

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf13k22t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7.1 OSCTUNE REGISTER

1.11.7

The HFINTOSC is factory-calibrated, but can be adjusted in software by writing to the TUN<5:0> bits of the OSCTUNE register (Register 2-3).

The default value of the TUN<5:0> is '000000'. The value is a 6-bit two's complement number.

When the OSCTUNE register is modified, the HFINTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift, while giving no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. The operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

The OSCTUNE register also implements the INTSRC and PLLEN bits, which control certain features of the internal oscillator block.

The INTSRC bit allows users to select which internal oscillator provides the clock source when the 31 kHz frequency option is selected. This is covered in greater detail in **Section 2.6.1** "LFINTOSC".

The PLLEN bit controls the operation of the frequency multiplier. For more details about the function of the PLLEN bit see Section 2.10 "4x Phase Lock Loop Frequency Multiplier".

REGISTER 2-3: OSCIUNE: OSCILLATOR TUNING REGISTE	REGISTER 2-3:	OSCTUNE: OSCILLATOR TUNING REGISTER
--	---------------	-------------------------------------

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

. . ..

DIT /	INISRC: Internal Oscillator Low-Frequency Source Select bit
	 1 = 31.25 kHz device clock derived from 16 MHz HFINTOSC source (divide-by-512 enabled) 0 = 31 kHz device clock derived directly from LFINTOSC internal oscillator
bit 6	PLLEN: Frequency Multiplier PLL bit
	1 = PLL enabled (for HFINTOSC 8 MHz and 16 MHz only)0 = PLL disabled
bit 5-0	TUN<5:0>: Frequency Tuning bits
	011111 = Maximum frequency
	011110 =
	•••
	000001 =
	000000 = Oscillator module is running at the factory-calibrated frequency.
	111111 =
	• • •
	100000 = Minimum frequency

5.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit of the EECON1 register and then set control bit, RD. The data is available on the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 5-1.

5.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. The sequence in Example 5-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared by hardware and the EEPROM Interrupt Flag bit, EEIF, is set. The user may either enable this interrupt or poll this bit. EEIF must be cleared by software.

5.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

EXAMPLE 5-1: DATA EEPROM READ

MOVLW	DATA_EE_ADDR	;	
MOVWF	EEADR	;	Data Memory Address to read
BCF	EECON1, EEPGD	;	Point to DATA memory
BCF	EECON1, CFGS	;	Access EEPROM
BSF	EECON1, RD	;	EEPROM Read
MOVF	EEDATA, W	;	W = EEDATA

EXAMPLE 5-2: DATA EEPROM WRITE

Required Sequence	MOVLW MOVWF MOVWF BCF BCF BCF BCF MOVLW MOVWF	DATA_EE_ADDR_LOW EEADR DATA_EE_DATA EEDATA EECON1, EEPGD EECON1, VREN INTCON, GIE 55h EECON2 0AAh EECON2	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Data Memory Address to write Data Memory Value to write Point to DATA memory Access EEPROM Enable writes Disable Interrupts Write 55h Write 0AAh
	BSF	EECON1, WR	;	Set WR bit to begin write
	BSF	INTCON, GIE	;	Enable Interrupts
	BCF	EECON1, WREN	; ;	User code execution Disable writes on write complete (EEIF set)

5.6 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to Section 23.0 "Special Features of the CPU" for additional information.

5.7 Protection Against Spurious Write

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, parameter 33).

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

5.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM without exceeding the total number of write cycles to a single byte. If this is the case, then an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 5-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification.

