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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC18(L)F1XK22
TABLE 1-1: DEVICE FEATURES FOR THE PIC18(L)F1XK22 (20-PIN DEVICES)     

Features PIC18F13K22 PIC18LF13K22 PIC18F14K22 PIC18LF14K22

Voltage Range (1.8 - 5.5V) 2.3-5.5V 1.8V-3.6V 2.3-5.5V 1.8V-3.6V

Program Memory (Bytes) 8K 16K

Program Memory (Instructions) 4096 8192

Data Memory (Bytes) 256 512

Operating Frequency DC – 64 MHz

Interrupt Sources 30

I/O Ports Ports A, B, C

Timers 4

Enhanced Capture/ Compare/PWM Modules 1

Serial Communications MSSP, Enhanced USART

10-Bit Analog-to-Digital Module 12 Input Channels

Resets (and Delays) POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WDT
(PWRT, OST)

Instruction Set 75 Instructions, 83 with Extended Instruction Set Enabled

Packages 20-Pin PDIP, SSOP, SOIC
QFN (4x4x0.9mm)
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PIC18(L)F1XK22
2.7 Oscillator Control

The Oscillator Control (OSCCON) (Register 2-1) and the
Oscillator Control 2 (OSCCON2) (Register 2-2) registers
control the system clock and frequency selection
options.

  

REGISTER 2-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0 R/W-0 R/W-1 R/W-1 R-q R-0 R/W-0 R/W-0

IDLEN IRCF2 IRCF1 IRCF0 OSTS(1) HFIOFS SCS1 SCS0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ q = depends on condition

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 IDLEN: Idle Enable bit
1 = Device enters Idle mode on SLEEP instruction
0 = Device enters Sleep mode on SLEEP instruction

bit 6-4 IRCF<2:0>: Internal Oscillator Frequency Select bits
111 = 16 MHz
110 = 8 MHz 
101 = 4 MHz 
100 = 2 MHz
011 = 1 MHz(3)

010 = 500 kHz
001 = 250 kHz
000 = 31 kHz(2)

bit 3 OSTS: Oscillator Start-up Time-out Status bit(1)

1 = Device is running from the clock defined by FOSC<2:0> of the CONFIG1 register
0 = Device is running from the internal oscillator (HFINTOSC or LFINTOSC)

bit 2 HFIOFS: HFINTOSC Frequency Stable bit 
1 = HFINTOSC frequency is stable
0 = HFINTOSC frequency is not stable

bit 1-0 SCS<1:0>: System Clock Select bits
1x = Internal oscillator block
01 = Secondary (Timer1) oscillator
00 = Primary clock (determined by CONFIG1H[FOSC<3:0>]).

Note 1: Reset state depends on state of the IESO Configuration bit.
2: Source selected by the INTSRC bit of the OSCTUNE register, see text.
3: Default output frequency of HFINTOSC on Reset.
 2009-2016 Microchip Technology Inc. DS40001365F-page 17



PIC18(L)F1XK22
TABLE 2-2: EXAMPLES OF DELAYS DUE TO CLOCK SWITCHING

2.10 4x Phase Lock Loop Frequency 
Multiplier

A Phase Locked Loop (PLL) circuit is provided as an
option for users who wish to use a lower-frequency
external oscillator or to operate at 32 MHz or 64 MHz
with the HFINTOSC. The PLL is designed for an input
frequency from 4 MHz to 16 MHz. The PLL multiplies
its input frequency by a factor of four when the PLL is
enabled. This may be useful for customers who are
concerned with EMI, due to high-frequency crystals.

Two bits control the PLL: the PLL_EN bit of the
CONFIG1H Configuration register and the PLLEN bit of
the OSCTUNE register. The PLL is enabled when the
PLL_EN bit is set and it is under software control when
the PLL_EN bit is cleared. Refer to Table 2-3 and
Table 2-4 for more information.

TABLE 2-3: PLL CONFIGURATION

2.11 Two-Speed Start-up Mode

Two-Speed Start-up mode provides additional power
savings by minimizing the latency between external
Oscillator Start-up Timer (OST) and code execution. In
applications that make heavy use of the Sleep mode,
Two-Speed Start-up will remove the OST period, which
can reduce the overall power consumption of the
device.

Two-Speed Start-up mode is enabled by setting the
IESO bit of the CONFIG1H Configuration register. With
Two-Speed Start-up enabled, the device will execute
instructions using the internal oscillator during the
Primary External Oscillator OST period.

When the system clock is set to the Primary External
Oscillator and the oscillator is configured for LP, XT or
HS modes, the device will not execute code during the
OST period. The OST will suspend program execution
until 1024 oscillations are counted. Two-Speed Start-up
mode minimizes the delay in code execution by
operating from the internal oscillator while the OST is
active. The system clock will switch back to the Primary
External Oscillator after the OST period has expired.

Two-speed Start-up will become active after:

• Power-on Reset (POR)

• Power-up Timer (PWRT), if enabled

• Wake-up from Sleep

The OSTS bit of the OSCCON register reports which
oscillator the device is currently using for operation.
The device is running from the oscillator defined by the
FOSC bits of the CONFIG1H Configuration register
when the OSTS bit is set. The device is running from
the internal oscillator when the OSTS bit is clear.

