

20

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf14k22-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3.5 STATUS REGISTER

The STATUS register, shown in Register 3-2, contains the arithmetic status of the ALU. As with any other SFR, it can be the operand for any instruction.

If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the STATUS register is updated according to the instruction performed. Therefore, the result of an instruction with the STATUS register as its destination may be different than intended. As an example, CLRF STATUS will set the Z bit and leave the remaining Status bits unchanged ('000u uluu').

It is recommended that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions that do not affect Status bits, see the instruction set summaries in Table 24-2 and Table 24-3.

Note: The <u>C</u> and <u>DC</u> bits operate as the borrow and digit borrow bits, respectively, in subtraction.

REGISTER 3-2:	STATUS: STATUS REGISTER
---------------	-------------------------

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	_	_	N	OV	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4	N: Negative b This bit is use (ALU MSB = 3	it d for signed ar 1).	thmetic (two's	s complement).	It indicates wh	ether the result	was negative
	1 = Result wa 0 = Result wa	s negative s positive					
bit 3	OV: Overflow This bit is use magnitude wh	bit d for signed ar lich causes the	ithmetic (two' sign bit (bit 7	s complement) ' of the result) 1	. It indicates ar to change state	n overflow of the	e 7-bit
	1 = Overflow 0 = No overflo	occurred for sig	gned arithmet	ic (in this arithr	netic operation)	
bit 2	Z: Zero bit						
	1 = The result 0 = The result	t of an arithme t of an arithme	ic or logic op ic or logic op	eration is zero eration is not ze	ero		
bit 1	DC: Digit Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾ A carry-out from the 4th low-order bit of the result occurred No carry-out from the 4th low-order bit of the result 						
bit 0	C: Carry/Borr	ow bit (ADDWF,	ADDLW, SUE	BLW, SUBWF i	nstructions) ⁽¹⁾		
	1 = A carry-ou 0 = No carry-o	ut from the Mos out from the Mo	st Significant l ost Significan	bit of the result t bit of the resu	occurred It occurred		
Note 1: For	Borrow, the po ond operand. F	larity is reverse or rotate (RRF,	ed. A subtract RLF) instructi	ion is executed ons, this bit is le	I by adding the baded with eith	two's complem er the high-orde	ent of the r or low-order

bit of the source register.

	7. 1164.1						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
OSCFIE	C1IE	C2IE	EEIE	BCLIE	—	TMR3IE	_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 7	OSCFIE: Osc	illator Fail Inte	rrupt Enable b	it			
	1 = Enabled						
DIT 6	CILE: Compa	rator C1 Interri	upt Enable bit				
	0 = Disabled						
bit 5	C2IE: Compa	rator C2 Interro	upt Enable bit				
	1 = Enabled						
	0 = Disabled						
bit 4	EEIE: Data E	EPROM/Flash	Write Operation	on Interrupt Er	nable bit		
	1 = Enabled						
hit 2		Colligion Interru	unt Enchlo hit				
DIL S	1 - Enabled		ipt Enable bit				
	0 = Disabled						
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	TMR3IE: TMF	R3 Overflow In	terrupt Enable	bit			
	1 = Enabled						
	0 = Disabled						
bit 0	Unimplemen	ted: Read as '	0'				

REGISTER 7-7: PIE2: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 2

8.0 I/O PORTS

There are up to three ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (data direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (output latch)

The PORTA Data Latch (LATA register) is useful for read-modify-write operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 8-1.

8.1 PORTA, TRISA and LATA Registers

PORTA is a 6-bit wide, bidirectional port, with the exception of RA3, which is input-only and its TRIS bit will always read as '1'. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the PORT latch.

The PORTA Data Latch (LATA) register is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

All of the PORTA pins are individually configurable as interrupt-on-change pins. Control bits in the IOCA register enable (when set) or disable (when clear) the interrupt function for each pin.

When set, the RABIE bit of the INTCON register enables interrupts on all pins which also have their corresponding IOCA bit set. When clear, the RABIE bit disables all interrupt-on-changes.

Only pins configured as inputs can cause this interrupt to occur (i.e., any pin configured as an output is excluded from the interrupt-on-change comparison).

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTA. The 'mismatch' outputs of the last read are OR'd together to set the PORTA Change Interrupt flag bit (RABIF) in the INTCON register.

