

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XF

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 64MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                       |
| Number of I/O              | 17                                                                          |
| Program Memory Size        | 8KB (4K x 16)                                                               |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 256 x 8                                                                     |
| RAM Size                   | 256 x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                 |
| Data Converters            | A/D 12x10b                                                                  |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 20-SOIC (0.295", 7.50mm Width)                                              |
| Supplier Device Package    | 20-SOIC                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18lf13k22-i-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





| TARI E 2-5. | SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES    | 2 |
|-------------|-------------------------------------------------------|---|
| IADLE Z-J.  | JUNINIAR I OF REGISTERS ASSOCIATED WITH CLOCK SOURCES | 3 |

| Name     | Bit 7    | Bit 6     | Bit 5   | Bit 4   | Bit 3   | Bit 2  | Bit 1  | Bit 0  | Reset<br>Values on<br>page |
|----------|----------|-----------|---------|---------|---------|--------|--------|--------|----------------------------|
| CONFIG1H | IESO     | FCMEN     | PCLKEN  | PLL_EN  | FOSC3   | FOSC2  | FOSC1  | FOSC0  | 251                        |
| INTCON   | GIE/GIEH | PEIE/GIEL | TMR0IE  | INT0IE  | RABIE   | TMR0IF | INT0IF | RABIF  | 245                        |
| OSCCON   | IDLEN    | IRCF2     | IRCF1   | IRCF0   | OSTS    | HFIOFS | SCS1   | SCS0   | 246                        |
| OSCCON2  | —        | _         | —       | —       | —       | PRI_SD | HFIOFL | LFIOFS | 246                        |
| OSCTUNE  | INTSRC   | PLLEN     | TUN5    | TUN4    | TUN3    | TUN2   | TUN1   | TUN0   | 248                        |
| IPR2     | OSCFIP   | C1IP      | C2IP    | EEIP    | BCLIP   | —      | TMR3IP | —      | 248                        |
| PIE2     | OSCFIE   | C1IE      | C2IE    | EEIE    | BCLIE   | —      | TMR3IE | _      | 248                        |
| PIR2     | OSCFIF   | C1IF      | C2IF    | EEIF    | BCLIF   | _      | TMR3IF | _      | 248                        |
| T1CON    | RD16     | T1RUN     | T1CKPS1 | T1CKPS0 | T1OSCEN | T1SYNC | TMR1CS | TMR10N | 246                        |

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by oscillators. Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

## 3.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 Enhanced microcontroller devices:

- Program Memory
- Data RAM
- Data EEPROM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Flash program memory is provided in **Section 4.0 "Flash Program Memory"**. Data EEPROM is discussed separately in **Section 5.0 "Data EEPROM Memory"**.

#### 3.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte Program Memory (PC) space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

This family of devices contain the following:

- PIC18(L)F13K22: 8 Kbytes of Flash Memory, up to 4,096 single-word instructions
- PIC18(L)F14K22: 16 Kbytes of Flash Memory, up to 8,192 single-word instructions

PIC18 devices have two interrupt vectors and one Reset vector. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory map for PIC18(L)F1XK22 devices is shown in Figure 3-1. Memory block details are shown in Figure 3-2.

#### FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR PIC18(L)F1XK22 DEVICES

|                                    | PC<                       | 20:0>           |                |                                               |
|------------------------------------|---------------------------|-----------------|----------------|-----------------------------------------------|
| CALL, RCALL, RET<br>RETEIE RETLW   | URN                       |                 |                |                                               |
|                                    | Stack I                   | Level 1         |                |                                               |
|                                    |                           | •               |                |                                               |
|                                    | Stack L                   | evel 31         |                |                                               |
|                                    | Reset                     | Vector          | 0000h          |                                               |
|                                    | High Priority Ir          | nterrupt Vector | <br>0008b      |                                               |
|                                    |                           |                 |                |                                               |
|                                    | Low Priority Ir           | nterrupt Vector | 0018h          |                                               |
| On-Chip<br>Program Memory<br>1FFFh | On-Chip<br>Program Memory |                 |                |                                               |
| 2000h                              |                           |                 |                |                                               |
| PIC18(L)F13K22                     | 3FFFN<br>4000h            |                 |                |                                               |
|                                    |                           |                 |                | ace                                           |
| Read 'o'                           | Read '0'                  |                 |                | User Memory Sp                                |
| Read 0                             | Read 0                    |                 | 1FFFFFh200000h | <u>,                                     </u> |



## 7.0 INTERRUPTS

The PIC18(L)F1XK22 devices have multiple interrupt sources and an interrupt priority feature that allows most interrupt sources to be assigned a high priority level or a low priority level. The high priority interrupt vector is at 0008h and the low priority interrupt vector is at 0018h. A high priority interrupt event will interrupt a low priority interrupt that may be in progress.

There are twelve registers which are used to control interrupt operation. These registers are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2
- PIE1, PIE2
- IPR1, IPR2

It is recommended that the Microchip header files supplied with MPLAB<sup>®</sup> IDE be used for the symbolic bit names in these registers. This allows the assembler/ compiler to automatically take care of the placement of these bits within the specified register.

In general, interrupt sources have three bits to control their operation. They are:

- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- **Priority bit** to select high priority or low priority

## 7.1 Mid-Range Compatibility

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC<sup>®</sup> microcontroller mid-range devices. In Compatibility mode, the interrupt priority bits of the IPRx registers have no effect. The PEIE bit of the INTCON register is the global interrupt enable for the peripherals. The PEIE bit disables only the peripheral interrupt sources when the GIE bit is also set. The GIE bit of the INTCON register is the global interrupt enable which enables all non-peripheral interrupt sources and disables all interrupt sources, including the peripherals. All interrupts branch to address 0008h in Compatibility mode.

## 7.2 Interrupt Priority

The interrupt priority feature is enabled by setting the IPEN bit of the RCON register. When interrupt priority is enabled the GIE and PEIE global interrupt enable bits of Compatibility mode are replaced by the GIEH high priority, and GIEL low priority, global interrupt enables. When set, the GIEH bit of the INTCON register enables all interrupts that have their associated IPRx register or INTCONx register priority bit set (high priority). When clear, the GIEL bit disables all interrupt sources including those selected as low priority. When clear, the GIEL bit of the INTCON register disables only the interrupts that have their associated priority bit set (low priority). When set, the GIEL bit of the INTCON register disables only the interrupts that have their associated priority bit cleared (low priority). When set, the GIEL bit enables the low priority sources when the GIEH bit is also set.

When the interrupt flag, enable bit and appropriate global interrupt enable bit are all set, the interrupt will vector immediately to address 0008h for high priority, or 0018h for low priority, depending on level of the interrupting source's priority bit. Individual interrupts can be disabled through their corresponding interrupt enable bits.

#### 7.3 Interrupt Response

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. The GIE bit is the global interrupt enable when the IPEN bit is cleared. When the IPEN bit is set, enabling interrupt priority levels, the GIEH bit is the high priority global interrupt enable and the GIEL bit is the low priority global interrupt enable. High-priority interrupt sources can interrupt a low-priority interrupt. Low-priority interrupts are not processed while high-priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (0008h or 0018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits in the INTCONx and PIRx registers. The interrupt flag bits must be cleared by software before re-enabling interrupts to avoid repeating the same interrupt.

The "return-from-interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INT pins or the PORTB interrupt-on-change, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one-cycle or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding enable bits or the global interrupt enable bit. This interrupt can wake the device from the Sleep mode, or any of the Idle modes. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTA to clear the mismatch condition (except when PORTA is the source or destination of a MOVFF instruction).
- b) Clear the flag bit, RABIF.