EXAMPLE 5-3: DATA EEPROM REFRESH ROUTINE

	CLRF	EEADR	; Start at address 0
	BCF	EECON1, CFGS	; Set for memory
	BCF	EECON1, EEPGD	; Set for Data EEPROM
	BCF	INTCON, GIE	; Disable interrupts
	BSF	EECON1, WREN	; Enable writes
Loop			; Loop to refresh array
	BSF	EECON1, RD	; Read current address
	MOVLW	55h	;
	MOVWF	EECON2	; Write 55h
	MOVLW	0AAh	;
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BTFSC	EECON1, WR	; Wait for write to complete
	BRA	\$-2	
	INCFSZ	EEADR, F	; Increment address
	BRA	LOOP	; Not zero, do it again
	BCF	EECON1, WREN	; Disable writes
	BSF	INTCON, GIE	; Enable interrupts

TABLE 5-1: REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
EEADR	EEADR7	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	247
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	247
EECON2	EEPROM Co	EEPROM Control Register 2 (not a physical register)							247
EEDATA	EEPROM Da	ata Register							247
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	245
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCLIP	_	TMR3IP	—	248
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCLIE	_	TMR3IE	—	248
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCLIF	_	TMR3IF	_	248

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

6.0 8 x 8 HARDWARE MULTIPLIER

6.1 Introduction

All PIC18 devices include an 8 x 8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 6-1.

6.2 Operation

Example 6-1 shows the instruction sequence for an 8 x 8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 6-2 shows the sequence to do an 8 x 8 signed multiplication. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 6-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1, W	;
MULWF	ARG2	; ARG1 * ARG2 ->
		; PRODH:PRODL

EXAMPLE 6-2: 8 x 8 SIGNED MULTIPLY

ROUTINE	
---------	--

MOVF	ARG1, W		
MULWF	ARG2	; ARG1 * ARG2 ->	
		; PRODH:PRODL	
BTFSC	ARG2, SB	; Test Sign Bit	
SUBWF	PRODH, F	; PRODH = PRODH	
		; – ARG1	
MOVF	ARG2, W		
BTFSC	ARG1, SB	; Test Sign Bit	
BTFSC SUBWF	ARG1, SB PRODH, F	; Test Sign Bit ; PRODH = PRODH	
BTFSC SUBWF	ARG1, SB PRODH, F	; Test Sign Bit ; PRODH = PRODH ; - ARG2	

-		Program	Cycles		Time			
Routine	Multiply Method	Memory (Words)	(Max)	@ 40 MHz	@ 10 MHz	@ 4 MHz		
9 v 9 unoignod	Without hardware multiply	13	69	6.9 μ s	27.6 μs	69 μs		
8 x 8 unsigned	Hardware multiply	1	1	100 ns	400 ns	1 μs		
	Without hardware multiply	33	91	9.1 μs	36.4 μs	91 μs		
o x o signed	Hardware multiply	6	6	600 ns	2.4 μs	6 μs		
16 x 16 uppigpod	Without hardware multiply	21	242	24.2 μs	96.8 μs	242 μs		
To X To unsigned	Hardware multiply	28	28	2.8 μs	11.2 μs	28 μs		
16 x 16 signed	Without hardware multiply	52	254	25.4 μs	102.6 μs	254 μs		
	Hardware multiply	35	40	4.0 μs	16.0 μs	40 μs		

TABLE 6-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

FIGURE 9-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE)

9.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS<2:0> bits of the T0CON register which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When the prescaler is assigned, prescale values from 1:2 through 1:256 in integer power-of-2 increments are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count but will not change the prescaler assignment.

