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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC18(L)F1XK22
2.8 Oscillator Start-up Timer

The Primary External Oscillator, when configured for
LP, XT or HS modes, incorporates an Oscillator Start-up
Timer (OST). The OST ensures that the oscillator starts
and provides a stable clock to the oscillator module.
The OST times out when 1024 oscillations on OSC1
have occurred. During the OST period, with the system
clock set to the Primary External Oscillator, the program
counter does not increment suspending program
execution. The OST period will occur following:

• Power-on Reset (POR)

• Brown-out Reset (BOR)

• Wake-up from Sleep

• Oscillator being enabled

• Expiration of Power-up Timer (PWRT)

In order to minimize latency between external oscillator
start-up and code execution, the Two-Speed Start-up
mode can be selected. See Section 2.11 “Two-Speed
Start-up Mode” for more information.

2.9 Clock Switching

The device contains circuitry to prevent clock “glitches”
due to a change of the system clock source. To
accomplish this, a short pause in the system clock
occurs during the clock switch. If the new clock source
is not stable (e.g., OST is active), the device will
continue to execute from the old clock source until the
new clock source becomes stable. The timing of a
clock switch is as follows:

1. SCS<1:0> bits of the OSCCON register are
modified.

2. The system clock will continue to operate from
the old clock until the new clock is ready.

3. Clock switch circuitry waits for two consecutive
rising edges of the old clock after the new clock
is ready.

4. The system clock is held low, starting at the next
falling edge of the old clock.

5. Clock switch circuitry waits for an additional two
rising edges of the new clock.

6. On the next falling edge of the new clock, the
low hold on the system clock is release and the
new clock is switched in as the system clock. 

7. Clock switch is complete.

Refer to Figure 2-5 for more details.

FIGURE 2-5: CLOCK SWITCH TIMING
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Note 1: Start-up time includes TOST (1024 TOSC) for external clocks, plus TPLL (approx. 2 ms) for HSPLL mode. 
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3.3.2  ACCESS BANK

While the use of the BSR with an embedded 8-bit
address allows users to address the entire range of
data memory, it also means that the user must always
ensure that the correct bank is selected. Otherwise,
data may be read from or written to the wrong location.
This can be disastrous if a GPR is the intended target
of an operation, but an SFR is written to instead.
Verifying and/or changing the BSR for each read or
write to data memory can become very inefficient.

To streamline access for the most commonly used data
memory locations, the data memory is configured with
an Access Bank, which allows users to access a
mapped block of memory without specifying a BSR.
The Access Bank consists of the first 96 bytes of
memory (00h-5Fh) in Bank 0 and the last 160 bytes of
memory (60h-FFh) in Block 15. The lower half is known
as the “Access RAM” and is composed of GPRs. This
upper half is also where the device’s SFRs are mapped.
These two areas are mapped contiguously in the
Access Bank and can be addressed in a linear fashion
by an 8-bit address (Figure 3-5 and Figure 3-6).

The Access Bank is used by core PIC18 instructions
that include the Access RAM bit (the ‘a’ parameter in
the instruction). When ‘a’ is equal to ‘1’, the instruction
uses the BSR and the 8-bit address included in the
opcode for the data memory address. When ‘a’ is ‘0’,
however, the instruction is forced to use the Access
Bank address map; the current value of the BSR is
ignored entirely. 

Using this “forced” addressing allows the instruction to
operate on a data address in a single cycle, without
updating the BSR first. For 8-bit addresses of 60h and
above, this means that users can evaluate and operate
on SFRs more efficiently. The Access RAM below 60h
is a good place for data values that the user might need
to access rapidly, such as immediate computational
results or common program variables. Access RAM
also allows for faster and more code efficient context
saving and switching of variables.

The mapping of the Access Bank is slightly different
when the extended instruction set is enabled (XINST
Configuration bit = 1). This is discussed in more detail
in Section 3.5.3 “Mapping the Access Bank in
Indexed Literal Offset Mode”.

3.3.3 GENERAL PURPOSE REGISTER 
FILE

PIC18 devices may have banked memory in the GPR
area. This is data RAM, which is available for use by all
instructions. GPRs start at the bottom of Bank 0
(address 000h) and grow upwards towards the bottom of
the SFR area. GPRs are not initialized by a Power-on
Reset and are unchanged on all other Resets.