10.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates the following features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable internal or external clock source and Timer1 oscillator options
- · Interrupt-on-overflow
- Reset on CCP Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 10-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 10-2.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

Timer1 is controlled through the T1CON Control register (Register 10-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON of the T1CON register.

REGISTER 10-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

Legend:								
R = Readable	bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'				
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7	RD16: 16-bit	Read/Write Mode Enable b	bit					
	1 = Enables 0 = Enables	register read/write of Timer register read/write of Timer	1 in one 16-bit operation 1 in two 8-bit operations					
bit 6	T1RUN: Time	er1 System Clock Status bit						
	1 = Main sys 0 = Main sys	stem clock is derived from T stem clock is derived from a	ïmer1 oscillator nother source					
bit 5-4	T1CKPS<1:0	>: Timer1 Input Clock Pres	cale Select bits					
	11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value							
bit 3	T1OSCEN: T	imer1 Oscillator Enable bit						
	1 = Timer1 or 0 = Timer1 or The oscillator	scillator is enabled scillator is shut off r inverter and feedback resi	stor are turned off to eliminate	e power drain.				
bit 2	T1SYNC: Tin	ner1 External Clock Input S	ynchronization Select bit					
	When TMR1	<u>CS = 1:</u>						
	1 = Do not sy 0 = Synchror	nchronize external clock in nize external clock input	put					
	When TMR1CS = 0:							
	This bit is ign	ored. Timer1 uses the inter	nal clock when TMR1CS = 0.					
bit 1	TMR1CS: Tir	ner1 Clock Source Select b	vit (an that visions adves)					
	1 = External 0 = Internal 0	clock from the 113CKI pin	(on the rising edge)					
bit 0	TMR1ON: Til	mer1 On bit						
	1 = Enables	Timer1						
	0 = Stops Tir	mer1						

12.2 Timer3 16-Bit Read/Write Mode

Timer3 can be configured for 16-bit reads and writes (see Figure 12-2). When the RD16 control bit of the T3CON register is set, the address for TMR3H is mapped to a buffer register for the high byte of Timer3. A read from TMR3L will load the contents of the high byte of Timer3 into the Timer3 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer3 must also take place through the TMR3H Buffer register. The Timer3 high byte is updated with the contents of TMR3H when a write occurs to TMR3L. This allows a user to write all 16 bits to both the high and low bytes of Timer3 at once.

The high byte of Timer3 is not directly readable or writable in this mode. All reads and writes must take place through the Timer3 High Byte Buffer register.

Writes to TMR3H do not clear the Timer3 prescaler. The prescaler is only cleared on writes to TMR3L.

12.3 Using the Timer1 Oscillator as the Timer3 Clock Source

The Timer1 internal oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN bit of the T1CON register. To use it as the Timer3 clock source, the TMR3CS bit must also be set. As previously noted, this also configures Timer3 to increment on every rising edge of the oscillator source.

The Timer1 oscillator is described in **Section 10.0** "Timer1 Module".

12.4 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and overflows to 0000h. The Timer3 interrupt, if enabled, is generated on overflow and is latched in interrupt flag bit, TMR3IF of the PIR2 register. This interrupt can be enabled or disabled by setting or clearing the Timer3 Interrupt Enable bit, TMR3IE of the PIE2 register.

12.5 Resetting Timer3 Using the CCP Special Event Trigger

If CCP1 module is configured to use Timer3 and to generate a Special Event Trigger in Compare mode (CCP1M<3:0>), this signal will reset Timer3. It will also start an A/D conversion if the A/D module is enabled (see **Section 16.2.8 "Special Event Trigger"** for more information).

The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPR1H:CCPR1L register pair effectively becomes a period register for Timer3.

If Timer3 is running in Asynchronous Counter mode, the Reset operation may not work.

In the event that a write to Timer3 coincides with a Special Event Trigger from a CCP module, the write will take precedence.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	245
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCLIP	_	TMR3IP	_	248
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCLIE	—	TMR3IE	_	248
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCLIF	—	TMR3IF	_	248
TMR3H			Ti	mer3 Regis	ter, High Byt	e			247
TMR3L			Ti	imer3 Regis	ter, Low Byt	е			247
TRISA	—	—	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	248
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	246
T3CON	RD16	_	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	247

 TABLE 12-1:
 REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.