9.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

9.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit of the INTCON register. Before re-enabling the interrupt, the TMR0IF bit must be cleared by software in the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	245
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	248
Timer0 Register, High Byte								246
Timer0 Register, Low Byte							246	
—	_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	248
TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0	246
	Bit 7 GIE/GIEH RA7 Timer0 Reg Timer0 Reg — TMR0ON	Bit 7Bit 6GIE/GIEHPEIE/GIELRA7RA6Timer0 Register, High BTimer0 Register, Low By——TMR0ONT08BIT	Bit 7Bit 6Bit 5GIE/GIEHPEIE/GIELTMR0IERA7RA6RA5Timer0 Register, High SterTTimer0 Register, Low SterTTRISA5TMR00NT08BITT0CS	Bit 7Bit 6Bit 5Bit 4GIE/GIEHPEIE/GIELTMROIEINTOIERA7RA6RA5RA4Timer0 Register, High Structure, LowImmer0Immer0Timer0 Register, LowImmer0Immer0TRISA5TRISA4TMR00NT08BITT0CST0SE	Bit 7Bit 6Bit 5Bit 4Bit 3GIE/GIEHPEIE/GIELTMR0IEINT0IERABIERA7RA6RA5RA4RA3Timer0 Register, High SterVersiterVersiterVersiterTimer0 Register, Low SterVersiterVersiterVersiterTRISA5TRISA4-(1)TMR00NT08BITT0CST0SEPSA	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2GIE/GIEHPEIE/GIELTMR0IEINT0IERABIETMR0IFRA7RA6RA5RA4RA3RA2Timer0 Restr. High Str.Str.Str.Str.Str.Timer0 Restr. Low Str.TRISA5TRISA4-(1)TRISA2TMR00NT08BITT0CST0SEPSAT0PS2	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1GIE/GIEHPEIE/GIELTMROIEINTOIERABIETMROIFINTOIFRA7RA6RA5RA4RA3RA2RA1Timer0 Register, High Structure, Low Structure, Low Structure, Low Structure, Struct	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0GIE/GIEHPEIE/GIELTMROIEINTOIERABIETMROIFINTOIFRABIFRA7RA6RA5RA4RA3RA2RA1RA0Timer0 Restr. High Str.Str.Str.Str.Str.Str.March 10March 10March 10March 10March 10March 10March 10Str.Str.Str.Str.Str.March 10March 10 <t< td=""></t<>

Legend: Shaded cells are not used by Timer0.

Note: Unimplemented, read as'1'.

13.4.4 ENHANCED PWM AUTO-SHUTDOWN MODE

The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are selected using the ECCPAS<2:0> bits of the ECCPAS register. A shutdown event may be generated by:

- A logic '0' on the INT0 pin
- A logic '1' on a comparator (Cx) output

A shutdown condition is indicated by the ECCPASE (Auto-Shutdown Event Status) bit of the ECCPAS register. If the bit is a '0', the PWM pins are operating normally. If the bit is a '1', the PWM outputs are in the shutdown state.

When a shutdown event occurs, two things happen:

The ECCPASE bit is set to '1'. The ECCPASE will remain set until cleared in firmware or an auto-restart occurs (see **Section 13.4.5 "Auto-Restart Mode"**).

The enabled PWM pins are asynchronously placed in their shutdown states. The PWM output pins are grouped into pairs [P1A/P1C] and [P1B/P1D]. The state of each pin pair is determined by the PSSAC and PSSBD bits of the ECCPAS register. Each pin pair may be placed into one of three states:

- Drive logic '1'
- Drive logic '0'
- Tri-state (high-impedance)

REGISTER 13-2: ECCP1AS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	ECCPASE: ECCP Auto-Shutdown Event Status bit
	1 = A shutdown event has occurred; ECCP outputs are in shutdown state0 = ECCP outputs are operating
bit 6-4	ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits
	000 = Auto-Shutdown is disabled 001 = Comparator C1OUT output is high 010 = Comparator C2OUT output is high 011 = Either Comparator C1OUT or C2OUT is high 100 = VIL on INT0 pin 101 = VIL on INT0 pin or Comparator C1OUT output is high 110 = VIL on INT0 pin or Comparator C2OUT output is high 111 = VIL on INT0 pin or Comparator C1OUT or Comparator C2OUT is high
bit 3-2	PSSACn: Pins P1A and P1C Shutdown State Control bits
	00 = Drive pins P1A and P1C to '0' 01 = Drive pins P1A and P1C to '1' 10 = Pins 1A and P1C tri-state 11 = Reserved, do not use
bit 1-0	PSSBDn: Pins P1B and P1D Shutdown State Control bits 00 = Drive pins P1B and P1D to '0' 01 = Drive pins P1B and P1D to '1' 10 = Pins P1B and P1D tri-state 11 = Reserved, do not use

- Note 1: The auto-shutdown condition is a level-based signal, not an edge-based signal. As long as the level is present, the auto-shutdown will persist.
 - 2: Writing to the ECCPASE bit is disabled while an auto-shutdown condition persists.
 - **3:** Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart) the PWM signal will always restart at the beginning of the next PWM period.
 - 4: Prior to an auto-shutdown event caused by a comparator output or INT pin event, a software shutdown can be triggered in firmware by setting the CCPxASE bit to a '1'. The Auto-Restart feature tracks the active status of a shutdown caused by a comparator output or INT pin event only, so if it is enabled at this time, it will immediately clear this bit and restart the ECCP module at the beginning of the next PWM period.