Switch From Switch To Oscillator Delay

Sleep/POR LFINTOSC
HFINTOSC

Oscillator Warm-up Delay (TWARM)

Sleep/POR LP, XT, HS 1024 clock cycles

Sleep/POR EC, RC 8 Clock Cycles

PLL_EN PLLEN PLL Status

1 x PLL enabled

0 1 PLL enabled

0 0 PLL disabled

TABLE 2-4: PLL CONFIG1H/SOFTWARE 
ENABLE CLOCK SOURCE 
RESTRICTIONS

Mode
PLL CONFIG1H 

Enable (PLL_EN)
PLL Software 

Enable (PLLEN)

LP Yes No

XT Yes No

HS Yes No

EC Yes No

EXTRC Yes No

LF INTOSC No No

HF INTOSC 8/16 MHz 8/16 MHz
 2009-2016 Microchip Technology Inc. DS40001365F-page 21
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3.1.1 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the
instruction to fetch for execution. The PC is 21-bit wide
and is contained in three separate 8-bit registers. The
low byte, known as the PCL register, is both readable
and writable. The high byte, or PCH register, contains
the PC<15:8> bits; it is not directly readable or writable.
Updates to the PCH register are performed through the
PCLATH register. The upper byte is called PCU. This
register contains the PC<20:16> bits; it is also not
directly readable or writable. Updates to the PCU
register are performed through the PCLATU register. 

The contents of PCLATH and PCLATU are transferred
to the program counter by any operation that writes
PCL. Similarly, the upper two bytes of the program
counter are transferred to PCLATH and PCLATU by an
operation that reads PCL. This is useful for computed
offsets to the PC (see Section 3.1.4.1 “Computed
GOTO”).

The PC addresses bytes in the program memory. To
prevent the PC from becoming misaligned with word
instructions, the Least Significant bit (LSb) of PCL is
fixed to a value of ‘0’. The PC increments by 2 to
address sequential instructions in the program
memory.

The CALL, RCALL, GOTO and program branch
instructions write to the program counter directly. For
these instructions, the contents of PCLATH and
PCLATU are not transferred to the program counter.

3.1.2 RETURN ADDRESS STACK

The return address stack allows any combination of up
to 31 program calls and interrupts to occur. The PC is
pushed onto the stack when a CALL or RCALL
instruction is executed or an interrupt is Acknowledged.
The PC value is pulled off the stack on a RETURN,
RETLW or a RETFIE instruction. PCLATU and PCLATH
are not affected by any of the RETURN or CALL
instructions.

The stack operates as a 31-word by 21-bit RAM and a
5-bit Stack Pointer, STKPTR. The stack space is not
part of either program or data space. The Stack Pointer
is readable and writable and the address on the top of
the stack is readable and writable through the Top-of-
Stack (TOS) Special File Registers. Data can also be
pushed to, or popped from the stack, using these
registers. 

A CALL type instruction causes a push onto the stack;
the Stack Pointer is first incremented and the location
pointed to by the Stack Pointer is written with the
contents of the PC (already pointing to the instruction
following the CALL). A RETURN type instruction causes
a pop from the stack; the contents of the location
pointed to by the STKPTR are transferred to the PC
and then the Stack Pointer is decremented.

The Stack Pointer is initialized to ‘00000’ after all
Resets. There is no RAM associated with the location
corresponding to a Stack Pointer value of ‘00000’; this
is only a Reset value. Status bits indicate if the stack is
full or has overflowed or has underflowed. 

3.1.2.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable
and writable. A set of three registers, TOSU:TOSH:TOSL,
hold the contents of the stack location pointed to by the
STKPTR register (Figure 3-2). This allows users to
implement a software stack if necessary. After a CALL,
RCALL or interrupt, the software can read the pushed
value by reading the TOSU:TOSH:TOSL registers. These
values can be placed on a user defined software stack. At
return time, the software can return these values to
TOSU:TOSH:TOSL and do a return.

The user must disable the global interrupt enable bits
while accessing the stack to prevent inadvertent stack
corruption. 

FIGURE 3-2: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS     

00011
001A34h

11111
11110
11101

00010
00001
00000

00010

Return Address Stack <20:0>

Top-of-Stack
000D58h

TOSLTOSHTOSU
34h1Ah00h

STKPTR<4:0>

Top-of-Stack Registers Stack Pointer
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3.5.3 MAPPING THE ACCESS BANK IN 
INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode
effectively changes how the first 96 locations of Access
RAM (00h to 5Fh) are mapped. Rather than containing
just the contents of the bottom section of Bank 0, this
mode maps the contents from a user defined “window”
that can be located anywhere in the data memory
space. The value of FSR2 establishes the lower
boundary of the addresses mapped into the window,
while the upper boundary is defined by FSR2 plus 95
(5Fh). Addresses in the Access RAM above 5Fh are
mapped as previously described (see Section 3.3.2
“Access Bank”). An example of Access Bank
remapping in this addressing mode is shown in
Figure 3-10.

