW boot block size for PIC18(L)F13K22) 0 = 1 kW boot block size for PIC18(L)F14K22 (512 W boot block size for PIC18(L)F13K22) bit 2 LVP: Single-Supply ICSP™ Enable bit 1 = Single-Supply ICSP ™ Enable bit 0 = Single-Supply ICSP disabled bit 1 Unimplemented: Read as '0' bit 0 STVREN: Stack Full/Underflow Reset Enable bit 1 = Stack full/underflow will cause Reset 0 = Stack full/underflow will not cause Reset	bit 5-4	Unimplemented: Read as '0'
bit 2 LVP: Single-Supply ICSP™ Enable bit 1 = Single-Supply ICSP enabled 0 = Single-Supply ICSP disabled bit 1 Unimplemented: Read as '0' bit 0 STVREN: Stack Full/Underflow Reset Enable bit 1 = Stack full/underflow will cause Reset 0 = Stack full/underflow will not cause Reset	bit 3	 BBSIZ: Boot BLock Size Select bit 1 = 2 kW boot block size for PIC18(L)F14K22 (1 kW boot block size for PIC18(L)F13K22) 0 = 1 kW boot block size for PIC18(L)F14K22 (512 W boot block size for PIC18(L)F13K22)
bit 1Unimplemented: Read as '0'bit 0STVREN: Stack Full/Underflow Reset Enable bit 1 = Stack full/underflow will cause Reset 0 = Stack full/underflow will not cause Reset	bit 2	LVP: Single-Supply ICSP™ Enable bit 1 = Single-Supply ICSP enabled 0 = Single-Supply ICSP disabled
bit 0 STVREN: Stack Full/Underflow Reset Enable bit 1 = Stack full/underflow will cause Reset 0 = Stack full/underflow will not cause Reset	bit 1	Unimplemented: Read as '0'
	bit 0	STVREN: Stack Full/Underflow Reset Enable bit 1 = Stack full/underflow will cause Reset 0 = Stack full/underflow will not cause Reset

Note 1: BKBUG is only used for ICD device. Otherwise, this bit is unimplemented and reads as '1'.

	4 -Ζ.								
Mnemonic,		Description	Qualas	16-	Bit Instr	uction W	ord	Status	Natas
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BIT-ORIEN	TED OP	ERATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERA	TIONS						·	
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	k, s	Call subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	_	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	k	Go to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	_	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	xxxx	XXXX	XXXX	None	4
POP	—	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH, PEIE/GIEL	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	s	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

BNC	v	Branch if	Branch if Not Overflow						
Synta	ax:	BNOV n							
Oper	ands:	-128 ≤ n ≤ 1	127						
Oper	ation:	if OVERFL0 (PC) + 2 + 2	if OVERFLOW bit is '0' (PC) + 2 + 2n \rightarrow PC						
Statu	s Affected:	None	None						
Enco	oding:	1110	1110 0101 nnnn nnnn						
Desc	ription:	If the OVEF program wil The 2's con added to the incremente instruction, PC + 2 + 2r 2-cycle inst	If the OVERFLOW bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be $PC + 2 + 2n$. This instruction is then a 2-cvcle instruction.						
Word	ls:	1	1						
Cycle	es:	1(2)	1(2)						
Q Cycle Activity: If Jump:		02	03	04					
	Decode	Q2 Read literal	Process	Q4 Write to PC					
	Decode	'n'	Data	White to FC					
	No operation	No operation	No operation	No operation					
If No Jump:									
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'n'	Process Data	No operation					
Exan	nple:	HERE	BNOV Jump						
Before Instruction									
After Instruction If OVERFLOW = 0; PC = address (Jump) If OVERFLOW = 1;									
	PC	= ad	dress (HERE	+ 2)					

BNZ		Branch if Not Zero								
Synta	ax:	BNZ n								
Oper	ands:	-128 ≤ n ≤ 1	-128 ≤ n ≤ 127							
Operation:		if ZERO bit (PC) + 2 + 2	if ZERO bit is '0' (PC) + 2 + 2n \rightarrow PC							
Statu	s Affected:	None	None							
Enco	ding:	1110	1110 0001 nnnn nnnn							
Desc	ription:	If the ZERC will branch. The 2's con added to the incremente instruction, PC + 2 + 2r 2-cycle inst	If the ZERO bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction							
Word	s:	1								
Cvcle	s:	1(2)	1(2)							
Q C If Ju	ycle Activity: mp: O1	02	03		04					
	Daada	Q2 Dood litoral	Process		Write to PC					
	Decode	'n'	Data							
	No	No	No		No					
	operation	operation	operation		operation					
lf No	Jump:									
	Q1	Q2	Q3		Q4					
	Decode	Read literal	Process		No					
		'n'	Data		operation					
<u>Exan</u>	n <u>ple</u> : Before Instruc	HERE	BNZ .	Jump						
PC = address (HERE)										
	A 44 a. a. 1									

25.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

25.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

26.2 Standard Operating Conditions

ne standard operating conditions for any device are defined as:
Derating Voltage:VDDMIN \leq VDD \leq VDDMAXDerating Temperature:Ta_MIN \leq Ta \leq Ta_MAX
DD — Operating Supply Voltage ⁽¹⁾
PIC18LF1XK22
VDDMIN (Fosc \leq 16 MHz) +1.8V
VDDMIN (Fosc \leq 20 MHz)+2.0V
VDDMIN (Fosc \leq 64 MHz)+3.0V
VDDMAX
PIC18F1XK22
VDDMIN (Fosc \leq 20 MHz)+2.3V
VDDMIN (Fosc \leq 64 MHz)+3.0V
VDDMAX
— Operating Ambient Temperature Range
Industrial Temperature
TA_MIN40°C
TA_MAX +85°C
Extended Temperature
TA_MIN40°C
Ta_max
ote 1: See Parameter D001, DC Characteristics: Supply Voltage.