A mismatch condition will continue to set the RABIF flag bit. Reading or writing PORTA will end the mismatch condition and allow the RABIF bit to be cleared. The latch holding the last read value is not affected by a MCLR nor Brown-out Reset. After either one of these Resets, the RABIF flag will continue to be set if a mismatch is present.

Note 1: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RABIF interrupt flag may not get set. Furthermore, since a read or write on a port affects all bits of that port, care must be taken when using multiple pins in Interrupt-on-Change mode. Changes on one pin may not be seen while servicing changes on another pin.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTA is only used for the interrupt-on-change feature. Polling of PORTA is not recommended while using the interrupt-on-change feature.

Each of the PORTA pins has an individually controlled weak internal pull-up. When set, each bit of the WPUA register enables the corresponding pin pull-up. When cleared, the RABPU bit of the INTCON2 register enables pull-ups on all pins which also have their corresponding WPUA bit set. When set, the RABPU bit disables all weak pull-ups. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

RA3 is an input only pin. Its operation is controlled by the MCLRE bit of the CONFIG3H register. When selected as a port pin (MCLRE = 0), it functions as a digital input only pin; as such, it does not have TRIS or LAT bits associated with its operation.

**Note:** On a Power-on Reset, RA3 is enabled as a digital input only if Master Clear functionality is disabled.

Pins RA4 and RA5 are multiplexed with the main oscillator pins; they are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see Section 23.1 "Configuration Bits" for details). When they are not used as port pins, RA4 and RA5 and their associated TRIS and LAT bits read as '0'.

RA<4,2:0> are pins multiplexed with analog inputs. The operation of pins RA<4,2:0> as analog are selected by setting the ANS<3:0> bits in the ANSEL register, which is the default setting after a Power-on Reset.

| CLRF PO  | RTA ; In<br>; c | nitialize PORTA by<br>learing output |
|----------|-----------------|--------------------------------------|
|          | ; da            | ata latches                          |
| CLRF LA  | TA ; A          | lternate method                      |
|          | ; to            | o clear output                       |
|          | ; da            | ata latches                          |
| MOVLW 03 | 0h ; Va         | alue used to                         |
|          | ; iı            | nitialize data                       |
|          | ; d:            | irection                             |
| MOVWF TR | ISA ; Se        | et RA<5:4> as output                 |

| Pin                                              | Function          | TRIS<br>Setting      | I/O | l/O<br>Type | Description                                                       |  |  |
|--------------------------------------------------|-------------------|----------------------|-----|-------------|-------------------------------------------------------------------|--|--|
| RA0/AN0/CVREF/                                   | RA0               | 0                    | 0   | DIG         | LATA<0> data output.                                              |  |  |
| DAC1OUT/VREF-/                                   |                   | 1                    | Ι   | TTL         | PORTA<0> data input; Programmable weak pull-up.                   |  |  |
| C1IN+/INT0/PGD                                   | AN0               | 1                    | Ι   | ANA         | ADC channel 0 input.                                              |  |  |
|                                                  | CVREF/<br>DAC1OUT | х                    | 0   | ANA         | DAC reference voltage output.                                     |  |  |
|                                                  | VREF-             | 1                    | Ι   | ANA         | ADC and DAC reference voltage (low) input.                        |  |  |
|                                                  | C1IN+             | 1                    | Ι   | DIG         | Comparator C1 noninverting input.                                 |  |  |
|                                                  | INT0              | 1                    | Ι   | ST          | External interrupt 0.                                             |  |  |
|                                                  | PGD               | х                    | 0   | DIG         | Serial execution data output for ICSP™.                           |  |  |
|                                                  |                   | x                    | Ι   | ST          | Serial execution data input for ICSP.                             |  |  |
| RA1/AN1/C12IN0-/                                 | RA1               | 0                    | 0   | DIG         | LATA<1> data output.                                              |  |  |
| VREF+/INT1/PGC                                   |                   | 1                    | Ι   | TTL         | PORTA<1> data input; Programmable weak pull-up.                   |  |  |
|                                                  | AN1               | 1                    | Ι   | ANA         | ADC channel 1.                                                    |  |  |
|                                                  | C12IN0-           | 1                    | Ι   | ANA         | Comparator C1 and C2 inverting input channel 0.                   |  |  |
|                                                  | VREF+             | 1                    | I   | ANA         | ADC and DAC reference voltage (high) input                        |  |  |
|                                                  | INT1              | 1                    |     | ST          | External interrupt 1.                                             |  |  |
|                                                  | PGC               | x                    | 0   | DIG         | Serial execution clock output for ICSP™.                          |  |  |
|                                                  |                   | x                    | Ι   | ST          | Serial execution clock input for ICSP.                            |  |  |
| RA2/AN2/C1OUT/ RA2                               |                   | 0                    | 0   | DIG         | LATA<2> data output.                                              |  |  |
| T0CKI/INT2/SRQ                                   |                   | 1                    | Ι   | TTL         | PORTA<2> data input; Programmable weak pull-up.                   |  |  |
|                                                  | AN2               | 1                    | Ι   | ANA         | ADC channel 2.                                                    |  |  |
|                                                  | C1OUT             | 0                    | 0   | DIG         | Comparator C1 output.                                             |  |  |
|                                                  | TOCKI             | 1                    | Ι   | ST          | Timer0 external clock input.                                      |  |  |
|                                                  | INT2              | 1                    | Ι   | ST          | External interrupt 2.                                             |  |  |
|                                                  | SRQ               | 0                    | 0   | DIG         | SR latch output.                                                  |  |  |
| RA3/MCLR/VPP                                     | RA3               | (1)                  | Ι   | ST          | PORTA<37> data input; Programmable weak pull-up.                  |  |  |
|                                                  | MCLR              | —                    | Ι   | ST          | Active-low Master Clear with internal pull-up.                    |  |  |
|                                                  | Vpp               | —                    | Ι   | ANA         | High-voltage programming input.                                   |  |  |
| RA4/AN3/OSC2/                                    | RA4               | 0                    | 0   | DIG         | LATA<4> data output.                                              |  |  |
| CLKOUT                                           |                   | 1                    | Ι   | TTL         | PORTA<4> data input; Programmable weak pull-up.                   |  |  |
|                                                  | AN3               | 1                    | Ι   | ANA         | A/D input channel 3.                                              |  |  |
|                                                  | OSC2              | x                    | 0   | ANA         | Main oscillator feedback output connection (XT, HS and LP modes). |  |  |
|                                                  | CLKOUT            | x                    | 0   | DIG         | System instruction cycle clock output.                            |  |  |
| RA5/OSC1/CLKIN/ RA5 0 O DIG LATA<5> data output. |                   | LATA<5> data output. |     |             |                                                                   |  |  |
| T13CKI                                           |                   | 1                    | Ι   | TTL         | PORTA<5> data input; Programmable weak pull-up.                   |  |  |
|                                                  | OSC1              | x                    | Ι   | ANA         | Main oscillator input connection.                                 |  |  |
|                                                  | CLKIN             | x                    | Ι   | ANA         | Main clock input connection.                                      |  |  |
|                                                  | T13CKI            | 1                    | I   | ST          | Timer1 and Timer3 external clock input.                           |  |  |

TABLE 8-1: PORTA I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: RA3 does not have a corresponding TRISA bit. This pin is always an input regardless of mode.