Remapping of the Access Bank applies only to
operations using the Indexed Literal Offset mode.
Operations that use the BSR (Access RAM bit is ‘1’) will
continue to use direct addressing as before. 

3.6 PIC18 Instruction Execution and 
the Extended Instruction Set

Enabling the extended instruction set adds eight
additional commands to the existing PIC18 instruction
set. These instructions are executed as described in
Section 24.2 “Extended Instruction Set”.

FIGURE 3-10: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET 
ADDRESSING 

Data Memory

000h

100h

200h

F60h

F00h

FFFh

Bank 1

Bank 15

Bank 2
through
Bank 14

SFRs

ADDWF f, d, a

FSR2H:FSR2L = 120h

Locations in the region
from the FSR2 pointer
(120h) to the pointer plus
05Fh (17Fh) are mapped
to the bottom of the
Access RAM (000h-05Fh).

Special File Registers at
F60h through FFFh are
mapped to 60h through
FFh, as usual.

Bank 0 addresses below
5Fh can still be addressed
by using the BSR. Access Bank

00h

60h

FFh

SFRs

Bank 1 “Window”

Bank 0

Window

Example Situation:

120h
17Fh

5Fh

Bank 1
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4.5 Writing to Flash Program Memory

The programming block size is 8 or 16 bytes,
depending on the device (See Table 4-1). Word or byte
programming is not supported.

Table writes are used internally to load the holding
registers needed to program the Flash memory. There
are only as many holding registers as there are bytes
in a write block (See Table 4-1).

Since the Table Latch (TABLAT) is only a single byte,
the TBLWT instruction may need to be executed 8, or 16
times, depending on the device, for each programming
operation. All of the table write operations will
essentially be short writes because only the holding
registers are written. After all the holding registers have
been written, the programming operation of that block
of memory is started by configuring the EECON1
register for a program memory write and performing the
long write sequence.

The long write is necessary for programming the
internal Flash. Instruction execution is halted during a
long write cycle. The long write will be terminated by
the internal programming timer. 

The EEPROM on-chip timer controls the write time.
The write/erase voltages are generated by an on-chip
charge pump, rated to operate over the voltage range
of the device.

FIGURE 4-5: TABLE WRITES TO FLASH PROGRAM MEMORY 

4.5.1 FLASH PROGRAM MEMORY WRITE 
SEQUENCE

The sequence of events for programming an internal
program memory location should be:

1. Read 64 bytes into RAM.

2. Update data values in RAM as necessary.

3. Load Table Pointer register with address being
erased.

4. Execute the block erase procedure.

5. Load Table Pointer register with address of first
byte being written.

6. Write the 8 or 16 byte block into the holding
registers with auto-increment.

7. Set the EECON1 register for the write operation:

• set EEPGD bit to point to program memory;

• clear the CFGS bit to access program memory;

• set WREN to enable byte writes.

8. Disable interrupts.

9. Write 55h to EECON2.

10. Write 0AAh to EECON2.

11. Set the WR bit. This will begin the write cycle.

12. The CPU will stall for duration of the write (about
2 ms using internal timer).

13. Re-enable interrupts.

14. Repeat steps 6 to 13 for each block until all 64
bytes are written.

15. Verify the memory (table read).

This procedure will require about 6 ms to update each
write block of memory. An example of the required code
is given in Example 4-3.

Note: The default value of the holding registers on
device Resets and after write operations is
FFh. A write of FFh to a holding register
does not modify that byte. This means that
individual bytes of program memory may
be modified, provided that the change does
not attempt to change any bit from a ‘0’ to a
‘1’. When modifying individual bytes, it is
not necessary to load all holding registers
before executing a long write operation.

TABLAT 

TBLPTR = xxxxYY(1)TBLPTR = xxxx01TBLPTR = xxxx00

Write Register

TBLPTR = xxxx02

Program   Memory

Holding Register Holding Register Holding Register Holding Register

8 8 8 8

Note 1: YY = x7 or xF for 8 or 16 byte write blocks, respectively.

Note: Before setting the WR bit, the Table
Pointer address needs to be within the
intended address range of the bytes in the
holding registers.
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7.7 IPR Registers

The IPR registers contain the individual priority bits for the
peripheral interrupts. Due to the number of peripheral
interrupt sources, there are two Peripheral Interrupt
Priority registers (IPR1 and IPR2). Using the priority bits
requires that the Interrupt Priority Enable (IPEN) bit be
set. 

 

REGISTER 7-8: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

— ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 Unimplemented: Read as ‘0’

bit 6 ADIP: A/D Converter Interrupt Priority bit

1 = High priority 
0 = Low priority

bit 5 RCIP: EUSART Receive Interrupt Priority bit 

1 = High priority 
0 = Low priority

bit 4 TXIP: EUSART Transmit Interrupt Priority bit 

1 = High priority 
0 = Low priority

bit 3 SSPIP: Master Synchronous Serial Port Interrupt Priority bit 

1 = High priority 
0 = Low priority

bit 2 CCP1IP: CCP1 Interrupt Priority bit

1 = High priority 
0 = Low priority

bit 1 TMR2IP: TMR2 to PR2 Match Interrupt Priority bit 

1 = High priority 
0 = Low priority

bit 0 TMR1IP: TMR1 Overflow Interrupt Priority bit 

1 = High priority 
0 = Low priority
 2009-2016 Microchip Technology Inc. DS40001365F-page 69
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8.0 I/O PORTS

There are up to three ports available. Some pins of the
I/O ports are multiplexed with an alternate function from
the peripheral features on the device. In general, when
a peripheral is enabled, that pin may not be used as a
general purpose I/O pin.

