
Microchip Technology - PIC18LF13K22-I/SS Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 17

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 256 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 20-SSOP (0.209", 5.30mm Width)

Supplier Device Package 20-SSOP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf13k22-i-ss

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf13k22-i-ss-4378780
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


PIC18(L)F1XK22
SPBRGH EUSART Baud Rate Generator Register, High Byte 0000 0000 247, 182

SPBRG EUSART Baud Rate Generator Register, Low Byte 0000 0000 247, 182

RCREG EUSART Receive Register 0000 0000 247, 175

TXREG EUSART Transmit Register 0000 0000 247, 172

TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 0000 0010 247, 179

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 000x 247, 180

EEADR EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 0000 0000
247, 45, 
54

EEDATA EEPROM Data Register 0000 0000
247, 45, 
54

EECON2 EEPROM Control Register 2 (not a physical register) 0000 0000
247, 45, 
54

EECON1 EEPGD CFGS — FREE WRERR WREN WR RD xx-0 x000
247, 45, 
54

IPR2 OSCFIP C1IP C2IP EEIP BCLIP — TMR3IP — 1111 1-1- 248, 70

PIR2 OSCFIF C1IF C2IF EEIF BCLIF — TMR3IF — 0000 0-0- 248, 66

PIE2 OSCFIE C1IE C2IE EEIE BCLIE — TMR3IE — 0000 0-0- 248, 68

IPR1 — ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP -111 1111 248, 69

PIR1 — ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF -000 0000 248, 65

PIE1 — ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE -000 0000 248, 67

OSCTUNE INTSRC PLLEN TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 0000 0000 248, 19

TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 248, 84

TRISB TRISB7 TRISB6 TRISB5 TRISB4 — — — — 1111 ---- 248, 80

TRISA — — TRISA5 TRISA4 —(3) TRISA2 TRISA1 TRISA0 --11 1111 248, 75

LATC LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 xxxx xxxx 248, 85

LATB LATB7 LATB6 LATB5 LATB4 — — — — xxxx ---- 248, 80

LATA — — LATA5 LATA4 — LATA2 LATA1 LATA0 --xx -xxx 248, 76

PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 xxxx xxxx 248, 84

PORTB RB7 RB6 RB5 RB4 — — — — xxxx ---- 248, 80

PORTA — — RA5 RA4 RA3(2) RA2 RA1 RA0 --xx xxxx 248, 75

ANSELH — — — — ANS11 ANS10 ANS9 ANS8 ---- 1111 248, 89

ANSEL ANS7 ANS6 ANS5 ANS4 ANS3 ANS2 ANS1 ANS0 1111 1111 248, 88

IOCB IOCB7 IOCB6 IOCB5 IOCB4 — — — — 0000 ---- 248, 81

IOCA — — IOCA5 IOCA4 IOCA3 IOCA2 IOCA1 IOCA0 --00 0000 248, 76

WPUB WPUB7 WPUB6 WPUB5 WPUB4 — — — — 1111 ---- 248, 81

WPUA — — WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0 --11 1111 245, 76

SLRCON — — — — — SLRC SLRB SLRA ---- -111 248, 90

SSPMSK MSK7 MSK6 MSK5 MSK4 MSK3 MSK2 MSK1 MSK0 1111 1111 248, 146

CM1CON0 C1ON C1OUT C1OE C1POL C1SP C1R C1CH1 C1CH0 0000 0000 248, 216

CM2CON1 MC1OUT MC2OUT C1RSEL C2RSEL C1HYS C2HYS C1SYNC C2SYNC 0000 0000 248, 220

CM2CON0 C2ON C2OUT C2OE C2POL C2SP C2R C2CH1 C2CH0 0000 0000 248, 217

SRCON1 SRSPE SRSCKE SRSC2E SRSC1E SRRPE SRRCKE SRRC2E SRRC1E 0000 0000 248, 230

SRCON0 SRLEN SRCLK2 SRCLK1 SRCLK0 SRQEN SRNQEN SRPS SRPR 0000 0000 248, 229

TABLE 3-2: REGISTER FILE SUMMARY (PIC18(L)F1XK22) (CONTINUED)

File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on 

POR, BOR

Details 
on 

page:

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition
Note 1: The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise it is disabled and reads as ‘0’. See 

Section 22.4 “Brown-out Reset (BOR)”.
2: The RA3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0). Otherwise, RA3 reads as ‘0’. This bit is 

read-only.
3: Unimplemented, read as ‘1’.
DS40001365F-page 38  2009-2016 Microchip Technology Inc.



PIC18(L)F1XK22
3.5.3 MAPPING THE ACCESS BANK IN 
INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode
effectively changes how the first 96 locations of Access
RAM (00h to 5Fh) are mapped. Rather than containing
just the contents of the bottom section of Bank 0, this
mode maps the contents from a user defined “window”
that can be located anywhere in the data memory
space. The value of FSR2 establishes the lower
boundary of the addresses mapped into the window,
while the upper boundary is defined by FSR2 plus 95
(5Fh). Addresses in the Access RAM above 5Fh are
mapped as previously described (see Section 3.3.2
“Access Bank”). An example of Access Bank
remapping in this addressing mode is shown in
Figure 3-10.

Remapping of the Access Bank applies only to
operations using the Indexed Literal Offset mode.
Operations that use the BSR (Access RAM bit is ‘1’) will
continue to use direct addressing as before. 

3.6 PIC18 Instruction Execution and 
the Extended Instruction Set

Enabling the extended instruction set adds eight
additional commands to the existing PIC18 instruction
set. These instructions are executed as described in
Section 24.2 “Extended Instruction Set”.

FIGURE 3-10: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET 
ADDRESSING 

Data Memory

000h

100h

200h

F60h

F00h

FFFh

Bank 1

Bank 15

Bank 2
through
Bank 14

SFRs

ADDWF f, d, a

FSR2H:FSR2L = 120h

Locations in the region
from the FSR2 pointer
(120h) to the pointer plus
05Fh (17Fh) are mapped
to the bottom of the
Access RAM (000h-05Fh).

Special File Registers at
F60h through FFFh are
mapped to 60h through
FFh, as usual.