FIGURE 13-12: PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PRSEN = 0)

13.4.5 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PRSEN bit in the PWM1CON register.

If auto-restart is enabled, the ECCPASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the ECCPASE bit will be cleared via hardware and normal operation will resume.

FIGURE 13-13: PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PRSEN = 1)

13.4.7 PULSE STEERING MODE

In Single Output mode, pulse steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.

Once the Single Output mode is selected (CCP1M<3:2> = 11 and P1M<1:0> = 00 of the CCP1CON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STR<D:A> bits of the PSTRCON register, as shown in Table 13-2.

Note:	The associated TRIS bits must be set to
	output ('0') to enable the pin output driver
	in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCP1M<1:0> bits of the CCP1CON register select the PWM output polarity for the P1<D:A> pins.

The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 13.4.4 "Enhanced PWM Auto-shutdown mode"**. An auto-shutdown event will only affect pins that have PWM outputs enabled.

REGISTER 13-4: PSTRCON: PULSE STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
—	—	—	STRSYNC	STRD	STRC	STRB	STRA
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	Unimplemented: Read as '0'
bit 4	STRSYNC: Steering Sync bit
	 1 = Output steering update occurs on next PWM period 0 = Output steering update occurs at the beginning of the instruction cycle boundary
bit 3	STRD: Steering Enable bit D
	1 = P1D pin has the PWM waveform with polarity control from CCP1M<1:0>
	0 = P1D pin is assigned to port pin
bit 2	STRC: Steering Enable bit C
	1 = P1C pin has the PWM waveform with polarity control from CCP1M<1:0>
	0 = P1C pin is assigned to port pin
bit 1	STRB: Steering Enable bit B
	1 = P1B pin has the PWM waveform with polarity control from CCP1M<1:0>
	0 = P1B pin is assigned to port pin
bit 0	STRA: Steering Enable bit A
	1 = P1A pin has the PWM waveform with polarity control from CCP1M<1:0>
	0 = P1A pin is assigned to port pin

Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11 and P1M<1:0> = 00.

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C10N	C1OUT	C10E	C1POL	C1SP	C1R	C1CH1	C1CH0
bit 7					·		bit
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimple	mented bit. rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unk	nown
bit 7	C1ON: Comp 1 = Compara 0 = Compara	barator C1 Ena tor C1 is enabl tor C1 is disab	ble bit ed led				
bit 6	C1OUT: Com <u>If C1POL = 1</u> C1OUT = 0 v C1OUT = 1 v <u>If C1POL = 0</u> C1OUT = 1 v C1OUT = 0 v	iparator C1 Ou (inverted pola vhen C1VIN+ > vhen C1VIN+ < (non-inverted vhen C1VIN+ > vhen C1VIN+ <	tput bit r <u>ity):</u> C1VIN- C1VIN- <u>polarity):</u> C1VIN- C1VIN-				
bit 5	C1OE: Comp 1 = C1OUT is 0 = C1OUT is	parator C1 Out s present on th s internal only	out Enable bit e C1OUT pin ⁽	1)			
bit 4	C1POL: Comparator C1 Output Polarity Select bit 1 = C1OUT logic is inverted 0 = C1OUT logic is not inverted						
bit 3	C1SP: Comp 1 = C1 opera 0 = C1 opera	C1SP: Comparator C1 Speed/Power Select bit 1 = C1 operates in normal power, higher speed mode 0 = C1 operates in low power, low speed mode					
bit 2	C1R: Comparator C1 Reference Select bit (noninverting input) 1 = C1VIN+ connects to C1VREF output 0 = C1VIN+ connects to C12IN+ pin						
bit 1-0	C1CH<1:0>: 00 = C12IN0 01 = C12IN1 10 = C12IN2 11 = C12IN3	Comparator C - pin of C1 con - pin of C1 con - pin of C1 con - pin of C1 con	1 Channel Sel nects to C1VIN nects to C1VIN nects to C1VIN nects to C1VIN	ect bit \- \- \-			
Note 1:	Comparator outpu	it requires the t	following three	conditions: C	10F = 1 C10P	$\mathbf{N} = 1$ and corres	sponding po