Each port has three registers for its operation. These
registers are:

• TRIS register (data direction register)

• PORT register (reads the levels on the pins of the 
device)

• LAT register (output latch)

The PORTA Data Latch (LATA register) is useful for
read-modify-write operations on the value that the I/O
pins are driving.

A simplified model of a generic I/O port, without the
interfaces to other peripherals, is shown in Figure 8-1.

FIGURE 8-1: GENERIC I/O PORT 
OPERATION   

8.1 PORTA, TRISA and LATA Registers

PORTA is a 6-bit wide, bidirectional port, with the
exception of RA3, which is input-only and its TRIS bit
will always read as ‘1’. The corresponding data
direction register is TRISA. Setting a TRISA bit (= 1)
will make the corresponding PORTA pin an input (i.e.,
disable the output driver). Clearing a TRISA bit (= 0)
will make the corresponding PORTA pin an output (i.e.,
enable the output driver and put the contents of the
output latch on the selected pin).

Reading the PORTA register reads the status of the
pins, whereas writing to it, will write to the PORT latch. 

The PORTA Data Latch (LATA) register is also memory
mapped. Read-modify-write operations on the LATA
register read and write the latched output value for
PORTA.

All of the PORTA pins are individually configurable as
interrupt-on-change pins. Control bits in the IOCA
register enable (when set) or disable (when clear) the
interrupt function for each pin.

When set, the RABIE bit of the INTCON register
enables interrupts on all pins which also have their
corresponding IOCA bit set. When clear, the RABIE
bit disables all interrupt-on-changes.

Only pins configured as inputs can cause this interrupt
to occur (i.e., any pin configured as an output is
excluded from the interrupt-on-change comparison). 

For enabled interrupt-on-change pins, the values are
compared with the old value latched on the last read of
PORTA. The ‘mismatch’ outputs of the last read are
OR’d together to set the PORTA Change Interrupt flag
bit (RABIF) in the INTCON register.

Data
Bus

WR LAT

WR TRIS

RD Port

Data Latch

TRIS Latch

RD TRIS

Input
Buffer

I/O pin(1)

QD

CK

QD

CK

EN

Q D

EN

RD LAT

or Port

Note 1: I/O pins have diode protection to VDD and VSS.
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13.4.1 HALF-BRIDGE MODE

In Half-Bridge mode, two pins are used as outputs to
drive push-pull loads. The PWM output signal is output
on the CCP1/P1A pin, while the complementary PWM
output signal is output on the P1B pin (see
Figure 13-6). This mode can be used for half-bridge
applications, as shown in Figure 13-7, or for full-bridge
applications, where four power switches are being
modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay
can be used to prevent shoot-through current in
half-bridge power devices. The value of the PDC<6:0>
bits of the PWM1CON register sets the number of
instruction cycles before the output is driven active. If the
value is greater than the duty cycle, the corresponding
output remains inactive during the entire cycle. See
Section 13.4.6 “Programmable Dead-Band Delay
Mode” for more details of the dead-band delay
operations.

Since the P1A and P1B outputs are multiplexed with
the PORT data latches, the associated TRIS bits must
be cleared to configure P1A and P1B as outputs.

FIGURE 13-6: EXAMPLE OF 
HALF-BRIDGE PWM 
OUTPUT

FIGURE 13-7: EXAMPLE OF HALF-BRIDGE APPLICATIONS

Period

Pulse Width

td

td

(1)

P1A(2)

P1B(2)

td = Dead-Band Delay

Period

(1) (1)

Note 1: At this time, the TMR2 register is equal to the
PR2 register.

2: Output signals are shown as active-high.

P1A

P1B

FET
Driver

FET
Driver

Load

+

-

+

-

FET
Driver

FET
Driver

V+

Load

FET
Driver

FET
Driver

P1A

P1B

Standard Half-Bridge Circuit (“Push-Pull”)

Half-Bridge Output Driving a Full-Bridge Circuit
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REGISTER 14-5: SSPCON2: MSSP CONTROL REGISTER (I2C MODE)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

GCEN ACKSTAT ACKDT(2) ACKEN(1) RCEN(1) PEN(1) RSEN(1) SEN(1)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 GCEN: General Call Enable bit (Slave mode only)

1 = Generate interrupt when a general call address 0x00 or 00h is received in the SSPSR
0 = General call address disabled

bit 6 ACKSTAT: Acknowledge Status bit (Master Transmit mode only)

1 = Acknowledge was not received from slave 
0 = Acknowledge was received from slave 

bit 5 ACKDT: Acknowledge Data bit (Master Receive mode only)(2)

1 = Not Acknowledge 
0 = Acknowledge

bit 4 ACKEN: Acknowledge Sequence Enable bit (Master Receive mode only)(1) 

1 = Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit.
Automatically cleared by hardware. 