Bank 0 addresses below
5Fh can still be addressed
by using the BSR. Access Bank

00h

60h

FFh

SFRs

Bank 1 “Window”

Bank 0

Window

Example Situation:

120h
17Fh

5Fh

Bank 1
DS40001365F-page 44  2009-2016 Microchip Technology Inc.



PIC18(L)F1XK22
FIGURE 4-2: TABLE WRITE OPERATION    

4.2 Control Registers

Several control registers are used in conjunction with
the TBLRD and TBLWT instructions. These include the:

• EECON1 register

• EECON2 register

• TABLAT register

• TBLPTR registers

4.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 4-1) is the control
register for memory accesses. The EECON2 register is
not a physical register; it is used exclusively in the
memory write and erase sequences. Reading
EECON2 will read all ‘0’s.

The EEPGD control bit determines if the access will be
a program or data EEPROM memory access. When
EEPGD is clear, any subsequent operations will
operate on the data EEPROM memory. When EEPGD
is set, any subsequent operations will operate on the
program memory.

The CFGS control bit determines if the access will be
to the Configuration/Calibration registers or to program
memory/data EEPROM memory. When CFGS is set,
subsequent operations will operate on Configuration
registers regardless of EEPGD (see Section 23.0
“Special Features of the CPU”). When CFGS is clear,
memory selection access is determined by EEPGD.

The FREE bit allows the program memory erase
operation. When FREE is set, an erase operation is
initiated on the next WR command. When FREE is
clear, only writes are enabled.

The WREN bit, when set, will allow a write operation.
The WREN bit is clear on power-up. 

The WRERR bit is set by hardware when the WR bit is
set and cleared when the internal programming timer
expires and the write operation is complete. 

The WR control bit initiates write operations. The WR
bit cannot be cleared, only set, by firmware. Then WR
bit is cleared by hardware at the completion of the write
operation.

Table Pointer(1)
Table Latch (8-bit)

TBLPTRH TBLPTRL TABLAT

Program Memory
(TBLPTR<MSBs>)

TBLPTRU

Instruction: TBLWT*

Note 1: During table writes the Table Pointer does not point directly to Program Memory. The LSBs of TBLPRTL
actually point to an address within the write block holding registers. The MSBs of the Table Pointer
determine where the write block will eventually be written. The process for writing the holding registers
to the program memory array is discussed in Section 4.5 “Writing to Flash Program Memory”.

 Holding Registers Program Memory

Note: During normal operation, the WRERR is
read as ‘1’. This can indicate that a write
operation was prematurely terminated by
a Reset, or a write operation was
attempted improperly.

Note: The EEIF interrupt flag bit of the PIR2
register is set when the write is complete.
The EEIF flag stays set until cleared by
firmware.
DS40001365F-page 46  2009-2016 Microchip Technology Inc.



PIC18(L)F1XK22
4.5 Writing to Flash Program Memory

The programming block size is 8 or 16 bytes,
depending on the device (See Table 4-1). Word or byte
programming is not supported.

Table writes are used internally to load the holding
registers needed to program the Flash memory. There
are only as many holding registers as there are bytes
in a write block (See Table 4-1).

Since the Table Latch (TABLAT) is only a single byte,
the TBLWT instruction may need to be executed 8, or 16
times, depending on the device, for each programming
operation. All of the table write operations will
essentially be short writes because only the holding
registers are written. After all the holding registers have
been written, the programming operation of that block
of memory is started by configuring the EECON1
register for a program memory write and performing the
long write sequence.

The long write is necessary for programming the
internal Flash. Instruction execution is halted during a
long write cycle. The long write will be terminated by
the internal programming timer. 

The EEPROM on-chip timer controls the write time.
The write/erase voltages are generated by an on-chip
charge pump, rated to operate over the voltage range
of the device.

FIGURE 4-5: TABLE WRITES TO FLASH PROGRAM MEMORY 

4.5.1 FLASH PROGRAM MEMORY WRITE 
SEQUENCE

The sequence of events for programming an internal
program memory location should be:

1. Read 64 bytes into RAM.

2. Update data values in RAM as necessary.

3. Load Table Pointer register with address being
erased.

4. Execute the block erase procedure.

5. Load Table Pointer register with address of first
byte being written.

6. Write the 8 or 16 byte block into the holding
registers with auto-increment.

7. Set the EECON1 register for the write operation:

• set EEPGD bit to point to program memory;

• clear the CFGS bit to access program memory;

• set WREN to enable byte writes.

8. Disable interrupts.

9. Write 55h to EECON2.

10. Write 0AAh to EECON2.

11. Set the WR bit. This will begin the write cycle.

12. The CPU will stall for duration of the write (about
2 ms using internal timer).

13. Re-enable interrupts.

14. Repeat steps 6 to 13 for each block until all 64
bytes are written.

15. Verify the memory (table read).

This procedure will require about 6 ms to update each
write block of memory. An example of the required code
is given in Example 4-3.

Note: The default value of the holding registers on
device Resets and after write operations is
FFh. A write of FFh to a holding register
does not modify that byte. This means that
individual bytes of program memory may
be modified, provided that the change does
not attempt to change any bit from a ‘0’ to a
‘1’. When modifying individual bytes, it is
not necessary to load all holding registers
before executing a long write operation.

TABLAT 

TBLPTR = xxxxYY(1)TBLPTR = xxxx01TBLPTR = xxxx00

Write Register

TBLPTR = xxxx02

Program   Memory

Holding Register Holding Register Holding Register Holding Register

8 8 8 8

Note 1: YY = x7 or xF for 8 or 16 byte write blocks, respectively.

Note: Before setting the WR bit, the Table
Pointer address needs to be within the
intended address range of the bytes in the
holding registers.
 2009-2016 Microchip Technology Inc. DS40001365F-page 51



PIC18(L)F1XK22
5.3 Reading the Data EEPROM 
Memory

To read a data memory location, the user must write the
address to the EEADR register, clear the EEPGD
control bit of the EECON1 register and then set control
bit, RD. The data is available on the very next
instruction cycle; therefore, the EEDATA register can
be read by the next instruction. EEDATA will hold this
value until another read operation, or until it is written to
by the user (during a write operation). 

The basic process is shown in Example 5-1.