| R/W-1           | R/W-1                                                                | R/W-1 | R/W-1                                   | U-0 | U-0    | U-0 | U-0   |
|-----------------|----------------------------------------------------------------------|-------|-----------------------------------------|-----|--------|-----|-------|
| WPUB7           | WPUB6                                                                | WPUB5 | WPUB4                                   |     | —      | —   | —     |
| bit 7           |                                                                      |       |                                         |     |        |     | bit 0 |
|                 |                                                                      |       |                                         |     |        |     |       |
| Legend:         |                                                                      |       |                                         |     |        |     |       |
| R = Readable    | R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |       |                                         |     | as '0' |     |       |
| -n = Value at P | n = Value at POR '1' = Bit is set                                    |       | '0' = Bit is cleared x = Bit is unknown |     |        |     |       |
|                 |                                                                      |       |                                         |     |        |     |       |
|                 |                                                                      |       |                                         |     |        |     |       |

#### REGISTER 8-9: WPUB: WEAK PULL-UP PORTB REGISTER

bit 7-4 WPUB<7:4>: Weak Pull-up Enable bit 1 = Pull-up enabled 0 = Pull-up disabled

bit 3-0 Unimplemented: Read as '0'

#### REGISTER 8-10: IOCB: INTERRUPT-ON-CHANGE PORTB REGISTER

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0   |
|-------|-------|-------|-------|-----|-----|-----|-------|
| IOCB7 | IOCB6 | IOCB5 | IOCB4 | —   | —   | —   | —     |
| bit 7 |       |       |       |     |     |     | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 7-4 **IOCB<7:4>**: Interrupt-on-change bits

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

bit 3-0 Unimplemented: Read as '0'

## 10.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates the following features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable internal or external clock source and Timer1 oscillator options
- · Interrupt-on-overflow
- Reset on CCP Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 10-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 10-2.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

Timer1 is controlled through the T1CON Control register (Register 10-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON of the T1CON register.

#### REGISTER 10-1: T1CON: TIMER1 CONTROL REGISTER

| R/W-0 | R-0   | R/W-0   | R/W-0   | R/W-0   | R/W-0  | R/W-0  | R/W-0  |
|-------|-------|---------|---------|---------|--------|--------|--------|
| RD16  | T1RUN | T1CKPS1 | T1CKPS0 | T1OSCEN | T1SYNC | TMR1CS | TMR10N |
| bit 7 |       |         |         |         |        |        | bit 0  |

| Legend:                                                                                                  |                                                  |                                                                               |                                                        |                    |  |  |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------|--------------------|--|--|
| R = Readable                                                                                             | bit                                              | W = Writable bit                                                              | U = Unimplemented bit, rea                             | ad as '0'          |  |  |
| -n = Value at F                                                                                          | POR                                              | '1' = Bit is set                                                              | '0' = Bit is cleared                                   | x = Bit is unknown |  |  |
|                                                                                                          |                                                  |                                                                               |                                                        |                    |  |  |
| bit 7                                                                                                    | RD16: 16-bit                                     | Read/Write Mode Enable b                                                      | bit                                                    |                    |  |  |
|                                                                                                          | 1 = Enables<br>0 = Enables                       | register read/write of Timer<br>register read/write of Timer                  | 1 in one 16-bit operation<br>1 in two 8-bit operations |                    |  |  |
| bit 6                                                                                                    | T1RUN: Time                                      | er1 System Clock Status bit                                                   |                                                        |                    |  |  |
|                                                                                                          | 1 = Main sys<br>0 = Main sys                     | stem clock is derived from T<br>stem clock is derived from a                  | ïmer1 oscillator<br>nother source                      |                    |  |  |
| bit 5-4                                                                                                  | T1CKPS<1:0                                       | >: Timer1 Input Clock Pres                                                    | cale Select bits                                       |                    |  |  |
| 11 = 1:8 Prescale value<br>10 = 1:4 Prescale value<br>01 = 1:2 Prescale value<br>00 = 1:1 Prescale value |                                                  |                                                                               |                                                        |                    |  |  |
| bit 3                                                                                                    | T1OSCEN: T                                       | imer1 Oscillator Enable bit                                                   |                                                        |                    |  |  |
|                                                                                                          | 1 = Timer1 or<br>0 = Timer1 or<br>The oscillator | scillator is enabled<br>scillator is shut off<br>r inverter and feedback resi | stor are turned off to eliminate                       | e power drain.     |  |  |
| bit 2                                                                                                    | T1SYNC: Tin                                      | ner1 External Clock Input S                                                   | ynchronization Select bit                              |                    |  |  |
|                                                                                                          | When TMR1                                        | <u>CS = 1:</u>                                                                |                                                        |                    |  |  |
|                                                                                                          | 1 = Do not sy<br>0 = Synchror                    | nchronize external clock in<br>nize external clock input                      | put                                                    |                    |  |  |
|                                                                                                          | When TMR1                                        | <u>CS = 0:</u>                                                                |                                                        |                    |  |  |
|                                                                                                          | This bit is ign                                  | ored. Timer1 uses the inter                                                   | nal clock when TMR1CS = 0.                             |                    |  |  |
| bit 1                                                                                                    | TMR1CS: Tir                                      | ner1 Clock Source Select b                                                    | vit<br>(an that visions adves)                         |                    |  |  |
|                                                                                                          | 1 = External 0 = Internal 0                      | clock from the 113CKI pin                                                     | (on the rising edge)                                   |                    |  |  |
| bit 0                                                                                                    | TMR1ON: Til                                      | mer1 On bit                                                                   |                                                        |                    |  |  |
|                                                                                                          | 1 = Enables                                      | Timer1                                                                        |                                                        |                    |  |  |
|                                                                                                          | 0 = Stops Tir                                    | mer1                                                                          |                                                        |                    |  |  |

In addition to the expanded range of modes available through the CCP1CON register and ECCP1AS register, the ECCP module has two additional registers associated with Enhanced PWM operation and auto-shutdown features. They are:

- PWM1CON (Dead-band delay)
- PSTRCON (Output steering)

### **13.1 ECCP Outputs and Configuration**

The enhanced CCP module may have up to four PWM outputs, depending on the selected operating mode. These outputs, designated P1A through P1D, are multiplexed with I/O pins on PORTC. The outputs that are active depend on the CCP operating mode selected. The pin assignments are summarized in Table 13-2.

To configure the I/O pins as PWM outputs, the proper PWM mode must be selected by setting the P1M<1:0> and CCP1M<3:0> bits. The appropriate TRISC direction bits for the port pins must also be set as outputs.

#### 13.1.1 CCP MODULE AND TIMER RESOURCES

The CCP modules utilize Timers 1, 2 or 3, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode.

## TABLE 13-1:CCP MODE – TIMER<br/>RESOURCE

| CCP/ECCP Mode | Timer Resource   |
|---------------|------------------|
| Capture       | Timer1 or Timer3 |
| Compare       | Timer1 or Timer3 |
| PWM           | Timer2           |

The assignment of a particular timer to a module is determined by the Timer-to-CCP enable bits in the T3CON register (Register 12-1). The interactions between the two modules are summarized in Figure 13-1. In Asynchronous Counter mode, the capture operation will not work reliably.

#### 13.2 Capture Mode

In Capture mode, the CCPR1H:CCPR1L register pair captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on the corresponding CCP1 pin. An event is defined as one of the following:

- Every falling edge
- Every rising edge
- · Every 4th rising edge
- · Every 16th rising edge

The event is selected by the mode select bits, CCP1M<3:0> of the CCP1CON register. When a capture is made, the interrupt request flag bit, CCP1IF, is set; it must be cleared by software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

#### 13.2.1 CCP PIN CONFIGURATION

In Capture mode, the appropriate CCP1 pin should be configured as an input by setting the corresponding TRIS direction bit.