3.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers
used by the CPU and peripheral modules for controlling
the desired operation of the device. These registers are
implemented as static RAM. SFRs start at the top of
data memory (FFFh) and extend downward to occupy
the top portion of Bank 15 (F60h to FFFh). A list of
these registers is given in Table 3-1 and Table 3-2.

The SFRs can be classified into two sets: those
associated with the “core” device functionality (ALU,
Resets and interrupts) and those related to the
peripheral functions. The Reset and Interrupt registers
are described in their respective chapters, while the
ALU’s STATUS register is described later in this
section. Registers related to the operation of a
peripheral feature are described in the chapter for that
peripheral.

The SFRs are typically distributed among the
peripherals whose functions they control. Unused SFR
locations are unimplemented and read as ‘0’s.
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5.3 Reading the Data EEPROM 
Memory

To read a data memory location, the user must write the
address to the EEADR register, clear the EEPGD
control bit of the EECON1 register and then set control
bit, RD. The data is available on the very next
instruction cycle; therefore, the EEDATA register can
be read by the next instruction. EEDATA will hold this
value until another read operation, or until it is written to
by the user (during a write operation). 

The basic process is shown in Example 5-1.

5.4 Writing to the Data EEPROM 
Memory

To write an EEPROM data location, the address must
first be written to the EEADR register and the data
written to the EEDATA register. The sequence in
Example 5-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly
followed (write 55h to EECON2, write 0AAh to
EECON2, then set WR bit) for each byte. It is strongly
recommended that interrupts be disabled during this
code segment.

Additionally, the WREN bit in EECON1 must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM due to unexpected code
execution (i.e., runaway programs). The WREN bit
should be kept clear at all times, except when updating
the EEPROM. The WREN bit is not cleared by
hardware.

After a write sequence has been initiated, EECON1,
EEADR and EEDATA cannot be modified. The WR bit
will be inhibited from being set unless the WREN bit is
set. Both WR and WREN cannot be set with the same
instruction.

At the completion of the write cycle, the WR bit is
cleared by hardware and the EEPROM Interrupt Flag
bit, EEIF, is set. The user may either enable this
interrupt or poll this bit. EEIF must be cleared by
software.

5.5 Write Verify

Depending on the application, good programming
practice may dictate that the value written to the
memory should be verified against the original value.
This should be used in applications where excessive
writes can stress bits near the specification limit. 

EXAMPLE 5-1: DATA EEPROM READ 

EXAMPLE 5-2: DATA EEPROM WRITE 

MOVLW DATA_EE_ADDR ;
MOVWF EEADR ; Data Memory Address to read
BCF EECON1, EEPGD ; Point to DATA memory
BCF EECON1, CFGS ; Access EEPROM
BSF EECON1, RD ; EEPROM Read
MOVF EEDATA, W ; W = EEDATA

MOVLW DATA_EE_ADDR_LOW ;
MOVWF EEADR ; Data Memory Address to write
MOVLW DATA_EE_DATA ;
MOVWF EEDATA ; Data Memory Value to write
BCF EECON1, EEPGD ; Point to DATA memory
BCF EECON1, CFGS ; Access EEPROM
BSF EECON1, WREN ; Enable writes
BCF INTCON, GIE ; Disable Interrupts
MOVLW 55h ;

Required MOVWF EECON2 ; Write 55h
Sequence MOVLW 0AAh ;

MOVWF EECON2 ; Write 0AAh
BSF EECON1, WR ; Set WR bit to begin write
BSF INTCON, GIE ; Enable Interrupts

; User code execution
BCF EECON1, WREN ; Disable writes on write complete (EEIF set)
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REGISTER 7-2: INTCON2: INTERRUPT CONTROL 2 REGISTER

R/W-1 R/W-1 R/W-1 R/W-1 U-0 R/W-1 U-0 R/W-1

RABPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RABIP

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 RABPU: PORTA and PORTB Pull-up Enable bit 

1 = PORTA and PORTB pull-ups are disabled 
0 = PORTA and PORTB pull-ups are enabled provided that the pin is an input and the corresponding

WPUA and WPUB bits are set. 