5.4 Writing to the Data EEPROM 
Memory

To write an EEPROM data location, the address must
first be written to the EEADR register and the data
written to the EEDATA register. The sequence in
Example 5-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly
followed (write 55h to EECON2, write 0AAh to
EECON2, then set WR bit) for each byte. It is strongly
recommended that interrupts be disabled during this
code segment.

Additionally, the WREN bit in EECON1 must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM due to unexpected code
execution (i.e., runaway programs). The WREN bit
should be kept clear at all times, except when updating
the EEPROM. The WREN bit is not cleared by
hardware.

After a write sequence has been initiated, EECON1,
EEADR and EEDATA cannot be modified. The WR bit
will be inhibited from being set unless the WREN bit is
set. Both WR and WREN cannot be set with the same
instruction.

At the completion of the write cycle, the WR bit is
cleared by hardware and the EEPROM Interrupt Flag
bit, EEIF, is set. The user may either enable this
interrupt or poll this bit. EEIF must be cleared by
software.

5.5 Write Verify

Depending on the application, good programming
practice may dictate that the value written to the
memory should be verified against the original value.
This should be used in applications where excessive
writes can stress bits near the specification limit. 

EXAMPLE 5-1: DATA EEPROM READ 

EXAMPLE 5-2: DATA EEPROM WRITE 

MOVLW DATA_EE_ADDR ;
MOVWF EEADR ; Data Memory Address to read
BCF EECON1, EEPGD ; Point to DATA memory
BCF EECON1, CFGS ; Access EEPROM
BSF EECON1, RD ; EEPROM Read
MOVF EEDATA, W ; W = EEDATA

MOVLW DATA_EE_ADDR_LOW ;
MOVWF EEADR ; Data Memory Address to write
MOVLW DATA_EE_DATA ;
MOVWF EEDATA ; Data Memory Value to write
BCF EECON1, EEPGD ; Point to DATA memory
BCF EECON1, CFGS ; Access EEPROM
BSF EECON1, WREN ; Enable writes
BCF INTCON, GIE ; Disable Interrupts
MOVLW 55h ;

Required MOVWF EECON2 ; Write 55h
Sequence MOVLW 0AAh ;

MOVWF EECON2 ; Write 0AAh
BSF EECON1, WR ; Set WR bit to begin write
BSF INTCON, GIE ; Enable Interrupts

; User code execution
BCF EECON1, WREN ; Disable writes on write complete (EEIF set)
DS40001365F-page 56  2009-2016 Microchip Technology Inc.



PIC18(L)F1XK22
REGISTER 8-6: PORTB: PORTB REGISTER

R/W-x R/W-x R/W-x R/W-x U-0 U-0 U-0 U-0

RB7 RB6 RB5 RB4 — — — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-4 RB<7:4>: PORTB I/O Pin bit
1 = Port pin is >VIH

0 = Port pin is <VIL

bit 3-0 Unimplemented: Read as ‘0’

REGISTER 8-7: TRISB: PORTB TRI-STATE REGISTER

R/W-1 R/W-1 R/W-1 R/W-1 U-0 U-0 U-0 U-0

TRISB7 TRISB6 TRISB5 TRISB4 — — — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-4 TRISB<7:4>: PORTB Tri-State Control bit
1 = PORTB pin configured as an input (tri-stated)
0 = PORTB pin configured as an output

bit 3-0 Unimplemented: Read as ‘0’

REGISTER 8-8: LATB: PORTB DATA LATCH REGISTER

R/W-x R/W-x R/W-x R/W-x U-0 U-0 U-0 U-0

LATB7 LATB6 LATB5 LATB4 — — — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-4 LATB<7:4>: RB<7:4> Port I/O Output Latch Register bits

bit 3-0 Unimplemented: Read as ‘0’
DS40001365F-page 80  2009-2016 Microchip Technology Inc.



PIC18(L)F1XK22
14.3.2 OPERATION

The MSSP module functions are enabled by setting
SSPEN bit of the SSPCON1 register.

The SSPCON1 register allows control of the I2C
operation. Four mode selection bits of the SSPCON1
register allow one of the following I2C modes to be
selected:

• I2C Master mode, clock = (FOSC/(4*(SSPADD + 1))

• I2C Slave mode (7-bit address)

• I2C Slave mode (10-bit address)

• I2C Slave mode (7-bit address) with Start and 
Stop bit interrupts enabled

• I2C Slave mode (10-bit address) with Start and 
Stop bit interrupts enabled

• I2C Firmware Controlled Master mode, slave is 
Idle

Selection of any I2C mode with the SSPEN bit set,
forces the SCL and SDA pins to be open-drain,
provided these pins are programmed to inputs by
setting the appropriate TRIS bits

14.3.3 SLAVE MODE

In Slave mode, the SCL and SDA pins must be
configured as inputs. The MSSP module will override
the input state with the output data when required
(slave-transmitter).

The I2C Slave mode hardware will always generate an
interrupt on an address match. Through the mode
select bits, the user can also choose to interrupt on
Start and Stop bits 

When an address is matched, or the data transfer after
an address match is received, the hardware
automatically will generate the Acknowledge (ACK)
pulse and load the SSPBUF register with the received
value currently in the SSPSR register.

Any combination of the following conditions will cause
the MSSP module not to give this ACK pulse:

• The Buffer Full bit, BF bit of the SSPSTAT 
register, is set before the transfer is received.

• The overflow bit, SSPOV bit of the SSPCON1 
register, is set before the transfer is received.

In this case, the SSPSR register value is not loaded
into the SSPBUF, but bit SSPIF of the PIR1 register is
set. The BF bit is cleared by reading the SSPBUF
register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and
low for proper operation. The high and low times of the
I2C specification, as well as the requirement of the
MSSP module, are shown in Section 26.0 “Electrical
Specifications”.