**Note:** If the CCP1 pin is configured as an output, a write to the port can cause a capture condition.

#### 13.2.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature (Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer to be used with each CCP module is selected in the T3CON register (see Section 13.1.1 "CCP Module and Timer Resources").

#### 13.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP1IE interrupt enable bit clear to avoid false interrupts. The interrupt flag bit, CCP1IF, should also be cleared following any such change in operating mode.

## 14.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

#### 14.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I<sup>2</sup>C)
  - Full Master mode
  - Slave mode (with general address call)

The  $I^2C$  interface supports the following modes in hardware:

- Master mode
- · Multi-Master mode
- · Slave mode

#### 14.2 SPI Mode

The SPI mode allows eight bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- · Serial Data Out SDO
- Serial Data In SDI
- Serial Clock SCK

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select – SS

Figure 14-1 shows the block diagram of the MSSP module when operating in SPI mode.



MSSP BLOCK DIAGRAM (SPI MODE)



| Name    | Bit 7                                          | Bit 6         | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Reset<br>Values<br>on page |
|---------|------------------------------------------------|---------------|--------|--------|--------|--------|--------|--------|----------------------------|
| BAUDCON | ABDOVF                                         | RCIDL         | DTRXP  | CKTXP  | BRG16  | —      | WUE    | ABDEN  | 247                        |
| INTCON  | GIE/GIEH                                       | PEIE/GIEL     | TMR0IE | INT0IE | RABIE  | TMR0IF | INT0IF | RABIF  | 245                        |
| IPR1    | _                                              | ADIP          | RCIP   | TXIP   | SSPIP  | CCP1IP | TMR2IP | TMR1IP | 248                        |
| PIE1    | _                                              | ADIE          | RCIE   | TXIE   | SSPIE  | CCP1IE | TMR2IE | TMR1IE | 248                        |
| PIR1    | _                                              | ADIF          | RCIF   | TXIF   | SSPIF  | CCP1IF | TMR2IF | TMR1IF | 248                        |
| RCREG   | EUSART R                                       | Receive Regis | ster   |        |        |        |        |        | 247                        |
| RCSTA   | SPEN                                           | RX9           | SREN   | CREN   | ADDEN  | FERR   | OERR   | RX9D   | 247                        |
| SPBRG   | EUSART Baud Rate Generator Register, Low Byte  |               |        |        |        |        |        |        | 247                        |
| SPBRGH  | EUSART Baud Rate Generator Register, High Byte |               |        |        |        |        |        |        | 247                        |
| TRISC   | TRISC7                                         | TRISC6        | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 | 248                        |
| TXSTA   | CSRC                                           | TX9           | TXEN   | SYNC   | SENDB  | BRGH   | TRMT   | TX9D   | 247                        |

## TABLE 15-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

**Legend:** — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

## 15.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (HFINTOSC). However, the HFINTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind. The first (preferred) method uses the OSCTUNE register to adjust the HFINTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 2.7.1** "**OSCTUNE Register**" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 15.3.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