Note 1: Unimplemented, read as '1'.

13.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE

In half-bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (shoot-through current) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 13-14 for illustration. The lower seven bits of the associated PWM1CON register (Register 13-3) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 13-14: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

- **Note 1:** At this time, the TMR2 register is equal to the PR2 register.
 - **2:** Output signals are shown as active-high.

FIGURE 13-15: EXAMPLE OF HALF-BRIDGE APPLICATIONS

FIGURE 14-8:	I ² C SLAVE MODE TIMIN	G WITH SEN =		N, 7-BIT ADDRESS)
FIGURE 14-8:	Sci 2, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 1, 2, 3, 1, 2, 1,	B RIFF SSPIF (PIRt<3>) (PIRt<3>) (PIRt<3>) (PIRt<3>) (PIRt<4>) (PIRt<3>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRt<4>) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<4) (PIRT<	SSPOV(SSPCON1-6b)	CKP does not reset to .0. when SEN = 0)

14.3.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter SP106). SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter SP107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 14-21).

After the write to the SSPBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the SPCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

14.3.10.1 BF Status Flag

In Transmit mode, the BF bit of the SSPSTAT register is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

14.3.10.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared by software before the next transmission.

14.3.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPCON2 register is cleared when the slave has sent an Acknowledge ($\overline{ACK} = 0$) and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

14.3.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN bit of the SSPCON2 register.

Note: The MSSP module must be in an Idle state before the RCEN bit is set or the RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPCON2 register.

14.3.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

14.3.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

14.3.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

^{© 2009-2016} Microchip Technology Inc.

14.3.17.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 14-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 14-32).

FIGURE 14-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 14-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

FIGURE 23-4: EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED

FIGURE 23-5: EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED

RET	FIE	Return fro	Return from Interrupt					
Synta	ax:	RETFIE {	RETFIE {s}					
Oper	ands:	S ∈ [0,1]						
Oper	ation:	$(TOS) \rightarrow P$ $1 \rightarrow GIE/G$ if s = 1 $(WS) \rightarrow W$, (STATUSS) $(BSRS) \rightarrow$ PCLATU, P	$(TOS) \rightarrow PC,$ $1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL},$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow Status,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged.					
Statu	s Affected:	GIE/GIEH,	PEIE/GIE	EL				
Enco	ding:	0000	0000	000	1 000s			
Desc	ription:	Return fron and Top-of- the PC. Inte setting either global inter contents of STATUSS a their corres Status and these regis	Return from interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If 's' = 0, no update of					
Word	ls:	1						
Cycle	es:	2	2					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	No operation	No operat	ion	POP PC from stack Set GIEH or GIEL			
	No	No	No		No			
	operation	operation	operat	ion	operation			
<u>Exan</u>	nple:	RETFIE	1					
After Interrupt PC W BSR Status GIE/GIEH,		I, PEIE/GIEL	= T = W = B = S = 1	OS VS SRS TATUS	SS			

RETLW	Return lite	Return literal to W						
Syntax:	RETLW k							
Operands:	$0 \leq k \leq 255$							
Operation:	$k \rightarrow W$, (TOS) $\rightarrow P0$ PCLATU, P	C, CLATH are	e uncha	nged				
Status Affected:	None							
Encodina:	0000	1100	kkkk	kkkk				
Description:	W is loaded program co of the stack high addres unchanged	W is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged						
Words:	1							
Cycles:	2							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read literal 'k'	Process Data	s F fro W	POP PC om stack, rite to W				
No	No	No		No				
operation	operation	operatio	n o	peration				
<u>Example</u> : CALL TABLE	; W contai	ins table	e					
	; offset v ; W now ha ; table va	; offset value ; W now has ; table value						
TABLE								
ADDWF PCL	; W = offs	set						
RETLW k0 RETLW k1 :	; Begin ta ;	able						
: PFTIM kn	: Fnd of t	able						