14.3.3.1 Addressing

Once the MSSP module has been enabled, it waits for
a Start condition to occur. Following the Start condition,
the eight bits are shifted into the SSPSR register. All
incoming bits are sampled with the rising edge of the
clock (SCL) line. The value of register SSPSR<7:1> is
compared to the value of the SSPADD register. The
address is compared on the falling edge of the eighth
clock (SCL) pulse. If the addresses match and the BF
and SSPOV bits are clear, the following events occur:

1. The SSPSR register value is loaded into the
SSPBUF register.

2. The Buffer Full bit, BF, is set.

3. An ACK pulse is generated.

4. MSSP Interrupt Flag bit, SSPIF of the PIR1
register, is set (interrupt is generated, if enabled)
on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be
received by the slave. The five Most Significant bits
(MSbs) of the first address byte specify if this is a 10-bit
address. Bit R/W of the SSPSTAT register must specify
a write so the slave device will receive the second
address byte. For a 10-bit address, the first byte would
equal ‘11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the two
MSbs of the address. The sequence of events for 10-bit
address is as follows, with steps 7 through 9 for the
slave-transmitter:

1. Receive first (high) byte of address (bits SSPIF,
BF and UA of the SSPSTAT register are set).

2. Read the SSPBUF register (clears bit BF) and
clear flag bit, SSPIF.

3. Update the SSPADD register with second (low)
byte of address (clears bit UA and releases the
SCL line).

4. Receive second (low) byte of address (bits
SSPIF, BF and UA are set). If the address
matches then the SCL is held until the next step.
Otherwise the SCL line is not held.

5. Read the SSPBUF register (clears bit BF) and
clear flag bit, SSPIF.

6. Update the SSPADD register with the first (high)
byte of address. (This will clear bit UA and
release a held SCL line.)

7. Receive Repeated Start condition.

8. Receive first (high) byte of address with R/W bit
set (bits SSPIF, BF, R/W are set).

9. Read the SSPBUF register (clears bit BF) and
clear flag bit, SSPIF.

10. Load SSPBUF with byte the slave is to transmit,
sets the BF bit.

11. Set the CKP bit to release SCL.

Note: To ensure proper operation of the module,
pull-up resistors must be provided
externally to the SCL and SDA pins.
DS40001365F-page 140  2009-2016 Microchip Technology Inc.



PIC18(L)F1XK22
15.3 EUSART Baud Rate Generator 
(BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit
timer that is dedicated to the support of both the
asynchronous and synchronous EUSART operation.
By default, the BRG operates in 8-bit mode. Setting the
BRG16 bit of the BAUDCON register selects 16-bit
mode.

The SPBRGH:SPBRG register pair determines the
period of the free running baud rate timer. In
Asynchronous mode the multiplier of the baud rate
period is determined by both the BRGH bit of the TXSTA
register and the BRG16 bit of the BAUDCON register. In
Synchronous mode, the BRGH bit is ignored.

Table 15-3 contains the formulas for determining the
baud rate. Example 15-1 provides a sample calculation
for determining the baud rate and baud rate error. 

Typical baud rates and error values for various
asynchronous modes have been computed for your
convenience and are shown in Table 15-5. It may be
advantageous to use the high baud rate (BRGH = 1),
or the 16-bit BRG (BRG16 = 1) to reduce the baud rate
error. The 16-bit BRG mode is used to achieve slow
baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRG register
pair causes the BRG timer to be reset (or cleared). This
ensures that the BRG does not wait for a timer overflow
before outputting the new baud rate.

If the system clock is changed during an active receive
operation, a receive error or data loss may result. To
avoid this problem, check the status of the RCIDL bit to
make sure that the receive operation is Idle before
changing the system clock.

EXAMPLE 15-1: CALCULATING BAUD 
RATE ERROR 

TABLE 15-3: BAUD RATE FORMULAS

TABLE 15-4: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR   

For a device with FOSC of 16 MHz, desired baud rate
of 9600, Asynchronous mode, 8-bit BRG:

Solving for SPBRGH:SPBRG:

Desired Baud Rate 
FOSC

64 [SPBRGH:SPBRG] 1+ 
---------------------------------------------------------------------=

  25.042  25= =

Calculated Baud Rate 
16000000

64 25 1+ 
---------------------------=

  9615=

Error
Calc. Baud Rate Desired Baud Rate –

Desired Baud Rate 
--------------------------------------------------------------------------------------------=

  
9615 9600– 

9600
---------------------------------- 0.16%= =

FOSC
X = 64* (Desired Baud Rate)

-1( )
16,000,000

 = 64* 9600
-1( )

Configuration Bits
BRG/EUSART Mode Baud Rate Formula

SYNC BRG16 BRGH

0 0 0 8-bit/Asynchronous FOSC/[64 (n+1)]

0 0 1 8-bit/Asynchronous
FOSC/[16 (n+1)]

0 1 0 16-bit/Asynchronous

0 1 1 16-bit/Asynchronous

FOSC/[4 (n+1)]1 0 x 8-bit/Synchronous

1 1 x 16-bit/Synchronous

Legend: x = Don’t care, n = value of SPBRGH, SPBRG register pair

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset Values 

on page

BAUDCON ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 247

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 247

SPBRG EUSART Baud Rate Generator Register, Low Byte 247

SPBRGH EUSART Baud Rate Generator Register, High Byte 247

TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 247

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.
DS40001365F-page 182  2009-2016 Microchip Technology Inc.



PIC18(L)F1XK22
15.4.1.5 Synchronous Master Transmission 
Set-up

1. Initialize the SPBRGH, SPBRG register pair and
the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 15.3 “EUSART
Baud Rate Generator (BRG)”).

2. Enable the synchronous master serial port by
setting bits SYNC, SPEN and CSRC. Set the
TRIS bits corresponding to the RX/DT and
TX/CK I/O pins.

3. Disable Receive mode by clearing bits SREN
and CREN.

4. Enable Transmit mode by setting the TXEN bit.

5. If 9-bit transmission is desired, set the TX9 bit.

6. If interrupts are desired, set the TXIE, GIE and
PEIE interrupt enable bits.

7. If 9-bit transmission is selected, the ninth bit
should be loaded in the TX9D bit.

8. Start transmission by loading data to the TXREG
register.

FIGURE 15-10: SYNCHRONOUS TRANSMISSION       

FIGURE 15-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)       

 bit 0  bit 1  bit 7

Word 1

 bit 2  bit 0  bit 1  bit 7
RX/DT

Write to
TXREG Reg

TXIF bit
(Interrupt Flag)

TXEN bit
‘1’ ‘1’

 Word 2

TRMT bit

Write Word 1 Write Word 2

Note: Sync Master mode, SPBRG = 0, continuous transmission of two 8-bit words.

pin

TX/CK pin

TX/CK pin

(SCKP = 0)