| CSRC         TX9         TXEN <sup>(1)</sup> SYNC         SENDB         BRGH         TRMT         TX9D           bit 7         bit 0         bit 0         bit 0         bit 0           Legend:<br>R = Readable bit         W = Writable bit         U = Unimplemented bit, read as '0'<br>-n = Value at POR         '1' = Bit is set         '0' = Bit is cleared         x = Bit is unknown           bit 7         CSRC: Clock Source Select bit<br>Asynchronous mode:<br>Don't care<br>Synchronous mode:<br>0 = Stew mode (clock generated internally from BRG)<br>0 = Stave mode (clock from external source)         bit 6         TX9: 9-bit transmission<br>0 = Selects 8-bit transmission         set = Bit is unknown           bit 5         TXEN: Transmit Enable bit<br>1 = Selects 8-bit transmission         i = Transmit enabled         i = Transmit enabled         i = Send Sync Break Character bit<br>Asynchronous mode         i = Send Sync Break character bit<br>Asynchronous mode         i = Send Sync Break character bit<br>Asynchronous mode:         i = High speed<br>0 = Low speed<br>Sync Break transmission completed<br>Synchronous mode:         i = High speed<br>0 = Low speed<br>0 = Low speed<br>0 = Tor spit         i = Tis empty<br>0 = Tis R full         i = Tis empty<br>0 = Tis R full         i = Tis empty<br>0 = Tis R full         i = Tis mit Bit Register Status bit<br>1 = Tis empty         i = Tis mit B | R/W-0            | R/W-0           | R/W-0                               | R/W-0           | R/W-0             | R/W-0              | R-1              | R/W-0 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|-------------------------------------|-----------------|-------------------|--------------------|------------------|-------|
| bit 7       bit 0         Legend:       R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 7       CSRC: Clock Source Select bit       Asynchronous mode:       x = Bit is unknown         Don't care       Synchronous mode:       asynchronous mode:       x = Bit is unknown         1 = Master mode (clock generated internally from BRG)       0 = Slave mode (clock from external source)       0 = Slave mode (clock from external source)         bit 6       TXS: 9-bit Transmitsion       0 = Slave mode (clock from external source)       0 = Slave mode (clock from external source)         bit 5       TXEN: Transmit Enable bit       1 = Selects 8-bit transmission       0 = Transmit enabled         0 = Transmit enabled       0 = Transmit enabled       0 = Transmit enabled       0 = Transmit enabled         bit 4       SYNC: EUSART Mode Select bit       1 = Synchronous mode       0 = Asynchronous mode         bit 3       SENDB: Send Break Character bit       Asynchronous mode:       0 = Asynchronous mode         bit 1       = Send Sync Break transmission completed       Synchronous mode:       0 = Low speed         Don't care       Don't care       Don't care       0 = Low speed       0 = Low speed       0 = Low                                                                                                                                                                                                                                                                                                                  | CSRC             | TX9             | TXEN <sup>(1)</sup>                 | SYNC            | SENDB             | BRGH               | TRMT             | TX9D  |
| Legend:         R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 7       CSRC: Clock Source Select bit       Asynchronous mode:       x = Bit is unknown         Don't care       Synchronous mode:       Don't care       Synchronous mode:         1 = Master mode (clock generated internally from BRG)       0 = Slave mode (clock from external source)       bit 6         bit 5       TXEN: Transmit Enable bit       1 = Selects 3-bit transmission       0 = Selects 3-bit transmission         0 = Selects 8-bit transmission       0 = Transmit disabled       0 = Transmit disabled         bit 4       SYNC: EUSART Mode Select bit       1 = Send Synchronous mode         0 = Asynchronous mode       0 = Asynchronous mode       0 = Asynchronous mode         1 = Send Sync Break Character bit       Asynchronous mode:       1 = Send Sync Break comect bit         1 = Send Sync Break transmission completed       Synchronous mode:       1 = High speed       1 = High speed         0 = Low speed       Synchronous mode:       Synchronous mode:       1 = TSR empty       0 = TSR full         bit 0       TXSD: Ninh bit of Transmit Data       Can be address/data bit or a parity bit.       Low speed                                                                                                                                                                                                                                                                                                                                               | bit 7            |                 |                                     |                 |                   |                    |                  | bit 0 |
| Legend:<br>R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'<br>:n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown<br>bit 7 CSRC: Clock Source Select bit<br>Asynchronous mode:<br>1 = Master mode (clock generated internally from BRG)<br>0 = Siave mode (clock from external source)<br>bit 6 TV9: 9-bit Transmit Enable bit<br>1 = Selects 8-bit transmission<br>0 = Selects 8-bit transmission<br>bit 5 TKEN: Transmit Enable bit<br>1 = Transmit disabled<br>bit 4 SYNC: EUSART Mode Select bit<br>Asynchronous mode:<br>1 = Synchronous mode<br>0 = Asynchronous mode<br>bit 3 SENDE: Send Break Character bit<br>Asynchronous mode:<br>1 = Send Sync Ereak on next transmission (cleared by hardware upon completion)<br>0 = Synchronous mode:<br>1 = High Speed<br>bit 2 BRCH: High Baud Rate Select bit<br>Asynchronous mode:<br>1 = High speed<br>bit 1 TRNNT: Transmit Briti Register Status bit<br>1 = TSR empty<br>0 = TSR full<br>bit 0 TSD: Ninh bit of Transmit Data<br>Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                 |                                     |                 |                   |                    |                  |       |
| R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         .n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 7       CSRC: Clock Source Select bit       Asynchronous mode:<br>Don't care       x = Sit is unknown         Synchronous mode:       1 = Master mode (clock generated internally from BRG)       0 = Slave mode (clock from external source)         bit 6       TX9: 9-bit Transmit Enable bit       1 = Selects 9-bit transmission       0 = Selects 8-bit transmission         bit 5       TERN: Transmit Enable bit       1 = Transmit enabled       0 = Transmit enabled       0 = Transmit enabled         bit 4       SYNchronous mode       0 = Asynchronous mode       0 = Asynchronous mode       0 = Asynchronous mode         bit 3       SENDB: Send Break character bit       Asynchronous mode:       1 = Send Sync Break character bit         Asynchronous mode:       1 = Send Sync Break an exet transmission (cleared by hardware upon completion)       0 = Synchronous mode:         bit 2       BROH: High Baud Rate Select bit       Asynchronous mode:       1 = High speed         bit 1       TRME: Transmit Shift Register Status bit       1 = TSR empty       1 = TSR full         bit 0       TSD: Nint bit of Transmit Data       Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                      | Legend:          |                 |                                     |                 |                   |                    |                  |       |
| In e Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 7       CSRC: Clock Source Select bit       Asynchronous mode:       Don't care         Don't care       Synchronous mode:       I = Master mode (clock generated internally from BRG)       0 = Slave mode (clock generated internally from BRG)         0 = Slave mode (clock generated internally from BRG)       0 = Slave mode (clock from external source)       0 = Slave mode (clock generated internally from BRG)         bit 6       TXS: 9-bit Transmit Enable bit       1 = Selects 9-bit transmission       0 = Selects 8-bit transmission         0 = Selects 8-bit transmission       0 = Transmit Enable bit       1 = Transmit enable dit       0 = Transmit enable dit         bit 5       TXEN: Transmit Enable bit       1 = Synchronous mode       0 = Transmit disabled         bit 4       SYNC: EUSART Mode Select bit       1 = Synchronous mode         0 = Transmit disabled       1 = Synchronous mode       1 = Synchronous mode         bit 3       SENDB: Send Break Character bit       Asynchronous mode:       1 = Synchronous mode:         1 = Synchronous mode:       1 = Synchronous mode:       1 = Synchronous mode:       1 = Synchronous mode:         bit 2       BROH: High Baud Rate Select bit       Asynchronous mode:       1 = High speed       1 = Low speed         Synchronous mode: <td>R = Readable b</td> <td>it</td> <td>W = Writable bit</td> <td></td> <td>U = Unimplem</td> <td>ented bit, read as</td> <td>'0'</td> <td></td>                                                                                                                                | R = Readable b   | it              | W = Writable bit                    |                 | U = Unimplem      | ented bit, read as | '0'              |       |
| bit 7 CSRC: Clock Source Select bit<br>Asynchronous mode:<br>Don't care<br>Synchronous mode:<br>1 = Master mode (clock generated internally from BRG)<br>0 = Slave mode (clock from external source)<br>bit 6 TX9: 9-bit Transmit Enable bit<br>1 = Selects 9-bit transmission<br>0 = Selects 8-bit transmission<br>0 = Selects 8-bit transmission<br>0 = Transmit enable dit<br>1 = Transmit enable dit<br>0 = Transmit fisable dit<br>1 = Synchronous mode<br>0 = Asynchronous mode<br>bit 3 SENDB: Send Break Character bit<br>Asynchronous mode:<br>1 = Send Sync Break on next transmission (cleared by hardware upon completion)<br>0 = Sync Break transmission completed<br>Synchronous mode:<br>1 = Send Sync Break on next transmission (cleared by hardware upon completion)<br>0 = Sync Break transmission completed<br>Synchronous mode:<br>1 = Send Sync Break on next transmission (cleared by hardware upon completion)<br>0 = Sync Break transmission completed<br>Synchronous mode:<br>1 = Send Sync Break on next transmission (cleared by hardware upon completion)<br>0 = Sync Break transmission completed<br>Synchronous mode:<br>1 = Send Sync Break transmission completed<br>Synchronous mode:<br>1 = High Baud Rate Select bit<br>Asynchronous mode:<br>1 = High speed<br>0 = Low speed<br>Synchronous mode:<br>bit 1 TRWT: Transmit Shift Register Status bit<br>1 = TSR empty<br>0 = TSR full<br>bit 0 TXDS: Ninth bit of Transmit Data<br>Can be address/data bit or a parity bit.                                                                                                                                                                                                                    | -n = Value at PC | )R              | '1' = Bit is set                    |                 | '0' = Bit is clea | red                | x = Bit is unkno | wn    |