0 = Acknowledge sequence Idle 

bit 3 RCEN: Receive Enable bit (Master mode only)(1) 

1 = Enables Receive mode for I2C
0 = Receive Idle

bit 2 PEN: Stop Condition Enable bit (Master mode only)(1) 

1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware. 
0 = Stop condition Idle

bit 1 RSEN: Repeated Start Condition Enable bit (Master mode only)(1) 

1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 
0 = Repeated Start condition Idle

bit 0 SEN: Start Condition Enable/Stretch Enable bit(1)

In Master mode:
1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.
0 = Start condition Idle

In Slave mode:
1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)
0 = Clock stretching is disabled

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode, these bits may not 
be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

2: Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.
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14.3.8 I2C MASTER MODE START 
CONDITION TIMING

To initiate a Start condition, the user sets the Start
Enable bit, SEN bit of the SSPCON2 register. If the
SDA and SCL pins are sampled high, the Baud Rate
Generator is reloaded with the contents of
SSPADD<6:0> and starts its count. If SCL and SDA are
both sampled high when the Baud Rate Generator
times out (TBRG), the SDA pin is driven low. The action
of the SDA being driven low while SCL is high is the
Start condition and causes the S bit of the SSPSTAT1
register to be set. Following this, the Baud Rate
Generator is reloaded with the contents of
SSPADD<7:0> and resumes its count. When the Baud
Rate Generator times out (TBRG), the SEN bit of the
SSPCON2 register will be automatically cleared by
hardware; the Baud Rate Generator is suspended,
leaving the SDA line held low and the Start condition is
complete.

 

14.3.8.1 WCOL Status Flag

If the user writes the SSPBUF when a Start sequence
is in progress, the WCOL is set and the contents of the
buffer are unchanged (the write doesn’t occur).    

FIGURE 14-19: FIRST START BIT TIMING        

Note: If at the beginning of the Start condition,
the SDA and SCL pins are already
sampled low, or if during the Start
condition, the SCL line is sampled low
before the SDA line is driven low, a bus
collision occurs, the Bus Collision Interrupt
Flag, BCLIF, is set, the Start condition is
aborted and the I2C module is reset into its
Idle state.

Note: Because queuing of events is not allowed,
writing to the lower five bits of SSPCON2
is disabled until the Start condition is
complete.

SDA

SCL

S

TBRG

1st bit 2nd bit

TBRG

SDA = 1, 
At completion of Start bit,SCL = 1

Write to SSPBUF occurs hereTBRG

hardware clears SEN bit

TBRG

Write to SEN bit occurs here
Set S bit (SSPSTAT<3>)

    and sets SSPIF bit
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14.3.17.2 Bus Collision During a Repeated 
Start Condition

During a Repeated Start condition, a bus collision
occurs if: 

a) A low level is sampled on SDA when SCL goes
from low level to high level.

b) SCL goes low before SDA is asserted low,
indicating that another master is attempting to
transmit a data ‘1’.

When the user deasserts SDA and the pin is allowed to
float high, the BRG is loaded with SSPADD and counts
down to 0. The SCL pin is then deasserted and when
sampled high, the SDA pin is sampled. 

If SDA is low, a bus collision has occurred (i.e., another
master is attempting to transmit a data ‘0’, Figure 14-29).
If SDA is sampled high, the BRG is reloaded and begins
counting. If SDA goes from high-to-low before the BRG
times out, no bus collision occurs because no two
masters can assert SDA at exactly the same time. 

If SCL goes from high-to-low before the BRG times out
and SDA has not already been asserted, a bus collision
occurs. In this case, another master is attempting to
transmit a data ‘1’ during the Repeated Start condition,
see Figure 14-30.

If, at the end of the BRG time-out, both SCL and SDA
are still high, the SDA pin is driven low and the BRG is
reloaded and begins counting. At the end of the count,
regardless of the status of the SCL pin, the SCL pin is
driven low and the Repeated Start condition is
complete. 

FIGURE 14-29: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)        

FIGURE 14-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)      

SDA

SCL

RSEN

BCLIF

S

SSPIF

Sample SDA when SCL goes high.
If SDA = 0, set BCLIF and release SDA and SCL.

Cleared by software

‘0’

‘0’

SDA

SCL

BCLIF

RSEN

S

SSPIF

Interrupt cleared
by software

SCL goes low before SDA,
set BCLIF. Release SDA and SCL.

TBRG TBRG

‘0’
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15.1.1.5 TSR Status

The TRMT bit of the TXSTA register indicates the
status of the TSR register. This is a read-only bit. The
TRMT bit is set when the TSR register is empty and is
cleared when a character is transferred to the TSR
register from the TXREG. The TRMT bit remains clear
until all bits have been shifted out of the TSR register.
No interrupt logic is tied to this bit, so the user needs to
poll this bit to determine the TSR status. 