(SCKP = 1)

RX/DT pin

TX/CK pin

Write to
TXREG reg

TXIF bit

TRMT bit

bit 0 bit 1 bit 2 bit 6 bit 7

TXEN bit
 2009-2016 Microchip Technology Inc. DS40001365F-page 191



PIC18(L)F1XK22
19.0 SR LATCH

The module consists of a single SR latch with multiple
Set and Reset inputs as well as selectable latch output.
The SR latch module includes the following features:

• Programmable input selection

• SR latch output is available internally/externally

• Selectable Q and Q output

• Firmware Set and Reset

• SR Latch

19.1 Latch Operation

The latch is a Set-Reset latch that does not depend on a
clock source. Each of the Set and Reset inputs are
active-high. The latch can be Set or Reset by CxOUT,
INT1 pin, or variable clock. Additionally the SRPS and
the SRPR bits of the SRCON0 register may be used to
Set or Reset the SR latch, respectively. The latch is
reset-dominant, therefore, if both Set and Reset inputs
are high the latch will go to the Reset state. Both the
SRPS and SRPR bits are self resetting which means
that a single write to either of the bits is all that is
necessary to complete a latch Set or Reset operation.

19.2 Latch Output

The SRQEN and SRNQEN bits of the SRCON0 register
control the latch output selection. Both of the SR latch’s
outputs may be directly output to an independent I/O
pin. Control is determined by the state of bits SRQEN
and SRNQEN in registers SRCON0.

The applicable TRIS bit of the corresponding port must
be cleared to enable the port pin output driver. 

19.3 Effects of a Reset

Upon any device Reset, the SR latch is not initialized.
The user’s firmware is responsible to initialize the latch
output before enabling it to the output pins.

FIGURE 19-1: SR LATCH SIMPLIFIED BLOCK DIAGRAM

SRPS

S

R

Q

Q

Note 1: If R = 1 and S = 1 simultaneously, Q = 0, Q = 1
2: Pulse generator causes a 2 Q-state pulse width.
3: Output shown for reference only. See I/O port pin block diagram for more detail.
4: Name denotes the source of connection at the comparator output. 

Pulse
Gen(2)

SR
Latch(1)

SRQ pin(3)

SRQEN
SRLEN

SRSPE

SRSC2E

INT1

SRSCKE
SRCLK

SYNCC2OUT(4)

SRSC1E
SYNCC1OUT(4)

SRPR Pulse
Gen(2)

SRRPE

SRRC2E

INT1

SRRCKE
SRCLK

SYNCC2OUT(4)

SRRC1E
SYNCC1OUT(4)

SRNQEN
SRLEN

SRNQ pin(3)
DS40001365F-page 228  2009-2016 Microchip Technology Inc.



PIC18(L)F1XK22
21.0 DIGITAL-TO-ANALOG 
CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable
voltage reference, ratiometric with the input source,
with 32 selectable output levels. 

The input of the DAC can be connected to:

• External VREF pins

• VDD supply voltage

• FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a
reference voltage to the following:

• Comparator positive input

• ADC input channel

• DAC1OUT pin

The Digital-to-Analog Converter (DAC) can be enabled
by setting the D1EN bit of the VREFCON1 register.

21.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels
are set with the DAC1R<4:0> bits of the VREFCON2
register.

The DAC output voltage is determined by the following
equations:

EQUATION 21-1: DAC OUTPUT VOLTAGE

21.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder
with each end of the ladder tied to a positive and
negative voltage reference input source. If the voltage
of either input source fluctuates, a similar fluctuation will
result in the DAC output value.

The value of the individual resistors within the ladder
can be found in Section 26.0 “Electrical
Specifications”.

21.3 Low-Power Voltage State

In order for the DAC module to consume the least
amount of power, one of the two voltage reference input
sources to the resistor ladder must be disconnected.
Either the positive voltage source, (VSRC+), or the
negative voltage source, (VSRC-) can be disabled.

The negative voltage source is disabled by setting the
D1LPS bit in the VREFCON1 register. Clearing the
D1LPS bit in the VREFCON1 register disables the
positive voltage source.

21.4 Output Clamped to Positive 
Voltage Source

The DAC output voltage can be set to VSRC+ with the
least amount of power consumption by performing the
following:

• Clearing the D1EN bit in the VREFCON1 register.

• Setting the D1LPS bit in the VREFCON1 register.

• Configuring the D1PSS bits to the proper positive 
source. 

• Configuring the DAC1Rx bits to ‘11111’ in the 
VREFCON2 register.

This is also the method used to output the voltage level
from the FVR to an output pin. See Section 21.6 “DAC
Voltage Reference Output” for more information.

21.5 Output Clamped to Negative 
Voltage Source

The DAC output voltage can be set to VSRC- with the
least amount of power consumption by performing the
following:

• Clearing the D1EN bit in the VREFCON1 register.

• Clearing the DAC1R bit in the VREFCON1 register.

• Configuring the D1PSS bits to the proper negative 
source. 

• Configuring the DAC1Rx bits to ‘00000’ in the 
VREFCON2 register.

This allows the comparator to detect a zero-crossing
while not consuming additional current through the DAC
module.

21.6 DAC Voltage Reference Output

The DAC can be output to the DAC1OUT (CVREF) pin by
setting the DAC1OE bit of the VREFCON1 register to ‘1’.
Selecting the DAC reference voltage for output on the
DAC1OUT pin automatically overrides the digital output
buffer and digital input threshold detector functions of
that pin. Reading the DAC1OUT pin when it has been
configured for DAC reference voltage output will always
return a ‘0’.

Due to the limited current drive capability, a buffer must
be used on the DAC voltage reference output for
external connections to DAC1OUT. Figure 21-2 shows
an example buffering technique.