bit 6 INTEDG0: External Interrupt 0 Edge Select bit 

1 = Interrupt on rising edge 
0 = Interrupt on falling edge

bit 5 INTEDG1: External Interrupt 1 Edge Select bit 

1 = Interrupt on rising edge 
0 = Interrupt on falling edge 

bit 4 INTEDG2: External Interrupt 2 Edge Select bit 

1 = Interrupt on rising edge 
0 = Interrupt on falling edge 

bit 3 Unimplemented: Read as ‘0’

bit 2 TMR0IP: TMR0 Overflow Interrupt Priority bit 

1 = High priority 
0 = Low priority 

bit 1 Unimplemented: Read as ‘0’

bit 0 RABIP: RA and RB Port Change Interrupt Priority bit

1 = High priority 
0 = Low priority 

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit. User software might ensure the
appropriate interrupt flag bits are clear
prior to enabling an interrupt. This feature
allows for software polling.
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REGISTER 7-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 U-0

OSCFIF C1IF C2IF EEIF BCLIF — TMR3IF —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 OSCFIF: Oscillator Fail Interrupt Flag bit

1 = Device oscillator failed, clock input has changed to HFINTOSC (must be cleared by software)
0 = Device clock operating

bit 6 C1IF: Comparator C1 Interrupt Flag bit

1 = Comparator C1 output has changed (must be cleared by software)
0 = Comparator C1 output has not changed

bit 5 C2IF: Comparator C2 Interrupt Flag bit

1 = Comparator C2 output has changed (must be cleared by software)
0 = Comparator C2 output has not changed

bit 4 EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit

1 = The write operation is complete (must be cleared by software)
0 = The write operation is not complete or has not been started

bit 3 BCLIF: Bus Collision Interrupt Flag bit 

1 = A bus collision occurred (must be cleared by software)
0 = No bus collision occurred

bit 2 Unimplemented: Read as ‘0’

bit 1 TMR3IF: TMR3 Overflow Interrupt Flag bit

1 = TMR3 register overflowed (must be cleared by software)
0 = TMR3 register did not overflow

bit 0 Unimplemented: Read as ‘0’
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REGISTER 8-1: PORTA: PORTA REGISTER

U-0 U-0 R/W-x R/W-x R-x R/W-x R/W-x R/W-x

— — RA5 RA4 RA3 RA2 RA1 RA0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 Unimplemented: Read as ‘0’

bit 5-0 RA<5:0>: PORTA I/O Pin bit(1)

1 = Port pin is > VIH

0 = Port pin is < VIL

Note 1: The RA3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0). 
Otherwise, RA3 reads as ‘0’. This bit is read-only.

REGISTER 8-2: TRISA: PORTA TRI-STATE REGISTER

U-0 U-0 R/W-1 R/W-1 U-1 R/W-1 R/W-1 R/W-1

— — TRISA5 TRISA4 — TRISA2 TRISA1 TRISA0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 Unimplemented: Read as ‘0’

bit 5-4 TRISA<5:4>: PORTA Tri-State Control bit(1)

1 = PORTA pin configured as an input (tri-stated)
0 = PORTA pin configured as an output

bit 3 Unimplemented: Read as ‘1’

bit 2-0 TRISA<2:0>: PORTA Tri-State Control bit(1)

1 = PORTA pin configured as an input (tri-stated)
0 = PORTA pin configured as an output

Note 1: TRISA<5:4> always reads ‘1’ in XT, HS and LP Oscillator modes.
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EXAMPLE 10-1: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

TABLE 10-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER        

RTCinit
MOVLW 80h ; Preload TMR1 register pair
MOVWF TMR1H ; for 1 second overflow
CLRF TMR1L
MOVLW b’00001111’ ; Configure for external clock,
MOVWF T1CON ; Asynchronous operation, external oscillator
CLRF secs ; Initialize timekeeping registers
CLRF mins ; 
MOVLW .12
MOVWF hours
BSF PIE1, TMR1IE ; Enable Timer1 interrupt
RETURN

RTCisr
BSF TMR1H, 7 ; Preload for 1 sec overflow
BCF PIR1, TMR1IF ; Clear interrupt flag
INCF secs, F ; Increment seconds
MOVLW .59 ; 60 seconds elapsed?
CPFSGT secs
RETURN ; No, done
CLRF secs ; Clear seconds
INCF mins, F ; Increment minutes
MOVLW .59 ; 60 minutes elapsed?
CPFSGT mins
RETURN ; No, done
CLRF mins ; clear minutes
INCF hours, F ; Increment hours
MOVLW .23 ; 24 hours elapsed?
CPFSGT hours
RETURN ; No, done
CLRF hours ; Reset hours
RETURN ; Done

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset 
Values 

on page

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RABIE TMR0IF INT0IF RABIF 245

IPR1 — ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 248

PIE1 — ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 248

PIR1 — ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 248

TMR1H Timer1 Register, High Byte 246

TMR1L Timer1 Register, Low Byte 246

TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 248

T1CON RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 246

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.