Before Instruction

W	=	07h
After Instructio	n	
W	=	value

of kn

SLEEP	Enter Sle	ep mode		SUBFWB	Subtract	f from W w	ith borrow
Syntax:	SLEEP			Syntax:	SUBFWB	f {,d {,a}}	
Operands:	None			Operands:	$0 \le f \le 255$	5	
Operation:	$00h \rightarrow WE$	DT,			$d \in [0,1]$		
	$0 \rightarrow WDT$	postscaler,		Operation:	$a \in [0, 1]$	$\left(\frac{\overline{C}}{C}\right)$ \ doct	
	$1 \rightarrow 10,$ $0 \rightarrow PD$			Operation.	$(\mathbf{v}\mathbf{v}) - (\mathbf{i}) - \mathbf{v}\mathbf{v}$	$(C) \rightarrow uesi$	
Status Affected:	TO, PD			Status Affected:	N, OV, C,		
Encoding:	0000	0000 000	00 0011	Encouling.	0101 Subtract r	Ulda II	
Description:	Description: The Power-down Status bit (PD) is cleared. The Time-out Status bit (TO) is set. Watchdog Timer and its posts-caler are cleared. The processor is put into Sleep mode with the oscillator stopped.		Description:	(borrow) fr method). I in W. If 'd' register 'f' If 'a' is 'o', selected. I	rom W (2's con f 'd' is '0', the r is '1', the resu (default). the Access B f 'a' is '1', the	mplement esult is stored in ank is BSR is used	
Words:	1				to select ti	ne GPR bank	(default). led instruction
Cycles:	1				set is enal	bled, this instru	uction
Q Cycle Activity:					operates i	n Indexed Lite	ral Offset
Q1	Q2	Q3	Q4		$f \le 95$ (5F)	n). See Sectio	n 24.2.3
Decode	No	Process	Go to		"Byte-Ori	ented and Bit-	Oriented
	operation	Data	Oleep		Instructio Mode" for	ns in Indexed	Literal Offset
Example:	SLEEP			Words:	1		
Befor <u>e Instruct</u>	ion			Cycles:	1		
$\frac{TO}{RD} =$?			Q Cycle Activity:			
After Instruction	r n			Q1	Q2	Q3	Q4
$\frac{\text{TO}}{\text{PD}} =$	1† 0			Decode	Read register 'f'	Process Data	Write to destination
† If WDT causes w	/ake-up, this t	bit is cleared.		Example 1: REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruction REG W C Z N Example 3: Before Instruction REG W C Z N Example 3: Before Instruction REG W C Z N Example 3: Before Instruction REG W C Z N Example 3: Before Instruction REG W C Z N Example 3: Before Instruction REG W C Z After Instruction REG W C Z	SUBFWB ction = 3 = 2 = 1 cn = FF = 2 = 0 = 0 = 0 = 1; ree SUBFWB ction = 2 = 3 = 1 = 0 = 0; ree SUBFWB ction = 1 = 2 = 0 = 0 = 0; ree SUBFWB ction = 1 = 0; ree SUBFWB ction = 1 = 0; ree SUBFWB = 1 = 0; ree = 1 = 0; ree = 1; ree	REG, 1, 0 esult is negative REG, 0, 0 esult is positive REG, 1, 0	e)

		Standard Operating Conditions (unless otherwise stated)							
		Standard Operating Conditions (unless otherwise stated)							
		otanuc							
Param. No.	Device Characteristics	Тур.	Max.	Units	Conditions				
D008	Supply Current (IDD) ^(1, 2, 4, 5)	6	9	μA	-40°C				
		7	10	μA	+25°C	VDD = 1.8V	Fosc = 31 kHz ⁽⁴⁾		
		8	14	μA	+85°C				
		11	17	μA	+125°C				
D008A		11	15	μA	-40°C		LFINTOSC source)		
		12	16	μA	+25°C	Vpp = 3.0V			
		13	25	μA	+85°C	VDD - 3.0V			
		17	28	μA	+125°C				
D008		22	45	μA	-40°C				
		23	48	μΑ	+25°C	VDD = 2.3V	Fosc = 31 kHz ⁽⁴⁾ (RC_RUN mode, LFINTOSC source)		
		25	50	μA	+85°C				
		28	55	μA	+125°C				
D008A		25	50	μA	-40°C	VDD = 3.0V			
		27	55	μA	+25°C				
		30	60	μA	+85°C				
		32	75	μA	+125°C				
D008B		30	55	μA	-40°C				
		33	60	μA	+25°C	VDD = 5 0V			
		37	65	μA	+85°C	100 0.01			
		40	80	μA	+125°C				
D009		0.4	0.5	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 1 MHz		
D009A		0.6	0.8	mA	-40°C to +125°C	VDD = 3.0V	(RC_RUN mode, HFINTOSC source)		
D009		0.45	0.55	mA	-40°C to +125°C	VDD = 2.3V Fosc = 1 MHz VDD = 3.0V (RC_RUN model)			
D009A		0.60	0.82	mA	-40°C to +125°C				
D009B		0.80	1.0	mA	-40°C to +125°C	VDD = 5.0V	HFINTOSC source)		
D010		1.9	2.5	mA	-40°C to +125°C	VDD = 1.8V Fosc = 16 MHz			
D010A		3.5	4.4	mA	-40°C to +125°C	VDD = 3.0V	(RC_RUN mode, HF-INTOSC source)		
D010		2.4	3.5	mA	-40°C to +125°C	VDD = 2.3V	$F_{OSC} = 16 \text{ MHz}$		
D010A		3.5	4.6	mA	-40°C to +125°C	VDD = 3.0V	(RC_RUN mode,		
D010B		3.7	4.7	mA	-40°C to +125°C	VDD = 5.0V	HF-INTOSC source)		