VOUT VSRC+ VSRC-–  DACR<4:0>

25
------------------------------- 

 = + VSRC-

VSRC+  =  VDD, VREF+ or FVR1

VSRC-  =  VSS or VREF-
 2009-2016 Microchip Technology Inc. DS40001365F-page 233



PIC18(L)F1XK22
  
TABLE 22-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register Address
Power-on Reset,
Brown-out Reset

MCLR Resets,
WDT Reset,

RESET Instruction,
Stack Resets

Wake-up via WDT 
or Interrupt

TOSU FFFh ---0 0000 ---0 0000 ---0 uuuu(3)

TOSH FFEh 0000 0000 0000 0000 uuuu uuuu(3)

TOSL FFDh 0000 0000 0000 0000 uuuu uuuu(3)

STKPTR FFCh 00-0 0000 uu-0 0000 uu-u uuuu(3)

PCLATU FFBh ---0 0000 ---0 0000 ---u uuuu

PCLATH FFAh 0000 0000 0000 0000 uuuu uuuu

PCL FF9h 0000 0000 0000 0000  PC + 2(2)

TBLPTRU FF8h ---0 0000 ---0 0000 ---u uuuu

TBLPTRH FF7h 0000 0000 0000 0000 uuuu uuuu

TBLPTRL FF6h 0000 0000 0000 0000 uuuu uuuu

TABLAT FF5h 0000 0000 0000 0000 uuuu uuuu

PRODH FF4h xxxx xxxx uuuu uuuu uuuu uuuu

PRODL FF3h xxxx xxxx uuuu uuuu uuuu uuuu

INTCON FF2h 0000 000x 0000 000u uuuu uuuu(1)

INTCON2 FF1h 1111 -1-1 1111 -1-1 uuuu -u-u(1)

INTCON3 FF0h 11-0 0-00 11-0 0-00 uu-u u-uu(1)

INDF0 FEFh N/A N/A N/A

POSTINC0 FEEh N/A N/A N/A

POSTDEC0 FEDh N/A N/A N/A

PREINC0 FECh N/A N/A N/A

PLUSW0 FEBh N/A N/A N/A

FSR0H FEAh ---- 0000 ---- 0000 ---- uuuu

FSR0L FE9h xxxx xxxx uuuu uuuu uuuu uuuu

WREG FE8h xxxx xxxx uuuu uuuu uuuu uuuu

INDF1 FE7h N/A N/A N/A

POSTINC1 FE6h N/A N/A N/A

POSTDEC1 FE5h N/A N/A N/A

PREINC1 FE4h N/A N/A N/A

PLUSW1 FE3h N/A N/A N/A

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as ‘0’, q = value depends on condition.
Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt 

vector (0008h or 0018h).
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are 

updated with the current value of the PC. The STKPTR is modified to point to the next location in the 
hardware stack.

4: See Table 22-3 for Reset value for specific condition.
 2009-2016 Microchip Technology Inc. DS40001365F-page 245



PIC18(L)F1XK22
     

          

         

BCF Bit Clear f

Syntax: BCF     f, b {,a}

Operands: 0  f  255
0  b  7
a [0,1]

Operation: 0  f<b>

Status Affected: None

Encoding: 1001 bbba ffff ffff

Description: Bit ‘b’ in register ‘f’ is cleared.
If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank (default). 
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See 
Section 24.2.3 “Byte-Oriented and 
Bit-Oriented Instructions in Indexed 
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write
register ‘f’

Example: BCF FLAG_REG,  7, 0

Before Instruction
FLAG_REG = C7h

After Instruction
FLAG_REG = 47h

BN Branch if Negative

Syntax: BN    n

Operands: -128  n  127

Operation: if NEGATIVE bit is ‘1’
(PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1110 0110 nnnn nnnn

Description: If the NEGATIVE bit is ‘1’, then the 
program will branch.
The 2’s complement number ‘2n’ is 
added to the PC. Since the PC will have 
incremented to fetch the next 
instruction, the new address will be 
PC + 2 + 2n. This instruction is then a 
2-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

Process 
Data

Write to PC

No 
operation

No 
operation

No 
operation

No 
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

Process 
Data

No 
operation

Example: HERE BN Jump

Before Instruction
PC = address (HERE)

After Instruction
If NEGATIVE = 1;

PC = address (Jump)
If NEGATIVE = 0;

PC = address (HERE + 2)
DS40001365F-page 274  2009-2016 Microchip Technology Inc.



PIC18(L)F1XK22
                   

      

DAW Decimal Adjust W Register

Syntax: DAW

Operands: None

Operation: If [W<3:0> > 9] or [DC = 1] then
(W<3:0>) + 6  W<3:0>;
else 
(W<3:0>)  W<3:0>;

If [W<7:4> + DC > 9] or [C = 1] then
(W<7:4>) + 6 + DC  W<7:4>;
else 
(W<7:4>) + DC  W<7:4>

Status Affected: C

Encoding: 0000 0000 0000 0111

Description: DAW adjusts the 8-bit value in W, result-
ing from the earlier addition of two vari-
ables (each in packed BCD format) and 
produces a correct packed BCD result.

Words: 1

Cycles: 1 

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register W

Process 
Data

Write
W

Example1:

DAW   

Before Instruction

W = A5h
C = 0
DC = 0

After Instruction

W = 05h
C = 1
DC = 0

Example 2:

Before Instruction

W = CEh
C = 0
DC = 0

After Instruction

W = 34h
C = 1
DC = 0

DECF Decrement f

Syntax: DECF   f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) – 1  dest

Status Affected: C, DC, N, OV, Z

Encoding: 0000 01da ffff ffff

Description: Decrement register ‘f’. If ‘d’ is ‘0’, the 
result is stored in W. If ‘d’ is ‘1’, the 
result is stored back in register ‘f’ 
(default). 
If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank (default). 
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See 
Section 24.2.3 “Byte-Oriented and 
Bit-Oriented Instructions in Indexed 
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to 
destination

Example: DECF    CNT, 1, 0

Before Instruction
CNT = 01h
Z = 0

After Instruction
CNT = 00h
Z = 1
DS40001365F-page 284  2009-2016 Microchip Technology Inc.



PIC18(L)F1XK22
                  

         

RCALL Relative Call

Syntax: RCALL    n

Operands: -1024  n  1023

Operation: (PC) + 2  TOS,
(PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1101 1nnn nnnn nnnn

Description: Subroutine call with a jump up to 1K 
from the current location. First, return 
address (PC + 2) is pushed onto the 
stack. Then, add the 2’s complement 
number ‘2n’ to the PC. Since the PC will 
have incremented to fetch the next 
instruction, the new address will be 
PC + 2 + 2n. This instruction is a 
2-cycle instruction.