Note 1: Unimplemented, read as’1’.
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13.0 ENHANCED 
CAPTURE/COMPARE/PWM 
(ECCP) MODULE

PIC18(L)F1XK22 devices have one ECCP
(Capture/Compare/PWM) module. The module
contains a 16-bit register which can operate as a 16-bit
Capture register, a 16-bit Compare register or a PWM
Master/Slave Duty Cycle register.

CCP1 is implemented as a standard CCP module with
enhanced PWM capabilities. These include:

• Provision for two or four output channels

• Output steering

• Programmable polarity 

• Programmable dead-band control

• Automatic shutdown and restart

The enhanced features are discussed in detail in
Section 13.4 “PWM (Enhanced Mode)”.

REGISTER 13-1: CCP1CON: ENHANCED CAPTURE/COMPARE/PWM CONTROL REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 P1M<1:0>: Enhanced PWM Output Configuration bits
If CCP1M<3:2> = 00, 01, 10:
xx = P1A assigned as Capture/Compare input/output; P1B, P1C, P1D assigned as port pins
If CCP1M<3:2> = 11:
00 = Single output: P1A, P1B, P1C and P1D controlled by steering (See Section 13.4.7 “Pulse Steering

Mode”).
01 = Full-bridge output forward: P1D modulated; P1A active; P1B, P1C inactive
10 = Half-bridge output: P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins
11 = Full-bridge output reverse: P1B modulated; P1C active; P1A, P1D inactive

bit 5-4 DC1B<1:0>: PWM Duty Cycle bit 1 and bit 0
Capture mode:
Unused.
Compare mode: 
Unused.
PWM mode: 
These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are found in
CCPR1L.

bit 3-0 CCP1M<3:0>: Enhanced CCP Mode Select bits
0000 = Capture/Compare/PWM off (resets ECCP module)
0001 = Reserved 
0010 = Compare mode, toggle output on match
0011 = Reserved
0100 = Capture mode, every falling edge 
0101 = Capture mode, every rising edge
0110 = Capture mode, every 4th rising edge 
0111 = Capture mode, every 16th rising edge
1000 = Compare mode, initialize CCP1 pin low, set output on compare match (set CCP1IF)
1001 = Compare mode, initialize CCP1 pin high, clear output on compare match (set CCP1IF)
1010 = Compare mode, generate software interrupt only, CCP1 pin reverts to I/O state
1011 = Compare mode, trigger special event (ECCP resets TMR1 or TMR3, start A/D conversion, sets

CC1IF bit)
1100 = PWM mode; P1A, P1C active-high; P1B, P1D active-high
1101 = PWM mode; P1A, P1C active-high; P1B, P1D active-low
1110 = PWM mode; P1A, P1C active-low; P1B, P1D active-high
1111 = PWM mode; P1A, P1C active-low; P1B, P1D active-low
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FIGURE 13-16: SIMPLIFIED STEERING 
BLOCK DIAGRAM
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14.2.8 OPERATION IN POWER-MANAGED 
MODES

In SPI Master mode, module clocks may be operating
at a different speed than when in Full Power mode; in
the case of the Sleep mode, all clocks are halted.

In all Idle modes, a clock is provided to the peripherals.
That clock could be from the primary clock source, the
secondary clock (Timer1 oscillator at 32.768 kHz) or
the INTOSC source. See Section 18.0 “Power-Man-
aged Modes” for additional information.

In most cases, the speed that the master clocks SPI
data is not important; however, this should be
evaluated for each system.