15.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions.
When the TX9 bit of the TXSTA register is set, the
EUSART will shift 9 bits out for each character
transmitted. The TX9D bit of the TXSTA register is the
ninth, and Most Significant, data bit. When transmitting
9-bit data, the TX9D data bit must be written before
writing the 8 Least Significant bits into the TXREG. All
nine bits of data will be transferred to the TSR shift
register immediately after the TXREG is written.

A special 9-bit Address mode is available for use with
multiple receivers. See Section 15.1.2.8 “Address
Detection” for more information on the Address mode.

15.1.1.7 Asynchronous Transmission Set-up

1. Initialize the SPBRGH:SPBRG register pair and
the BRGH and BRG16 bits to achieve the desired
baud rate (see Section 15.3 “EUSART Baud
Rate Generator (BRG)”).

2. Enable the asynchronous serial port by clearing
the SYNC bit and setting the SPEN bit.

3. If 9-bit transmission is desired, set the TX9
control bit. A set ninth data bit will indicate that
the 8 Least Significant data bits are an address
when the receiver is set for address detection.

4. Set the CKTXP control bit if inverted transmit
data polarity is desired.

5. Enable the transmission by setting the TXEN
control bit. This will cause the TXIF interrupt bit
to be set.

6. If interrupts are desired, set the TXIE interrupt
enable bit. An interrupt will occur immediately
provided that the GIE and PEIE bits of the
INTCON register are also set.

7. If 9-bit transmission is selected, the ninth bit
should be loaded into the TX9D data bit.

8. Load 8-bit data into the TXREG register. This
will start the transmission.

FIGURE 15-3: ASYNCHRONOUS TRANSMISSION       

Note: The TSR register is not mapped in data
memory, so it is not available to the user.

Word 1
Stop bit

Word 1
Transmit Shift Reg

Start bit bit 0 bit 1 bit 7/8

Write to TXREG
Word 1

BRG Output
(Shift Clock)

RB7/TX/CK

TXIF bit
(Transmit Buffer

Reg. Empty Flag)

TRMT bit
(Transmit Shift

Reg. Empty Flag)

1 TCY

pin
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REGISTER 15-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 R-x

SPEN RX9 SREN CREN ADDEN FERR OERR RX9D

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 SPEN: Serial Port Enable bit

1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)
0 = Serial port disabled (held in Reset) 

bit 6 RX9: 9-bit Receive Enable bit

1 = Selects 9-bit reception
0 = Selects 8-bit reception

bit 5 SREN: Single Receive Enable bit 

Asynchronous mode: 

Don’t care
Synchronous mode – Master:

1 = Enables single receive
0 = Disables single receive
This bit is cleared after reception is complete.
Synchronous mode – Slave

Don’t care

bit 4 CREN: Continuous Receive Enable bit

Asynchronous mode:

1 = Enables receiver
0 = Disables receiver
Synchronous mode: 

1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)
0 = Disables continuous receive

bit 3 ADDEN: Address Detect Enable bit

Asynchronous mode 9-bit (RX9 = 1):

1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set
0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit
Asynchronous mode 8-bit (RX9 = 0):

Don’t care

bit 2 FERR: Framing Error bit

1 = Framing error (can be updated by reading RCREG register and receive next valid byte)
0 = No framing error

bit 1 OERR: Overrun Error bit

1 = Overrun error (can be cleared by clearing bit CREN) 
0 = No overrun error

bit 0 RX9D: Ninth bit of Received Data

This can be address/data bit or a parity bit and must be calculated by user firmware.
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FSR1H FE2h ---- 0000 ---- 0000 ---- uuuu

FSR1L FE1h xxxx xxxx uuuu uuuu uuuu uuuu

BSR FE0h ---- 0000 ---- 0000 ---- uuuu

INDF2 FDFh N/A N/A N/A

POSTINC2 FDEh N/A N/A N/A

POSTDEC2 FDDh N/A N/A N/A

PREINC2 FDCh N/A N/A N/A

PLUSW2 FDBh N/A N/A N/A

FSR2H FDAh ---- 0000 ---- 0000 ---- uuuu

FSR2L FD9h xxxx xxxx uuuu uuuu uuuu uuuu

STATUS FD8h ---x xxxx ---u uuuu ---u uuuu

TMR0H FD7h 0000 0000 0000 0000 uuuu uuuu

TMR0L FD6h xxxx xxxx uuuu uuuu uuuu uuuu

T0CON FD5h 1111 1111 1111 1111 uuuu uuuu

OSCCON FD3h 0011 qq00 0011 qq00 uuuu uuuu

OSCCON2 FD2h ---- -10x ---- -10x ---- -uuu

WDTCON FD1h ---- ---0 ---- ---0 ---- ---u

RCON(4)
FD0h 0q-1 11q0 0q-q qquu uq-u qquu

TMR1H FCFh xxxx xxxx uuuu uuuu uuuu uuuu

TMR1L FCEh xxxx xxxx uuuu uuuu uuuu uuuu

T1CON FCDh 0000 0000 u0uu uuuu uuuu uuuu

TMR2 FCCh 0000 0000 0000 0000 uuuu uuuu

PR2 FCBh 1111 1111 1111 1111 1111 1111

T2CON FCAh -000 0000 -000 0000 -uuu uuuu

SSPBUF FC9h xxxx xxxx uuuu uuuu uuuu uuuu

SSPADD FC8h 0000 0000 0000 0000 uuuu uuuu

SSPSTAT FC7h 0000 0000 0000 0000 uuuu uuuu

SSPCON1 FC6h 0000 0000 0000 0000 uuuu uuuu

SSPCON2 FC5h 0000 0000 0000 0000 uuuu uuuu

TABLE 22-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Register Address
Power-on Reset,
Brown-out Reset