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

PUSH PC to 
stack

Process 
Data

Write to PC

No 
operation

No 
operation

No 
operation

No 
operation

Example: HERE RCALL Jump

Before Instruction
PC = Address (HERE)

After Instruction
PC = Address (Jump)
TOS = Address (HERE + 2)

RESET Reset

Syntax: RESET

Operands: None

Operation: Reset all registers and flags that are 
affected by a MCLR Reset.

Status Affected: All

Encoding: 0000 0000 1111 1111

Description: This instruction provides a way to 
execute a MCLR Reset by software.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Start 
Reset

No 
operation

No 
operation

Example: RESET

After Instruction
Registers = Reset Value
Flags* = Reset Value
 2009-2016 Microchip Technology Inc. DS40001365F-page 295



PIC18(L)F1XK22
24.2.2 EXTENDED INSTRUCTION SET 
  

ADDFSR Add Literal to FSR 

Syntax: ADDFSR   f, k

Operands: 0  k  63
f  [ 0, 1, 2 ]

Operation: FSR(f) + k  FSR(f)

Status Affected: None

Encoding: 1110 1000 ffkk kkkk

Description: The 6-bit literal ‘k’ is added to the 
contents of the FSR specified by ‘f’. 

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process 
Data

Write to 
FSR

Example: ADDFSR 2, 23h

Before Instruction
FSR2 = 03FFh

After Instruction
FSR2 = 0422h

ADDULNK Add Literal to FSR2 and Return

Syntax: ADDULNK   k

Operands: 0  k  63

Operation: FSR2 + k  FSR2,

(TOS) PC

Status Affected: None

Encoding: 1110 1000 11kk kkkk

Description: The 6-bit literal ‘k’ is added to the 
contents of FSR2. A RETURN is then 
executed by loading the PC with the 
TOS. 
The instruction takes two cycles to 
execute; a NOP is performed during 
the second cycle.
This may be thought of as a special 
case of the ADDFSR instruction, 
where f = 3 (binary ‘11’); it operates 
only on FSR2. 

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process 
Data

Write to 
FSR

No 
Operation

No 
Operation

No 
Operation

No 
Operation

Example: ADDULNK 23h

Before Instruction
FSR2 = 03FFh
PC = 0100h

After Instruction
FSR2 = 0422h
PC = (TOS)

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).
DS40001365F-page 308  2009-2016 Microchip Technology Inc.



PIC18(L)F1XK22
24.2.3 BYTE-ORIENTED AND 
BIT-ORIENTED INSTRUCTIONS IN 
INDEXED LITERAL OFFSET MODE

In addition to eight new commands in the extended set,
enabling the extended instruction set also enables
Indexed Literal Offset Addressing mode (Section 3.5.1
“Indexed Addressing with Literal Offset”). This has
a significant impact on the way that many commands of
the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses
embedded in opcodes are treated as literal memory
locations: either as a location in the Access Bank (‘a’ =
0), or in a GPR bank designated by the BSR (‘a’ = 1).
When the extended instruction set is enabled and ‘a’ =
0, however, a file register argument of 5Fh or less is
interpreted as an offset from the pointer value in FSR2
and not as a literal address. For practical purposes, this
means that all instructions that use the Access RAM bit
as an argument – that is, all byte-oriented and bit-
oriented instructions, or almost half of the core PIC18
instructions – may behave differently when the
extended instruction set is enabled. 

When the content of FSR2 is 00h, the boundaries of the
Access RAM are essentially remapped to their original
values. This may be useful in creating backward
compatible code. If this technique is used, it may be
necessary to save the value of FSR2 and restore it
when moving back and forth between C and assembly
routines in order to preserve the Stack Pointer. Users
must also keep in mind the syntax requirements of the
extended instruction set (see Section 24.2.3.1
“Extended Instruction Syntax with Standard PIC18
Commands”).

Although the Indexed Literal Offset Addressing mode
can be very useful for dynamic stack and pointer
manipulation, it can also be very annoying if a simple
arithmetic operation is carried out on the wrong
register. Users who are accustomed to the PIC18
programming must keep in mind that, when the
extended instruction set is enabled, register addresses
of 5Fh or less are used for Indexed Literal Offset
Addressing. 

Representative examples of typical byte-oriented and
bit-oriented instructions in the Indexed Literal Offset
Addressing mode are provided on the following page to
show how execution is affected. The operand
conditions shown in the examples are applicable to all
instructions of these types.

24.2.3.1 Extended Instruction Syntax with 
Standard PIC18 Commands

When the extended instruction set is enabled, the file
register argument, ‘f’, in the standard byte-oriented and
bit-oriented commands is replaced with the literal offset
value, ‘k’. As already noted, this occurs only when ‘f’ is
less than or equal to 5Fh. When an offset value is used,
it must be indicated by square brackets (“[ ]”). As with
the extended instructions, the use of brackets indicates
to the compiler that the value is to be interpreted as an
index or an offset. Omitting the brackets, or using a
value greater than 5Fh within brackets, will generate an
error in the MPASM™ assembler.

If the index argument is properly bracketed for Indexed
Literal Offset Addressing, the Access RAM argument is
never specified; it will automatically be assumed to be
‘0’. This is in contrast to standard operation (extended
instruction set disabled) when ‘a’ is set on the basis of
the target address. Declaring the Access RAM bit in
this mode will also generate an error in the MPASM
assembler. 

The destination argument, ‘d’, functions as before.

In the latest versions of the MPASM assembler,
language support for the extended instruction set must
be explicitly invoked. This is done with either the
command line option, /y, or the PE directive in the
source listing.

24.2.4 CONSIDERATIONS WHEN 
ENABLING THE EXTENDED 
INSTRUCTION SET

It is important to note that the extensions to the
instruction set may not be beneficial to all users. In
particular, users who are not writing code that uses a
software stack may not benefit from using the
extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing
mode may create issues with legacy applications
written to the PIC18 assembler. This is because
instructions in the legacy code may attempt to address
registers in the Access Bank below 5Fh. Since these
addresses are interpreted as literal offsets to FSR2
when the instruction set extension is enabled, the
application may read or write to the wrong data
addresses. 