When MSSP interrupts are enabled, after the master
completes sending data, an MSSP interrupt will wake
the controller:

• From Sleep, in Slave mode 

• From Idle, in Slave or Master mode

If an exit from Sleep or Idle mode is not desired, MSSP
interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected,
all module clocks are halted and the
transmission/reception will remain in that state until the
device wakes. After the device returns to Run mode,
the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift
register operates asynchronously to the device. This
allows the device to be placed in any Power-Managed
mode and data to be shifted into the SPI

Transmit/Receive Shift register. When all eight bits
have been received, the MSSP interrupt flag bit will be
set and if enabled, will wake the device.

14.2.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the
current transfer.

14.2.10 BUS MODE COMPATIBILITY

Table 14-1 shows the compatibility between the
standard SPI modes and the states of the CKP and
CKE control bits. 

TABLE 14-1: SPI BUS MODES          

There is also an SMP bit which controls when the data
is sampled.

TABLE 14-2: REGISTERS ASSOCIATED WITH SPI OPERATION       

Standard SPI Mode 
Terminology

Control Bits State

CKP CKE

0, 0 0 1

0, 1 0 0

1, 0 1 1

1, 1 1 0

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset 
Values 

on page

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RABIE TMR0IF INT0IF RABIF 245

IPR1 — ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 248

PIE1 — ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 248

PIR1 — ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 248

TRISB TRISB7 TRISB6 TRISB5 TRISB4 — — — — 248

TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 248

SSPBUF SSP Receive Buffer/Transmit Register 246

SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 246

SSPSTAT SMP CKE D/A P S R/W UA BF 246

Legend: Shaded cells are not used by the MSSP in SPI mode.
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FIGURE 14-11: I2C SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESS) 
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14.3.4 CLOCK STRETCHING

Both 7-bit and 10-bit Slave modes implement
automatic clock stretching during a transmit sequence.

The SEN bit of the SSPCON2 register allows clock
stretching to be enabled during receives. Setting SEN
will cause the SCL pin to be held low at the end of
each data receive sequence.

14.3.4.1 Clock Stretching for 7-bit Slave 
Receive Mode (SEN = 1)

In 7-bit Slave Receive mode, on the falling edge of the
ninth clock at the end of the ACK sequence if the BF
bit is set, the CKP bit of the SSPCON1 register is
automatically cleared, forcing the SCL output to be
held low. The CKP being cleared to ‘0’ will assert the
SCL line low. The CKP bit must be set in the user’s
ISR before reception is allowed to continue. By holding
the SCL line low, the user has time to service the ISR
and read the contents of the SSPBUF before the
master device can initiate another data transfer
sequence. This will prevent buffer overruns from
occurring (see Figure 14-13).

14.3.4.2 Clock Stretching for 10-bit Slave 
Receive Mode (SEN = 1)

In 10-bit Slave Receive mode during the address
sequence, clock stretching automatically takes place
but CKP is not cleared. During this time, if the UA bit is
set after the ninth clock, clock stretching is initiated.
The UA bit is set after receiving the upper byte of the
10-bit address and following the receive of the second
byte of the 10-bit address with the R/W bit cleared to
‘0’. The release of the clock line occurs upon updating
SSPADD. Clock stretching will occur on each data
receive sequence as described in 7-bit mode.

14.3.4.3 Clock Stretching for 7-bit Slave 
Transmit Mode 

7-bit Slave Transmit mode implements clock stretching
by clearing the CKP bit after the falling edge of the
ninth clock. This occurs regardless of the state of the
SEN bit.

The user’s ISR must set the CKP bit before
transmission is allowed to continue. By holding the
SCL line low, the user has time to service the ISR and
load the contents of the SSPBUF before the master
device can initiate another data transfer sequence
(see Figure 14-9).

14.3.4.4 Clock Stretching for 10-bit Slave 
Transmit Mode

In 10-bit Slave Transmit mode, clock stretching is
controlled during the first two address sequences by
the state of the UA bit, just as it is in 10-bit Slave
Receive mode. The first two addresses are followed
by a third address sequence which contains the
high-order bits of the 10-bit address and the R/W bit
set to ‘1’. After the third address sequence is
performed, the UA bit is not set, the module is now
configured in Transmit mode and clock stretching is
automatic with the hardware clearing CKP, as in 7-bit
Slave Transmit mode (see Figure 14-11).