DECISTED 47 4. CM4CONO, COMPADATOR 4 CONTROL RECISTER A

Note ree conditions: CIUE = 1, CION1 and corresponding port ut requires the TRIS bit = 0.

18.0 POWER-MANAGED MODES

PIC18(L)F1XK22 devices offer a total of seven operating modes for more efficient power management. These modes provide a variety of options for selective power conservation in applications where resources may be limited (i.e., battery-powered devices).

There are three categories of power-managed modes:

- Run modes
- Idle modes
- Sleep mode

These categories define which portions of the device are clocked and sometimes, what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or internal oscillator block); the Sleep mode does not use a clock source.

The power-managed modes include several powersaving features offered on previous PIC[®] microcontroller devices. One is the clock switching feature which allows the controller to use the Timer1 oscillator in place of the primary oscillator. Also included is the Sleep mode, offered by all PIC microcontroller devices, where all device clocks are stopped.

18.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires two decisions:

- Whether or not the CPU is to be clocked
- The selection of a clock source

The IDLEN bit of the OSCCON register controls CPU clocking, while the SCS<1:0> bits of the OSCCON register select the clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 18-1.

18.1.1 CLOCK SOURCES

The SCS<1:0> bits allow the selection of one of three clock sources for power-managed modes. They are:

- The primary clock, as defined by the FOSC<3:0> Configuration bits
- The secondary clock (the Timer1 oscillator)
- The internal oscillator block

18.1.2 ENTERING POWER-MANAGED MODES

Switching from one power-managed mode to another begins by loading the OSCCON register. The SCS<1:0> bits select the clock source and determine which Run or Idle mode is to be used. Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch may also be subject to clock transition delays. Refer to **Section 2.9 "Clock Switching"** for more information.

Entry to the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit of the OSCCON register.

Depending on the current mode and the mode being switched to, a change to a power-managed mode does not always require setting all of these bits. Many transitions may be done by changing the oscillator select bits, or changing the IDLEN bit, prior to issuing a SLEEP instruction. If the IDLEN bit is already configured correctly, it may only be necessary to perform a SLEEP instruction to switch to the desired mode.

Mada	OSCCON Bits		Module Clocking		Available Clock and Occillator Source	
wode	IDLEN ⁽¹⁾	SCS<1:0>	CPU	Peripherals	Available Clock and Oscillator Source	
Sleep	0	N/A	Off	Off	None – All clocks are disabled	
PRI_RUN	N/A	00	Clocked	Clocked	Primary – LP, XT, HS, RC, EC and Internal Oscillator Block ⁽²⁾ . This is the normal full power execution mode.	
SEC_RUN	N/A	01	Clocked	Clocked	Secondary – Timer1 Oscillator	
RC_RUN	N/A	1x	Clocked	Clocked	Internal Oscillator Block ⁽²⁾	
PRI_IDLE	1	00	Off	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC	
SEC_IDLE	1	01	Off	Clocked	Secondary – Timer1 Oscillator	
RC_IDLE	1	1x	Off	Clocked	Internal Oscillator Block ⁽²⁾	

TABLE 18-1: POWER-MANAGED MODES

Note 1: IDLEN reflects its value when the SLEEP instruction is executed.

2: Includes HFINTOSC and HFINTOSC postscaler, as well as the LFINTOSC source.

18.1.3 MULTIPLE FUNCTIONS OF THE SLEEP COMMAND

The power-managed mode that is invoked with the SLEEP instruction is determined by the setting of the IDLEN bit of the OSCCON register at the time the instruction is executed. All clocks stop and minimum power is consumed when SLEEP is executed with the IDLEN bit cleared. The system clock continues to supply a clock to the peripherals but is disconnected from the CPU when SLEEP is executed with the IDLEN bit set.