		Standard Operating Conditions (unless otherwise stated)						
		Standard Operating Conditions (unless otherwise stated)						
PIC18F1XK22								
Param. No.	Device Characteristics	Тур.	Max.	Units	Conditions			
D008	Supply Current (IDD) ^(1, 2, 4, 5)	6	9	μA	-40°C			
		7	10	μA	+25°C		Fosc = 31 kHz ⁽⁴⁾ (RC_RUN mode, LFINTOSC source)	
		8	14	μA	+85°C	VDD - 1.0V		
		11	17	μA	+125°C			
D008A		11	15	μA	-40°C			
		12	16	μA	+25°C	Vpp = 3.0V		
		13	25	μA	+85°C	VDD - 3.0V		
		17	28	μA	+125°C			
D008		22	45	μA	-40°C			
		23	48	μA	+25°C	Vpp = 2 3V		
		25	50	μA	+85°C	VDD - 2.3V		
		28	55	μA	+125°C		Fosc = 31 kHz ⁽⁴⁾ (RC_RUN mode, LFINTOSC source)	
D008A		25	50	μA	-40°C			
		27	55	μA	+25°C			
		30	60	μA	+85°C			
		32	75	μA	+125°C			
D008B		30	55	μA	-40°C			
		33	60	μA	+25°C	VDD = 5 0V		
		37	65	μA	+85°C	100 0.01		
		40	80	μA	+125°C			
D009		0.4	0.5	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 1 MHz	
D009A		0.6	0.8	mA	-40°C to +125°C	VDD = 3.0V	(RC_RUN mode, HFINTOSC source)	
D009		0.45	0.55	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 1 MHz	
D009A		0.60	0.82	mA	-40°C to +125°C	VDD = 3.0V	(RC_RUN mode,	
D009B		0.80	1.0	mA	-40°C to +125°C	VDD = 5.0V	HFINTOSC source)	
D010		1.9	2.5	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 16 MHz	
D010A		3.5	4.4	mA	-40°C to +125°C	VDD = 3.0V	(RC_RUN mode, HF-INTOSC source)	
D010		2.4	3.5	mA	-40°C to +125°C	VDD = 2.3V	$F_{OSC} = 16 \text{ MHz}$	
D010A		3.5	4.6	mA	-40°C to +125°C	VDD = 3.0V	(RC_RUN mode, HF-INTOSC source)	
D010B		3.7	4.7	mA	-40°C to +125°C	VDD = 5.0V		

TABLE 26-2: RC RUN SUPPLY CURRENT

* These parameters are characterized but not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: When a single temperature range is provided for a parameter, the specification applies to both industrial and extended temperature devices.

TABLE 26-9: I/O PORTS

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions			
	VIL	Input Low Voltage								
		I/O ports:								
D036		with TTL buffer	Vss	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D036A			Vss	_	0.15 VDD	V	$1.8V \leq V\text{DD} \leq 4.5V$			
D036B			Vss	_	0.2 VDD	V	$2.0V \le V\text{DD} \le 5.5V$			
D037		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V	$1.8V \leq V\text{DD} \leq 5.5V$			
D037A		with I ² C levels	Vss	—	0.3 Vdd	V				
D037B		with SMBus levels	Vss	_	0.8 Vdd	V	$2.7V \le V\text{DD} \le 5.5V$			
D038		MCLR	Vss	_	0.2 Vdd	V				
D039		OSC1	Vss	—	0.3 Vdd	V	HS, HSPLL modes			
D039A		OSC1	Vss	_	0.2 VDD	V	EC, RC modes ⁽¹⁾			
D039B		OSC1	Vss	_	0.3 VDD	V	XT, LP modes			
D039C		T1CKI	Vss	—	0.3 Vdd	V				
	VIH	Input High Voltage								
		I/O ports:								
D040		with TTL buffer	2.0	_	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D040A			0.25 VDD + 0.8	—	Vdd	V	$1.8V \leq V\text{DD} \leq 4.5V$			
D041		with Schmitt Trigger buffer	0.8 Vdd	_	Vdd	V	$1.8V \le VDD \le 5.5V$			
D041A		with I ² C levels	0.7 Vdd	_	Vdd	V				
D037A		with SMBus levels	2.1	_	Vdd	V	$2.7V \le VDD \le 5.5V$			
D042		MCLR	0.8 VDD	_	Vdd	V				
D042A		MCLR	0.9 VDD	_	0.3 VDD	V	$1.8V \le V \text{DD} \le 2.4V$			
D043		OSC1	0.7 Vdd	_	Vdd	V	HS, HSPLL modes			
D043A		OSC1	0.8 Vdd	_	Vdd	V	EC mode			
D043B		OSC1	0.9 VDD	_	Vdd	V	RC mode ⁽¹⁾			
D043C		OSC1	1.6	_	Vdd	V	XT, LP modes			
D043E		T1CKI	1.6	_	Vdd	V				
	lı∟	Input Leakage Current ⁽²⁾								
D060		I/O ports	—	± 5	± 100	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, -40°C to 85°C			
		(2)	-	± 5	± 1000	nA	Vss \leq VPIN \leq VDD, 85°C to 125°C			
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	$VSS \leq VPIN \leq VDD$			
IPUR PORTB Weak Pull-up Current										
D070*			50	250	400	μA	VDD = 5.0V, VPIN = VSS			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

26.5 AC Characteristics: PIC18(L)F1XK22-I/E

FIGURE 26-8: CLOCK TIMING