When porting an application to the PIC18(L)F1XK22, it
is very important to consider the type of code. A large,
re-entrant application that is written in ‘C’ and would
benefit from efficient compilation will do well when
using the instruction set extensions. Legacy
applications that heavily use the Access Bank will most
likely not benefit from using the extended instruction
set.

Note: Enabling the PIC18 instruction set
extension may cause legacy applications
to behave erratically or fail entirely. 
DS40001365F-page 312  2009-2016 Microchip Technology Inc.



PIC18(L)F1XK22
25.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code
development in a PC-hosted environment by
simulating the PIC MCUs and dsPIC DSCs on an
instruction level. On any given instruction, the data
areas can be examined or modified and stimuli can be
applied from a comprehensive stimulus controller.
Registers can be logged to files for further run-time
analysis. The trace buffer and logic analyzer display
extend the power of the simulator to record and track
program execution, actions on I/O, most peripherals
and internal registers. 

The MPLAB X SIM Software Simulator fully supports
symbolic debugging using the MPLAB XC Compilers,
and the MPASM and MPLAB Assemblers. The
software simulator offers the flexibility to develop and
debug code outside of the hardware laboratory
environment, making it an excellent, economical
software development tool. 

25.7 MPLAB REAL ICE In-Circuit 
Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs all 8, 16 and 32-bit MCU, and DSC devices
with the easy-to-use, powerful graphical user interface of
the MPLAB X IDE.

The emulator is connected to the design engineer’s
PC using a high-speed USB 2.0 interface and is
connected to the target with either a connector
compatible with in-circuit debugger systems (RJ-11)
or with the new high-speed, noise tolerant, Low-
Voltage Differential Signal (LVDS) interconnection
(CAT5). 

The emulator is field upgradable through future firmware
downloads in MPLAB X IDE. MPLAB REAL ICE offers
significant advantages over competitive emulators
including full-speed emulation, run-time variable
watches, trace analysis, complex breakpoints, logic
probes, a ruggedized probe interface and long (up to
three meters) interconnection cables.

25.8 MPLAB ICD 3 In-Circuit Debugger 
System

The MPLAB ICD 3 In-Circuit Debugger System is
Microchip’s most cost-effective, high-speed hardware
debugger/programmer for Microchip Flash DSC and
MCU devices. It debugs and programs PIC Flash
microcontrollers and dsPIC DSCs with the powerful,
yet easy-to-use graphical user interface of the MPLAB
IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is
connected to the design engineer’s PC using a high-
speed USB 2.0 interface and is connected to the target
with a connector compatible with the MPLAB ICD 2 or
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3
supports all MPLAB ICD 2 headers.

25.9 PICkit 3 In-Circuit Debugger/
Programmer

The MPLAB PICkit 3 allows debugging and
programming of PIC and dsPIC Flash microcontrollers
at a most affordable price point using the powerful
graphical user interface of the MPLAB IDE. The
MPLAB PICkit 3 is connected to the design engineer’s
PC using a full-speed USB interface and can be
connected to the target via a Microchip debug (RJ-11)
connector (compatible with MPLAB ICD 3 and MPLAB
REAL ICE). The connector uses two device I/O pins
and the Reset line to implement in-circuit debugging
and In-Circuit Serial Programming™ (ICSP™).

25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages, and a
modular, detachable socket assembly to support
various package types. The ICSP cable assembly is
included as a standard item. In Stand-Alone mode, the
MPLAB PM3 Device Programmer can read, verify and
program PIC devices without a PC connection. It can
also set code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices, and incorporates an MMC card for file
storage and data applications.
 2009-2016 Microchip Technology Inc. DS40001365F-page 317



PIC18(L)F1XK22
FIGURE 27-17: MEMLOW TYPICAL RC_RUN 31 kHz IDD

FIGURE 27-18: MEMLOW TYPICAL RC_RUN IDD

 

-40°C  

25°C  

85°C  

125°C  

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

2.3 2.8 3.3 3.8 4.3 4.8 

ID
D

 (
u

A
) 

VDD (V) 

16 MHz

2.5

3.0

3.5

4.0

4.5

5.0

ID
D

(m
A)

1 MHz

0.0

0.5

1.0

1.5

2.0

2.3 2.8 3.3 3.8 4.3 4.8

VDD (V)
 2009-2016 Microchip Technology Inc. DS40001365F-page 365



PIC18(L)F1XK22
28.2 Package Details     

The following sections give the technical details of the packages.

�������	
���
��	����	�������	�
�	�	���	���	����	�
��
�

�

��
���
�� ������ �!"�����#
$�%
�&"�
�'��� ���(�)"&�'"!&�)
�����&
#�*�&����&�
���&��
#���
��
�� +������%����&�,�����&
��!&���
-� ��'
�!���!�����#�.��#����&�����"#
�'��#�%��!�����
��&�"!���!�����#�%��!�����
��&�"!���!�!�������&�
$�

#�����/�

��!�#
�
�� ��'
�!���������#�&��
��������

�����.�0������

1�,2 1�!�����'
�!�������
��
&�������
$��&� ��"
�!��*��*�&��"&�&��
����
!�

��
�� 3���&�
�'�!&��"��
�&�
��4��
�#��*���!(�
�
�!
�!

�&�
���������
����4�������

��%���&��������&
#��&�
�&&
255***�'�������
���'5
��4�����

6��&! �7,8.�
��'
�!����9�'�&! ��7 7:� ��;

7"')
���%����! 7 ��
��&�� 
 �����1�,
��
�&���
�&��������
 � < < ����
���#
#����4��
�����4�
!! �� ���� ��-� ����
1�!
�&���
�&��������
 �� ���� < <
���"�#
��&�����"�#
��=�#&� . �-�� �-�� �-��
���#
#����4��
�=�#&� .� ���� ���� ��>�
: 
�����9
��&� � ��>� ���-� ���?�
��
�&���
�&��������
 9 ���� ��-� ����
9
�#�����4�
!! � ���> ���� ����
6


��9
�#�=�#&� )� ���� ��?� ����
9�*
��9
�#�=�#&� ) ���� ���> ����
: 
�������*��
�������+ 
1 < < ��-�

N

E1NOTE 1

D

1 2 3

A

A1

A2

L

e

b1

b

E

c

eB

��������
 �
�������� ���*��� ,��	���1
DS40001365F-page 374  2009-2016 Microchip Technology Inc.