18.2 Run Modes

In the Run modes, clocks to both the core and peripherals are active. The difference between these modes is the clock source.

18.2.1 PRI_RUN MODE

The PRI_RUN mode is the normal, full power execution mode of the microcontroller. This is also the default mode upon a device Reset, unless Two-Speed Start-up is enabled (see **Section 2.11 "Two-Speed Start-up Mode"** for details). In this mode, the device operated off the oscillator defined by the FOSC bits of the CONFIGH Configuration register.

18.2.2 SEC_RUN MODE

In SEC_RUN mode, the CPU and peripherals are clocked from the secondary external oscillator. This gives users the option of lower power consumption while still using a high accuracy clock source.

SEC_RUN mode is entered by setting the SCS<1:0> bits of the OSCCON register to '01'. When SEC_RUN mode is active all of the following are true:

- The main clock source is switched to the secondary external oscillator
- · Primary external oscillator is shut down
- T1RUN bit of the T1CON register is set
- · OSTS bit is cleared.
 - Note: The secondary external oscillator should already be running prior to entering SEC_RUN mode. If the T1OSCEN bit is not set when the SCS<1:0> bits are set to '01', entry to SEC_RUN mode will not occur until T1OSCEN bit is set and secondary external oscillator is ready.

18.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator. In this mode, the primary external oscillator is shut down. RC_RUN mode provides the best power conservation of all the Run modes when the LFINTOSC is the system clock.

RC_RUN mode is entered by setting the SCS1 bit. When the clock source is switched from the primary oscillator to the internal oscillator, the primary oscillator is shut down and the OSTS bit is cleared. The IRCF bits may be modified at any time to immediately change the clock speed.

19.0 SR LATCH

The module consists of a single SR latch with multiple Set and Reset inputs as well as selectable latch output. The SR latch module includes the following features:

- · Programmable input selection
- SR latch output is available internally/externally
- Selectable Q and \overline{Q} output
- Firmware Set and Reset
- SR Latch

19.1 Latch Operation

The latch is a Set-Reset latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. The latch can be Set or Reset by CxOUT, INT1 pin, or variable clock. Additionally the SRPS and the SRPR bits of the SRCON0 register may be used to Set or Reset the SR latch, respectively. The latch is reset-dominant, therefore, if both Set and Reset inputs are high the latch will go to the Reset state. Both the SRPS and SRPR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch Set or Reset operation.

19.2 Latch Output

The SRQEN and SRNQEN bits of the SRCON0 register control the latch output selection. Both of the SR latch's outputs may be directly output to an independent I/O pin. Control is determined by the state of bits SRQEN and SRNQEN in registers SRCON0.

The applicable TRIS bit of the corresponding port must be cleared to enable the port pin output driver.

19.3 Effects of a Reset

Upon any device Reset, the SR latch is not initialized. The user's firmware is responsible to initialize the latch output before enabling it to the output pins.

FIGURE 19-1: SR LATCH SIMPLIFIED BLOCK DIAGRAM

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	-	—			DAC1R<4:0>		
bit 7	•						bit 0
Legend:							
R = Readable bit W = Writable b		bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unkn		nown	-n/n = Value at POR and BOR/Value at all other Resets				

REGISTER 21-2: VREFCON2: VOLTAGE REFERENCE CONTROL REGISTER 1

bit 7-5 Unimplemented: Read as '0'

1' = Bit is set

bit 4-0 DAC1R<4:0>: DAC Voltage Output Select bits VOUT = ((VSRC+) - (VSRC-))*(DAC1R<4:0>/(2⁵)) + VSRC-

'0' = Bit is cleared

TABLE 21-1: REGISTERS ASSOCIATED WITH DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
VREFCON0	FVR1EN	FVR1ST	FVR1S	S<1:0>	—	—	—	—	232
VREFCON1	D1EN	D1LPS	DAC10E	—	D1PS	S<1:0>	—	D1NSS	235
VREFCON2	_	_	— DAC1R<4:0>		236				

Legend: — = Unimplemented locations, read as '0'. Shaded bits are not used by the DAC module.