MCLR Resets,
WDT Reset,

RESET Instruction,
Stack Resets

Wake-up via WDT 
or Interrupt

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as ‘0’, q = value depends on condition.
Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt 

vector (0008h or 0018h).
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are 

updated with the current value of the PC. The STKPTR is modified to point to the next location in the 
hardware stack.

4: See Table 22-3 for Reset value for specific condition.
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IPR2 FA2h 1111 1-1- 1111 1-1- uuuu u-u-

PIR2 FA1h 0000 0-0- 0000 0-0- uuuu u-u-(1)

PIE2 FA0h 0000 0-0- 0000 0-0- uuuu u-u-

IPR1 F9Fh -111 1111 -111 1111 -uuu uuuu

PIR1 F9Eh -000 0000 -000 0000 -uuu uuuu(1)

PIE1 F9Dh -000 0000 -000 0000 -uuu uuuu

OSCTUNE F9Bh 0000 0000 0000 0000 uuuu uuuu

TRISC F95h 1111 1111 1111 1111 uuuu uuuu

TRISB F94h 1111 ---- 1111 ---- uuuu ----

TRISA F93h --11 1111 --11 1111 --uu uuuu

LATC F8Bh xxxx xxxx uuuu uuuu uuuu uuuu

LATB F8Ah xxxx ---- uuuu ---- uuuu ---- 

LATA F89h --xx xxxx --uu uuuu --uu uuuu

PORTC F82h xxxx xxxx uuuu uuuu uuuu uuuu

PORTB F81h xxxx ---- uuuu ---- uuuu ----

PORTA F80h --xx xxxx --xx xxxx --uu uuuu

ANSELH F7Fh ---- 1111 ---- 1111 ---- uuuu

ANSEL F7Eh 1111 1111 1111 1111 uuuu uuuu

IOCB F7Ah 0000 ---- 0000 ---- uuuu ----

IOCA F79h --00 0000 --00 0000 --uu uuuu

WPUB F78h 1111 ---- 1111 ---- uuuu ----

WPUA F77h --11 1111 --11 1111 --uu uuuu

SLRCON F76h ---- -111 ---- -111 ---- -uuu

SSPMSK F6Fh 1111 1111 1111 1111 uuuu uuuu

CM1CON0 F6Dh 0000 0000 0000 0000 uuuu uuuu

CM2CON1 F6Ch 0000 0000 0000 0000 uuuu uuuu

CM2CON0 F6Bh 0000 0000 0000 0000 uuuu uuuu

SRCON1 F69h 0000 0000 0000 0000 uuuu uuuu

SRCON0 F68h 0000 0000 0000 0000 uuuu uuuu

TABLE 22-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Register Address
Power-on Reset,
Brown-out Reset

MCLR Resets,
WDT Reset,

RESET Instruction,
Stack Resets

Wake-up via WDT 
or Interrupt

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as ‘0’, q = value depends on condition.
Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt 

vector (0008h or 0018h).
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are 

updated with the current value of the PC. The STKPTR is modified to point to the next location in the 
hardware stack.

4: See Table 22-3 for Reset value for specific condition.
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REGISTER 23-8: CONFIG6L: CONFIGURATION REGISTER 6 LOW

U-0 U-0 U-0 U-0 U-0 U-0 R/C-1 R/C-1

— — — — — — WRT1 WRT0

bit 7 bit 0

Legend:

R = Readable bit U = Unimplemented bit, read as ‘0’

-n = Value when device is unprogrammed C = Clearable only bit

bit 7-2 Unimplemented: Read as ‘0’

bit 1 WRT1: Write Protection bit
1 = Block 1 not write-protected
0 = Block 1 write-protected

bit 0 WRT0: Write Protection bit
1 = Block 0 not write-protected
0 = Block 0 write-protected

REGISTER 23-9: CONFIG6H: CONFIGURATION REGISTER 6 HIGH

R/C-1 R/C-1 R-1 U-0 U-0 U-0 U-0 U-0

WRTD WRTB WRTC(1) — — — — —

bit 7 bit 0

Legend:

R = Readable bit U = Unimplemented bit, read as ‘0’

-n = Value when device is unprogrammed C = Clearable only bit

bit 7 WRTD: Data EEPROM Write Protection bit
1 = Data EEPROM not write-protected
0 = Data EEPROM write-protected

bit 6 WRTB: Boot Block Write Protection bit
1 = Boot block not write-protected
0 = Boot block write-protected

bit 5 WRTC: Configuration Register Write Protection bit(1)

1 = Configuration registers not write-protected
0 = Configuration registers write-protected

bit 4-0 Unimplemented: Read as ‘0’

Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode.
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25.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code
development in a PC-hosted environment by
simulating the PIC MCUs and dsPIC DSCs on an
instruction level. On any given instruction, the data
areas can be examined or modified and stimuli can be
applied from a comprehensive stimulus controller.
Registers can be logged to files for further run-time
analysis. The trace buffer and logic analyzer display
extend the power of the simulator to record and track
program execution, actions on I/O, most peripherals
and internal registers. 