| bit 7       CSRC: Clock Source Select bit         Asynchronous mode:       Don't care         Synchronous mode:       I = Master mode (clock from external source)         bit 6       TX9: 9-bit Transmit Enable bit         1 = Selects 9-bit transmission       0 = Silects 8-bit transmission         0 = Silects 8-bit transmission       0 = Transmit enable bit <sup>(1)</sup> 1 = Transmit enable bit <sup>(1)</sup> 1 = Transmit enable bit <sup>(1)</sup> 1 = Transmit enabled       0 = Transmit disabled         bit 4       Synchronous mode         0 = Selects 8-bit transmission       0 = Selects 8-bit transmission         0 = Transmit enabled       0 = Transmit enabled         0 = Transmit enabled       0 = Transmit disabled         bit 4       Synchronous mode         0 = Asynchronous mode       0 = Asynchronous mode         0 = Select 8-bit transmission cleared by hardware upon completion)       0 = Sync Break transmission cleared by hardware upon completion)         0 = Sync Break transmission completed       Synchronous mode:         0 = Low speed       0 = Low speed         0 = Low speed       0 = Low speed         0 = Low speed       0 = Low speed         0 = Toss empty       0 = TSR tull         bit 0       TSN: Ninth bit of Transmit Data         Can be address/data bi                                                                                                                                                                                                                                                                                                                                                                                           |                  |                 |                                     |                 |                   |                    |                  |       |
| Asynchronous mode:         Don't care         Synchronous mode:         1 = Master mode (clock generated internally from BRG)         0 = Slave mode (clock from external source)         bit 6         TX9: 9-bit Transmit Enable bit         1 = Selects 9-bit transmission         0 = Selects 8-bit transmission         0 = Selects 8-bit transmission         0 = Transmit Enable bit <sup>(1)</sup> 1 = Transmit enabled         0 = Transmit fisabled         0 = Transmit fisabled         0 = Transmit fisabled         0 = Transmit fisabled         0 = Transmit enable bit         1 = Synchronous mode         0 = Asynchronous mode         0 = Asynchronous mode         0 = Asynchronous mode         1 = Send Sync Break character bit         Asynchronous mode:         Don't care         bit 2       BRGH: High Baud Rate Select bit         Asynchronous mode:         Don't care         bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty         0 = TSR full         bit 0       TXSD: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bit 7            | CSRC: Clock S   | Source Select bit                   |                 |                   |                    |                  |       |
| Sinchronous mode:         1 = Master mode (clock generated internally from BRG)         0 = Slave mode (clock from external source)         bit 6       TX9: 9-bit Transmit Enable bit         1 = Selects 9-bit transmission         0 = Selects 8-bit transmission         0 = Selects 8-bit transmission         0 = Transmit Enable bit <sup>(1)</sup> 1 = Transmit Enable bit <sup>(1)</sup> 1 = Transmit enabled         0 = Transmit fisabled         0 = Transmit disabled         bit 4       SYNC: EUSART Mode Select bit         1 = Synchronous mode         0 = Asynchronous mode         bit 3       SENDB: Send Break Character bit         Asynchronous mode:         Don't care         bit 2       BRCH: High Baud Rate Select bit         1 = Synchronous mode:         Don't care         bit 1       TRMT: Transmit Shift Register Status bit         1 = High speed         0 = Low speed         Synchronous mode:         Unused in this mode         bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty         0 = TSR full         bit 0       TXPD: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Asynchronous    | <u>mode</u> :                       |                 |                   |                    |                  |       |
| 1 = Master mode (clock generated internally from BRG)         0 = Slave mode (clock from external source)         bit 6       TX9: 9-bit Transmit Enable bit         1 = Selects 9-bit transmission         0 = Selects 8-bit transmission         bit 5       TXEN: Transmit Enable bit <sup>(1)</sup> 1 = Transmit enabled         0 = Transmit disabled         bit 4       SYNC: EUSART Mode Select bit         1 = Synchronous mode         0 = Asynchronous mode         0 = Asynchronous mode         0 = Selects 8-bit transmission completed         Synchronous mode:         1 = Synchronous mode         0 = Sync Break on next transmission (cleared by hardware upon completion)         0 = Sync Break transmission completed         Synchronous mode:         1 = High speed         0 = Low speed         Synchronous mode:         1 = High speed         0 = Low speed         Synchronous mode:         1 = TSR empty         0 = TSR full         bit 0       TX9D: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | Don't care      | nodo:                               |                 |                   |                    |                  |       |
| bit 1       TX9: 9-bit Transmit Enable bit         1 = Selects 9-bit transmission         0 = Sent Brack Character bit         1 = Synchronous mode         0 = Asynchronous mode         1 = Send Sync Break On next transmission (cleared by hardware upon completion)         0 = Sync Break transmission completed         Synchronous mode:         Don't care         bit 2       BrGH: High Baud Rate Select bit         Asynchronous mode:         1 = High speed         0 = Low speed         Synchronous mode:         1 = High speed         0 = Low speed         Synchronous mode:         Unused in this mode         bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1 = Master m    | <u>ioue</u> .<br>Iode (clock gener: | ated internally | from BRG)         |                    |                  |       |
| bit 6       TX9: 9-bit Transmit Enable bit<br>1 = Selects 9-bit transmission<br>0 = Selects 8-bit transmission<br>0 = Selects 8-bit transmission         bit 5       TXEN: Transmit Enable bit <sup>(1)</sup><br>1 = Transmit enabled<br>0 = Transmit disabled         bit 4       SYNC: EUSART Mode Select bit<br>1 = Synchronous mode<br>0 = Asynchronous mode         bit 3       SENDB: Send Break Character bit<br>Asynchronous mode:<br>1 = Send Sync Break on next transmission (cleared by hardware upon completion)<br>0 = Sync Break transmission completed<br>Synchronous mode:<br>Don't care         bit 2       BRGH: High Baud Rate Select bit<br>Asynchronous mode:<br>1 = High speed<br>0 = Low speed<br>Synchronous mode:<br>1 = High speed<br>0 = Low speed<br>Synchronous mode:<br>Unused in this mode         bit 1       TRMT: Transmit Shift Register Status bit<br>1 = TSR empty<br>0 = TSR full         bit 0       TX9D: Ninth bit of Transmit Data<br>Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 0 = Slave mo    | de (clock from ex                   | ternal source)  |                   |                    |                  |       |
| 1 = Selects 9-bit transmissionbit 5TXEN: Transmit Enableb bit(1)1 = Transmit enabled0 = Transmit disabledbit 4SYNC: EUSART Mode Select bit1 = Synchronous mode0 = Asynchronous modebit 3SENDB: Send Break Character bitAsynchronous mode:1 = Sync Break character bitAsynchronous mode:0 = Sync Break transmission (cleared by hardware upon completion)0 = Sync Break transmission completedSynchronous mode:Don't carebit 2BRCH: High Baud Rate Select bitAsynchronous mode:0 = Low speedSynchronous mode:1 = High speed0 = Low speedSynchronous mode:1 = TSR empty0 = TSR fullbit 1bit 2bit 3bit 4TRMT: Transmit Shift Register Status bit1 = TSR empty0 = TSR fullbit 0TXSPD: Ninth bit of Transmit DataCan be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bit 6            | TX9: 9-bit Tran | smit Enable bit                     |                 |                   |                    |                  |       |
| bit 5 TXEN: Transmit Enable bit <sup>(1)</sup><br>1 = Transmit enabled<br>0 = Transmit enabled<br>1 = Transmit enabled<br>bit 4 SYNC: EUSART Mode Select bit<br>1 = Synchronous mode<br>0 = Asynchronous mode<br>bit 3 SENDB: Send Break Character bit<br>Asynchronous mode:<br>1 = Send Sync Break on next transmission (cleared by hardware upon completion)<br>0 = Sync Break on next transmission (cleared by hardware upon completion)<br>0 = Sync Break on next transmission (cleared by hardware upon completion)<br>0 = Sync Break transmission completed<br>Synchronous mode:<br>1 = High Baud Rate Select bit<br>Asynchronous mode:<br>1 = High speed<br>0 = Low speed<br>Synchronous mode:<br>Unused in this mode<br>bit 1 TRMT: Transmit Shift Register Status bit<br>1 = TSR empty<br>0 = TSR full<br>bit 0 TXSP: Ninth bit of Transmit Data<br>Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 1 = Selects 9   | -bit transmission                   |                 |                   |                    |                  |       |
| bit 5       TXEN: Transmit Enable bit <sup>(1)</sup> 1 = Transmit enabled       0 = Transmit disabled         bit 4       SYNC: EUSART Mode Select bit         1 = Synchronous mode       0 = Asynchronous mode         bit 3       SENDB: Send Break Character bit         Asynchronous mode:       1 = Send Sync Break on next transmission (cleared by hardware upon completion)         0 = Sync Break transmission completed       Synchronous mode:         Don't care       Don't care         bit 2       BRGH: High Baud Rate Select bit         Asynchronous mode:       1 = High speed         0 = Low speed       Synchronous mode:         bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty       0 = TSR full         bit 0       TXSD: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 0 = Selects 8   | -bit transmission                   |                 |                   |                    |                  |       |