TABLE 26-2: RC RUN SUPPLY CURRENT

* These parameters are characterized but not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: When a single temperature range is provided for a parameter, the specification applies to both industrial and extended temperature devices.

TABLE 26-9: I/O PORTS (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)				
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
	Vol	Output Low Voltage ⁽⁴⁾					
D080		I/O ports	_		Vss+0.6 Vss+0.6 Vss+0.6	v	IOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 3 mA, VDD = VDDMIN

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

TABLE 26-9: I/O PORTS (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)						
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions		
	Voн	Output High Voltage ⁽⁴⁾							
D090		I/O ports	Vdd-0.7 Vdd-0.7 Vdd-0.7	_	_	v	IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 2 mA, VDD = VDDMIN		
	Capacitive Loading Specs on Output Pins								
D101*	COSC2	OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1		
D101A*	Сю	All I/O pins	—	—	50	pF			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

26.4 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

Т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 26-7: LOAD CONDITIONS

Param.	Symbol	Characteristic	Min	Max	Unite	Conditions
No.	Symbol	Characteristic	IVIII.	IVIAX.	Units	Conditions
1A	Fosc	External CLKIN Frequency ⁽¹⁾	DC	48	MHz	EC, ECIO Oscillator mode, (Extended Range Devices)
			DC	64	MHz	EC, ECIO Oscillator mode, (Industrial Range Devices)
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC Oscillator mode
			0.1	4	MHz	XT Oscillator mode
			4	25	MHz	HS Oscillator mode
			4	16	MHz	HS + PLL Oscillator mode, (Industrial Range Devices)
			4	12	MHz	HS + PLL Oscillator mode, (Extended Range Devices)
			5	33	kHz	LP Oscillator mode
1	Tosc	External CLKIN Period ⁽¹⁾	20.8	_	ns	EC, ECIO, Oscillator mode (Extended Range Devices)
			15.6	—	ns	EC, ECIO, Oscillator mode, (Industrial Range Devices)
		Oscillator Period ⁽¹⁾	250	—	ns	RC Oscillator mode
			250	10,000	ns	XT Oscillator mode
			40	250	ns	HS Oscillator mode
			62.5	250	ns	HS + PLL Oscillator mode,
			83.3	250	ns	HS + PLL Oscillator mode, (Extended Range Devices)
			30	200	μS	LP Oscillator mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	62.5	_	ns	Tcy = 4/Fosc
3	TosL, TosH	External Clock in (OSC1) High or Low Time	30	_	ns	XT Oscillator mode
			2.5	—	μS	LP Oscillator mode
			10	—	ns	HS Oscillator mode
4	TosR,	External Clock in (OSC1)	_	20	ns	XT Oscillator mode
	TosF	Rise or Fall Time	—	50	ns	LP Oscillator mode
				7.5	ns	HS Oscillator mode

TABLE 26-12:	EXTERNAL	CLOCK	TIMING	REQUIREMENTS

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 26-19: SPI SLAVE MODE TIMING (CKE = 0)