Note 1: If the user reads the contents of the
SSPBUF before the falling edge of the
ninth clock, thus clearing the BF bit, the
CKP bit will not be cleared and clock
stretching will not occur.

2: The CKP bit can be set by software
regardless of the state of the BF bit. The
user should be careful to clear the BF bit
in the ISR before the next receive
sequence in order to prevent an overflow
condition.

Note 1: If the user loads the contents of SSPBUF,
setting the BF bit before the falling edge
of the ninth clock, the CKP bit will not be
cleared and clock stretching will not
occur.

2: The CKP bit can be set by software
regardless of the state of the BF bit.
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14.3.10 I2C MASTER MODE 
TRANSMISSION

Transmission of a data byte, a 7-bit address or the
other half of a 10-bit address is accomplished by simply
writing a value to the SSPBUF register. This action will
set the Buffer Full flag bit, BF, and allow the Baud Rate
Generator to begin counting and start the next
transmission. Each bit of address/data will be shifted
out onto the SDA pin after the falling edge of SCL is
asserted (see data hold time specification
parameter SP106). SCL is held low for one Baud Rate
Generator rollover count (TBRG). Data should be valid
before SCL is released high (see data setup time
specification parameter SP107). When the SCL pin is
released high, it is held that way for TBRG. The data on
the SDA pin must remain stable for that duration and
some hold time after the next falling edge of SCL. After
the eighth bit is shifted out (the falling edge of the eighth
clock), the BF flag is cleared and the master releases
SDA. This allows the slave device being addressed to
respond with an ACK bit during the ninth bit time if an
address match occurred, or if data was received
properly. The status of ACK is written into the ACKDT
bit on the falling edge of the ninth clock. If the master
receives an Acknowledge, the Acknowledge Status bit,
ACKSTAT, is cleared. If not, the bit is set. After the ninth
clock, the SSPIF bit is set and the master clock (Baud
Rate Generator) is suspended until the next data byte
is loaded into the SSPBUF, leaving SCL low and SDA
unchanged (Figure 14-21).

After the write to the SSPBUF, each bit of the address
will be shifted out on the falling edge of SCL until all
seven address bits and the R/W bit are completed. On
the falling edge of the eighth clock, the master will
deassert the SDA pin, allowing the slave to respond
with an Acknowledge. On the falling edge of the ninth
clock, the master will sample the SDA pin to see if the
address was recognized by a slave. The status of the
ACK bit is loaded into the ACKSTAT Status bit of the
SSPCON2 register. Following the falling edge of the
ninth clock transmission of the address, the SSPIF is
set, the BF flag is cleared and the Baud Rate Generator
is turned off until another write to the SSPBUF takes
place, holding SCL low and allowing SDA to float.

14.3.10.1 BF Status Flag

In Transmit mode, the BF bit of the SSPSTAT register
is set when the CPU writes to SSPBUF and is cleared
when all 8 bits are shifted out.

14.3.10.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is
already in progress (i.e., SSPSR is still shifting out a
data byte), the WCOL is set and the contents of the
buffer are unchanged (the write doesn’t occur). 

WCOL must be cleared by software before the next
transmission.

14.3.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPCON2
register is cleared when the slave has sent an
Acknowledge (ACK = 0) and is set when the slave
does not Acknowledge (ACK = 1). A slave sends an
Acknowledge when it has recognized its address
(including a general call), or when the slave has
properly received its data.

14.3.11 I2C MASTER MODE RECEPTION

Master mode reception is enabled by programming the
Receive Enable bit, RCEN bit of the SSPCON2
register.       

The Baud Rate Generator begins counting and on each
rollover, the state of the SCL pin changes
(high-to-low/low-to-high) and data is shifted into the
SSPSR. After the falling edge of the eighth clock, the
receive enable flag is automatically cleared, the
contents of the SSPSR are loaded into the SSPBUF,
the BF flag bit is set, the SSPIF flag bit is set and the
Baud Rate Generator is suspended from counting,
holding SCL low. The MSSP is now in Idle state
awaiting the next command. When the buffer is read by
the CPU, the BF flag bit is automatically cleared. The
user can then send an Acknowledge bit at the end of
reception by setting the Acknowledge Sequence
Enable, ACKEN bit of the SSPCON2 register.