| 1 = Transmit enabled         0 = Transmit disabled         bit 4       SYNC: EUSART Mode Select bit         1 = Synchronous mode         0 = Asynchronous mode         bit 3       SENDB: Send Break Character bit         Asynchronous mode:         1 = Send Sync Break on next transmission (cleared by hardware upon completion)         0 = Sync Break transmission completed         Synchronous mode:         Don't care         bit 2       BRGH: High Baud Rate Select bit         Asynchronous mode:         1 = High speed         0 = Low speed         Synchronous mode:         Unused in this mode         bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty       0 = TSR full         bit 0       TX9D: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bit 5            | TXEN: Transm    | it Enable bit <sup>(1)</sup>        |                 |                   |                    |                  |       |
| bit 4       SYNC: EUSART Mode Select bit         1 = Synchronous mode         0 = Asynchronous mode         bit 3       SENDB: Send Break Character bit         Asynchronous mode:         1 = Send Sync Break on next transmission (cleared by hardware upon completion)         0 = Sync Break transmission completed         Synchronous mode:         Don't care         bit 2       BRGH: High Baud Rate Select bit         Asynchronous mode:         1 = High speed         0 = Low speed         Synchronous mode:         Unused in this mode         bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty         0 = TSR full         bit 0       TX9D: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 1 = Transmit e  | enabled                             |                 |                   |                    |                  |       |
| bit 4       STNC: EDSART Mode Select bit         1 = Synchronous mode       0 = Asynchronous mode         bit 3       SENDB: Send Break Character bit         Asynchronous mode:       1 = Send Sync Break on next transmission (cleared by hardware upon completion)         0 = Sync Break transmission completed       Synchronous mode:         Don't care       Don't care         bit 2       BRGH: High Baud Rate Select bit         Asynchronous mode:       1 = High speed         0 = Low speed       Synchronous mode:         Unused in this mode       Unused in this mode         bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty       0 = TSR full         bit 0       TX9D: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bit 4            |                 | uisabieu                            |                 |                   |                    |                  |       |
| bit 3 SENDB: Send Break Character bit<br>Asynchronous mode:<br>1 = Send Sync Break on next transmission (cleared by hardware upon completion)<br>0 = Sync Break transmission completed<br>Synchronous mode:<br>Don't care<br>bit 2 BRGH: High Baud Rate Select bit<br>Asynchronous mode:<br>1 = High speed<br>0 = Low speed<br>Synchronous mode:<br>Unused in this mode<br>bit 1 TRMT: Transmit Shift Register Status bit<br>1 = TSR empty<br>0 = TSR full<br>bit 0 TX9D: Ninth bit of Transmit Data<br>Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DIL 4            | 1 = Synchron    | nis mode                            | l               |                   |                    |                  |       |
| bit 3       SENDB: Send Break Character bit         Asynchronous mode:       1 = Send Sync Break on next transmission (cleared by hardware upon completion)         0 = Sync Break transmission completed       Synchronous mode:         Don't care       Don't care         bit 2       BRGH: High Baud Rate Select bit         Asynchronous mode:       1 = High speed         0 = Low speed       Synchronous mode:         Unused in this mode       Unused in this mode         bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty       0 = TSR full         bit 0       TX9D: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 0 = Asynchror   | nous mode                           |                 |                   |                    |                  |       |
| Asynchronous mode:         1 = Send Sync Break on next transmission (cleared by hardware upon completion)         0 = Sync Break transmission completed         Synchronous mode:         Don't care         bit 2       BRGH: High Baud Rate Select bit         Asynchronous mode:         1 = High speed         0 = Low speed         Synchronous mode:         Unused in this mode         bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty         0 = TSR full         bit 0       TX9D: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bit 3            | SENDB: Send     | Break Character                     | bit             |                   |                    |                  |       |
| 1 = Send Sync Break on next transmission (cleared by hardware upon completion)         0 = Sync Break transmission completed         Synchronous mode:         Don't care         bit 2       BRGH: High Baud Rate Select bit         Asynchronous mode:         1 = High speed         0 = Low speed         Synchronous mode:         Unused in this mode         bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty         0 = TSR full         bit 0       TX9D: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Asynchronous    | mode:                               |                 |                   |                    |                  |       |
| 0 = Sync Break transmission completed         Synchronous mode:         Don't care         bit 2       BRGH: High Baud Rate Select bit         Asynchronous mode:         1 = High speed         0 = Low speed         Synchronous mode:         Unused in this mode         bit 1         TRMT: Transmit Shift Register Status bit         1 = TSR empty         0 = TSR full         bit 0       TX9D: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 1 = Send Syn    | c Break on next tr                  | ansmission (c   | leared by hardwa  | are upon completi  | on)              |       |
| bit 2 BRGH: High Baud Rate Select bit<br>Asynchronous mode:<br>1 = High speed<br>0 = Low speed<br>Synchronous mode:<br>Unused in this mode<br>bit 1 TRMT: Transmit Shift Register Status bit<br>1 = TSR empty<br>0 = TSR full<br>bit 0 TX9D: Ninth bit of Transmit Data<br>Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 0 = Sync Brea   | ak transmission co                  | ompleted        |                   |                    |                  |       |
| bit 2       BRGH: High Baud Rate Select bit         Asynchronous mode:       1 = High speed         0 = Low speed       Synchronous mode:         Unused in this mode       Unused in this mode         bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty       0 = TSR full         bit 0       TX9D: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Don't care      | <u>ioue</u> .                       |                 |                   |                    |                  |       |
| Asynchronous mode:         1 = High speed         0 = Low speed         Synchronous mode:         Unused in this mode         bit 1         TRMT: Transmit Shift Register Status bit         1 = TSR empty         0 = TSR full         bit 0         TX9D: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bit 2            | BRGH: High B    | aud Rate Select b                   | oit             |                   |                    |                  |       |
| 1 = High speed         0 = Low speed         Synchronous mode:         Unused in this mode         bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty         0 = TSR full         bit 0       TX9D: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Asynchronous    | mode:                               |                 |                   |                    |                  |       |
| 0 = Low speed         Synchronous mode:         Unused in this mode         bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty         0 = TSR full         bit 0       TX9D: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 1 = High spee   | ed                                  |                 |                   |                    |                  |       |
| Synchronous mode:         Unused in this mode         bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty         0 = TSR full         bit 0       TX9D: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 0 = Low speed   | d .                                 |                 |                   |                    |                  |       |
| bit 1       TRMT: Transmit Shift Register Status bit         1 = TSR empty       0 = TSR full         bit 0       TX9D: Ninth bit of Transmit Data         Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Synchronous m   | <u>node:</u>                        |                 |                   |                    |                  |       |
| bit 1     TSR empty       0 = TSR full       bit 0 <b>TX9D:</b> Ninth bit of Transmit Data       Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hit 1            |                 | it Shift Dogistor S                 | totuo hit       |                   |                    |                  |       |
| bit 0 <b>TX9D:</b> Ninth bit of Transmit Data<br>Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DICT             | 1 = TSR empt    | it Shilt Register S<br>Iv           |                 |                   |                    |                  |       |
| bit 0 <b>TX9D:</b> Ninth bit of Transmit Data<br>Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 0 = TSR full    | - )                                 |                 |                   |                    |                  |       |
| Can be address/data bit or a parity bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bit 0            | TX9D: Ninth bit | t of Transmit Data                  | l               |                   |                    |                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Can be address  | s/data bit or a par                 | ity bit.        |                   |                    |                  |       |