PIC18(L)F1XK22

COMF	Complem	ent f		CPFSEQ	Compare	f with W, sk	tip if f = W	
Syntax:	COMF f{	{,d {,a}}		Syntax:	CPFSEQ	f {,a}		
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$			Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in \texttt{[0,1]} \end{array}$	$0 \le f \le 255$ $a \in [0,1]$		
Operation:	a ∈ [0,1] (Ī) → dest			Operation:	(f) – (W), skip if (f) =	(W)		
Status Affected:	N, Z				(unsigned o	comparison)		
Encodina:	0001	11da ff:	ff ffff	Status Affected:	None			
Description:	The content complemen stored in W stored back If 'a' is '0', tl GPR bank (If 'a' is '0' an set is enabl in Indexed I mode when Section 24. Bit-Oriente Literal Offs	ts of register 'f tted. If 'd' is '0' . If 'd' is '1', th k in register 'f' he Access Ba he BSR is use (default). nd the extendi- ed, this instruc- Literal Offset A never $f \le 95$ (5) .2.3 "Byte-Or ed Instruction set Mode" for	ar are t, the result is e result is (default). hk is selected. d to select the ed instruction ction operates Addressing Fh). See iented and s in Indexed details.	Description:	Compares the contents of data memory location 'f to the contents of W by performing an unsigned subtraction. If 'f' = W, then the fetched instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f < 95 (5Eh) See			
Words:	1				Section 24	.2.3 "Byte-Ori	iented and	
Cycles:	1				Literal Offs	set Mode" for	details.	
Q Cycle Activity:				Words:	1			
Q1	Q2	Q3	Q4	Cycles:	1(2)			
Decode	Read register 'f'	Process Data	Write to destination		Note: 3 c by	ycles if skip an a 2-word instru	id followed uction.	
Evennley	COME	DEG 0 0		Q Cycle Activity:				
Example.	COMF	REG, 0, 0		Q1	Q2	Q3	Q4	
Before Instru REG	= 13h			Decode	Read register 'f'	Process Data	N0 operation	
After Instruct	ion			lf skip:	109.000	2010	oporation	
REG	= 13h			Q1	Q2	Q3	Q4	
W	= ECh			No	No	No	No	
				operation	operation	operation	operation	
					02	03	04	
				No	No	No	No	
				operation	operation	operation	operation	
				No	No	No	No	
				Example:	HERE	CPFSEQ REG	g, 0	
				Defease by f	EQUAL	•		
				Before Instru	icuon Iress = णग	RE		
				W	= ?			
				REG	= ?			
				After Instruct	lion			

=	W;	
=	Address	(EQUAL)
≠	W;	
=	Address	(NEQUAL)
	= = ≠	 = W; = Address ≠ W; = Address

26.2 Standard Operating Conditions

ne standard operating conditions for any device are defined as:
Derating Voltage:VDDMIN \leq VDD \leq VDDMAXDerating Temperature:Ta_MIN \leq Ta \leq Ta_MAX
DD — Operating Supply Voltage ⁽¹⁾
PIC18LF1XK22
VDDMIN (Fosc \leq 16 MHz) +1.8V
VDDMIN (Fosc \leq 20 MHz)+2.0V
VDDMIN (Fosc \leq 64 MHz)+3.0V
VDDMAX
PIC18F1XK22
VDDMIN (Fosc \leq 20 MHz)+2.3V
VDDMIN (Fosc \leq 64 MHz)+3.0V
VDDMAX
— Operating Ambient Temperature Range
Industrial Temperature
TA_MIN40°C
TA_MAX +85°C
Extended Temperature
TA_MIN40°C
Ta_max
ote 1: See Parameter D001, DC Characteristics: Supply Voltage.

26.4 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

Т			
F	Frequency	Т	Time
Lowerc	case letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 26-7: LOAD CONDITIONS

FIGURE 27-5: PIC18LF1XK22 ICOMP – TYPICAL IPD FOR COMPARATOR IN LOW-POWER MODE

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15