The MPLAB X SIM Software Simulator fully supports
symbolic debugging using the MPLAB XC Compilers,
and the MPASM and MPLAB Assemblers. The
software simulator offers the flexibility to develop and
debug code outside of the hardware laboratory
environment, making it an excellent, economical
software development tool. 

25.7 MPLAB REAL ICE In-Circuit 
Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs all 8, 16 and 32-bit MCU, and DSC devices
with the easy-to-use, powerful graphical user interface of
the MPLAB X IDE.

The emulator is connected to the design engineer’s
PC using a high-speed USB 2.0 interface and is
connected to the target with either a connector
compatible with in-circuit debugger systems (RJ-11)
or with the new high-speed, noise tolerant, Low-
Voltage Differential Signal (LVDS) interconnection
(CAT5). 

The emulator is field upgradable through future firmware
downloads in MPLAB X IDE. MPLAB REAL ICE offers
significant advantages over competitive emulators
including full-speed emulation, run-time variable
watches, trace analysis, complex breakpoints, logic
probes, a ruggedized probe interface and long (up to
three meters) interconnection cables.

25.8 MPLAB ICD 3 In-Circuit Debugger 
System

The MPLAB ICD 3 In-Circuit Debugger System is
Microchip’s most cost-effective, high-speed hardware
debugger/programmer for Microchip Flash DSC and
MCU devices. It debugs and programs PIC Flash
microcontrollers and dsPIC DSCs with the powerful,
yet easy-to-use graphical user interface of the MPLAB
IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is
connected to the design engineer’s PC using a high-
speed USB 2.0 interface and is connected to the target
with a connector compatible with the MPLAB ICD 2 or
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3
supports all MPLAB ICD 2 headers.

25.9 PICkit 3 In-Circuit Debugger/
Programmer

The MPLAB PICkit 3 allows debugging and
programming of PIC and dsPIC Flash microcontrollers
at a most affordable price point using the powerful
graphical user interface of the MPLAB IDE. The
MPLAB PICkit 3 is connected to the design engineer’s
PC using a full-speed USB interface and can be
connected to the target via a Microchip debug (RJ-11)
connector (compatible with MPLAB ICD 3 and MPLAB
REAL ICE). The connector uses two device I/O pins
and the Reset line to implement in-circuit debugging
and In-Circuit Serial Programming™ (ICSP™).

25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages, and a
modular, detachable socket assembly to support
various package types. The ICSP cable assembly is
included as a standard item. In Stand-Alone mode, the
MPLAB PM3 Device Programmer can read, verify and
program PIC devices without a PC connection. It can
also set code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices, and incorporates an MMC card for file
storage and data applications.
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VOH Output High Voltage(4)

D090 I/O ports VDD-0.7
VDD-0.7
VDD-0.7

— — V
IOH = 3.5 mA, VDD = 5V
IOH = 3 mA, VDD = 3.3V
IOH = 2 mA, VDD = VDDMIN

Capacitive Loading Specs on Output Pins

D101* COSC2 OSC2 pin — — 15 pF In XT, HS and LP modes when 
external clock is used to drive 
OSC1

D101A* CIO All I/O pins — — 50 pF

TABLE 26-9: I/O PORTS (CONTINUED)

DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated)

Param.
No.

Sym. Characteristic Min. Typ.† Max. Units Conditions

* These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not 

tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external 

clock in RC mode.
2: Negative current is defined as current sourced by the pin.
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent 

normal operating conditions. Higher leakage current may be measured at different input voltages.
4: Including OSC2 in CLKOUT mode.
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APPENDIX B: DEVICE 
DIFFERENCES

The differences between the devices listed in this data
sheet are shown in Table .

          

TABLE B-1: DEVICE DIFFERENCES

Features PIC18F13K22 PIC18F14K22 PIC18LF13K22 PIC18LF14K22

Program Memory (Bytes) 8192 16384 8192 16384

Program Memory (Instructions) 4096 8192 4096 8192

Data Memory SRAM (bytes) 256 512 256 512

Data Memory EEPROM (bytes) 256 256 256 256

VDD Min(V) 2.3 2.3 1.8 1.8

VDD Max(V) 5.5 5.5 3.6 3.6

Packages 20-pin PDIP
20-pin SOIC
20-pin SSOP
20-Pin QFN

20-pin PDIP
20-pin SOIC
20-pin SSOP
20-Pin QFN

20-pin PDIP
20-pin SOIC
20-pin SSOP
20-Pin QFN

20-pin PDIP
20-pin SOIC
20-pin SSOP
20-Pin QFN
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