#### REGISTER 15-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

Note 1: SREN/CREN overrides TXEN in Sync mode.

#### 16.2 ADC Operation

#### 16.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will, depending on the ACQT bits of the ADCON2 register, either immediately start the Analog-to-Digital conversion or start an acquisition delay followed by the Analog-to-Digital conversion. Figure 16-3 shows the operation of the A/D converter after the GO bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into SLEEP mode before the conversion begins.

Figure 16-4 shows the operation of the A/D converter after the GO bit has been set and the ACQT<2:0> bits are set to '010' which selects a 4 TAD acquisition time before the conversion starts.

Note: The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section 16.2.9 "A/D Conversion Procedure".

#### FIGURE 16-3: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

| <u>Тсү - Та</u> | <u>d</u> Tad1 | TAD2     | TAD3   | TAD4   | TAD5   | TAD6     | TAD7              | TAD8              | TAD9             | TAD10               | TAD11               | 2 TAD                           |
|-----------------|---------------|----------|--------|--------|--------|----------|-------------------|-------------------|------------------|---------------------|---------------------|---------------------------------|
| <b>≜</b> ↑      | Ť             | b9       | b8     | b7     | b6     | b5       | b4                | b3                | b2               | b1                  | b0                  | ↑ '                             |
|                 | Conver        | sion sta | arts   |        |        |          |                   |                   |                  |                     |                     | Discharge                       |
| Holdir          | ng capa       | citor is | discon | nected | from a | analog i | input (t          | ypically          | / 100 n          | s)                  |                     |                                 |
| Set GC          | ) bit         |          |        |        |        |          |                   |                   |                  |                     |                     | I                               |
|                 |               |          |        |        | C      | On the f | ollowin           | g cycle           | :                |                     |                     |                                 |
|                 |               |          |        |        | A      | DRES     | H:ADR<br>∵is set. | ESL IS<br>holdine | loadeo<br>d capa | d, GO t<br>citor is | oit is cle<br>conne | eared,<br>cted to analog input. |
|                 |               |          |        |        |        |          |                   |                   | 9 00.00          | 0.101.10            |                     | eter te analog inpati           |

#### FIGURE 16-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)



### FIGURE 21-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM







## 21.7 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the VREFCON1 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

#### 21.8 Effects of a Reset

A device Reset affects the following:

- DAC is disabled
- DAC output voltage is removed from the DAC10UT pin
- The DAC1R<4:0> range select bits are cleared

### 21.9 Register Definitions: DAC Control

#### REGISTER 21-1: VREFCON1: VOLTAGE REFERENCE CONTROL REGISTER 0

| R/W-0 | R/W-0 | R/W-0  | U-0 | R/W-0 | R/W-0  | U-0 | R/W-0 |
|-------|-------|--------|-----|-------|--------|-----|-------|
| D1EN  | D1LPS | DAC10E | —   | D1PS  | S<1:0> | —   | D1NSS |
| bit 7 |       |        |     |       |        |     | bit 0 |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

| bit 7   | D1EN: DAC Enable bit<br>1 = DAC is enabled<br>0 = DAC is disabled                                                                                                                                                 |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 6   | D1LPS: DAC Low-Power Voltage Source Select bit                                                                                                                                                                    |
|         | <ul><li>1 = DAC Positive reference source selected</li><li>0 = DAC Negative reference source selected</li></ul>                                                                                                   |
| bit 5   | <ul> <li>DAC1OE: DAC Voltage Output Enable bit</li> <li>1 = DAC voltage level is also an output on the DAC1OUT (CVREF) pin</li> <li>0 = DAC voltage level is disconnected from the DAC1OUT (CVREF) pin</li> </ul> |
| bit 4   | Unimplemented: Read as '0'                                                                                                                                                                                        |
| bit 3-2 | D1PSS<1:0>: DAC Positive Source Select bits<br>00 = VDD<br>01 = VREF+<br>10 = FVR1BUF1 output<br>11 = Reserved, do not use                                                                                        |
| bit 1   | Unimplemented: Read as '0'                                                                                                                                                                                        |
| bit 0   | <b>D1NSS:</b> DAC Negative Source Select bits<br>1 = VREF-<br>0 = VSS                                                                                                                                             |

| REGISTER A    | 23-3: CONF            | IGZH: CONF      | IGURATION      | REGISTER       |                  |          |       |
|---------------|-----------------------|-----------------|----------------|----------------|------------------|----------|-------|
| U-0           | U-0                   | U-0             | R/P-1          | R/P-1          | R/P-1            | R/P-1    | R/P-1 |
| —             | —                     | _               | WDTPS3         | WDTPS2         | WDTPS1           | WDTPS0   | WDTEN |
| bit 7         | •                     |                 |                | ·              |                  |          | bit 0 |
|               |                       |                 |                |                |                  |          |       |
| Legend:       |                       |                 |                |                |                  |          |       |
| R = Readable  | e bit                 | P = Program     | nable bit      | U = Unimpler   | mented bit, read | d as '0' |       |
| -n = Value wh | nen device is unp     | orogrammed      |                | x = Bit is unk | nown             |          |       |
|               |                       |                 |                |                |                  |          |       |
| bit 7-5       | Unimplement           | ted: Read as '  | 0'             |                |                  |          |       |
| bit 4-1       | WDTPS<3:0>            | : Watchdog Ti   | mer Postscale  | Select bits    |                  |          |       |
|               | 1111 <b>= 1:32,7</b>  | 768             |                |                |                  |          |       |
|               | 1110 = 1:16,3         | 384             |                |                |                  |          |       |
|               | 1101 <b>= 1:8,19</b>  | 92              |                |                |                  |          |       |
|               | 1100 <b>= 1:4,09</b>  | 96              |                |                |                  |          |       |
|               | 1011 <b>= 1:2,0</b> 4 | 48              |                |                |                  |          |       |
|               | 1010 = 1:1,02         | 24              |                |                |                  |          |       |
|               | 1001 <b>= 1:512</b>   |                 |                |                |                  |          |       |
|               | 1000 <b>= 1:256</b>   |                 |                |                |                  |          |       |
|               | 0111 <b>= 1:128</b>   |                 |                |                |                  |          |       |
|               | 0110 <b>= 1:64</b>    |                 |                |                |                  |          |       |
|               | 0101 <b>= 1:32</b>    |                 |                |                |                  |          |       |
|               | 0100 = 1:16           |                 |                |                |                  |          |       |
|               | 0011 <b>= 1:8</b>     |                 |                |                |                  |          |       |
|               | 0010 = 1:4            |                 |                |                |                  |          |       |
|               | 0001 = 1:2            |                 |                |                |                  |          |       |
|               | 0000 = 1:1            |                 |                |                |                  |          |       |
| bit 0         | WDTEN: Wat            | chdog Timer E   | nable bit      |                |                  |          |       |
|               | 1 = WDT is al         | ways enabled    | SWDTEN bit     | has no effect  |                  |          |       |
|               | 0 = WDT is co         | ontrolled by SV | VDTEN bit of t | he WDTCON r    | egister          |          |       |
|               |                       |                 |                |                |                  |          |       |

## 25.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

#### 25.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel<sup>®</sup> standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

#### 25.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

## 25.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility





2: Refer to Table 26-13 for each Oscillator mode's supported frequencies.













## Package Marking Information (Continued)

20-Lead SOIC (7.50 mm)



20-Lead QFN (4x4x0.9 mm)



Example



Example



| Legend | : XXX<br>Y<br>YY<br>WW<br>NNN<br>@3<br>* | Customer-specific information<br>Year code (last digit of calendar year)<br>Year code (last 2 digits of calendar year)<br>Week code (week of January 1 is week '01')<br>Alphanumeric traceability code<br>Pb-free JEDEC <sup>®</sup> designator for Matte Tin (Sn)<br>This package is Pb-free. The Pb-free JEDEC designator (e3)<br>can be found on the outer packaging for this package. |
|--------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note:  | In the even<br>be carried<br>characters  | nt the full Microchip part number cannot be marked on one line, it will<br>d over to the next line, thus limiting the number of available<br>for customer-specific information.                                                                                                                                                                                                           |