14.3.11.1 BF Status Flag

In receive operation, the BF bit is set when an address
or data byte is loaded into SSPBUF from SSPSR. It is
cleared when the SSPBUF register is read.

14.3.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits
are received into the SSPSR and the BF flag bit is
already set from a previous reception.

14.3.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is
already in progress (i.e., SSPSR is still shifting in a data
byte), the WCOL bit is set and the contents of the buffer
are unchanged (the write doesn’t occur).

Note: The MSSP module must be in an Idle
state before the RCEN bit is set or the
RCEN bit will be disregarded. 
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FIGURE 14-27: BUS COLLISION DURING START CONDITION (SCL = 0)      

FIGURE 14-28: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION        

SDA

SCL

SEN
bus collision occurs. Set BCLIF.
SCL = 0 before SDA = 0,

Set SEN, enable Start
sequence if SDA = 1, SCL = 1

TBRG TBRG

SDA = 0, SCL = 1

BCLIF

S

SSPIF

Interrupt cleared
by software

bus collision occurs. Set BCLIF.
SCL = 0 before BRG time-out,

‘0’ ‘0’

‘0’‘0’

SDA

SCL

SEN

Set S
Less than TBRG

TBRG

SDA = 0, SCL = 1

BCLIF

S

SSPIF

S

Interrupts cleared
by softwareset SSPIF

SDA = 0, SCL = 1,

SCL pulled low after BRG
time-out

Set SSPIF

‘0’

SDA pulled low by other master.
Reset BRG and assert SDA.

Set SEN, enable START
sequence if SDA = 1, SCL = 1
DS40001365F-page 166  2009-2016 Microchip Technology Inc.



PIC18(L)F1XK22
14.3.17.3 Bus Collision During a Stop 
Condition

Bus collision occurs during a Stop condition if:

a) After the SDA pin has been deasserted and
allowed to float high, SDA is sampled low after
the BRG has timed out.

b) After the SCL pin is deasserted, SCL is sampled
low before SDA goes high.

The Stop condition begins with SDA asserted low.
When SDA is sampled low, the SCL pin is allowed to
float. When the pin is sampled high (clock arbitration),
the Baud Rate Generator is loaded with SSPADD and
counts down to 0. After the BRG times out, SDA is
sampled. If SDA is sampled low, a bus collision has
occurred. This is due to another master attempting to
drive a data ‘0’ (Figure 14-31). If the SCL pin is
sampled low before SDA is allowed to float high, a bus
collision occurs. This is another case of another master
attempting to drive a data ‘0’ (Figure 14-32). 

FIGURE 14-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)      

FIGURE 14-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)      
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16.0 ANALOG-TO-DIGITAL 
CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows
conversion of an analog input signal to a 10-bit binary
representation of that signal. This device uses analog
inputs, which are multiplexed into a single sample and
hold circuit. The output of the sample and hold is
connected to the input of the converter. The converter
generates a 10-bit binary result via successive
approximation and stores the conversion result into the
ADC result registers (ADRESL and ADRESH).

The ADC voltage reference is software selectable to
either VDD, or a voltage applied to the external reference
pins.

The ADC can generate an interrupt upon completion of
a conversion. This interrupt can be used to wake-up the
device from Sleep.

Figure 16-1 shows the block diagram of the ADC.

FIGURE 16-1: ADC BLOCK DIAGRAM   
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TABLE 17-2: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset 
Values 

on page

ANSEL ANS7 ANS6 ANS5 ANS4 ANS3 ANS2 ANS1 ANS0 248

CM1CON0 C1ON C1OUT C1OE C1POL C1SP C1R C1CH1 C1CH0 248

CM2CON0 C2ON C2OUT C2OE C2POL C2SP C2R C2CH1 C2CH0 248

CM2CON1 MC1OUT MC2OUT C1RSEL C2RSEL C1HYS C2HYS C1SYNC C2SYNC 248

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RABIE TMR0IF INT0IF RABIF 245

IPR2 OSCFIP C1IP C2IP EEIP BCLIP — TMR3IP — 248

LATC LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 248

PIE2 OSCFIE C1IE C2IE EEIE BCLIE — TMR3IE — 248

PIR2 OSCFIF C1IF C2IF EEIF BCLIF — TMR3IF — 248

PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 248

VREFCON0 FVR1EN FVR1ST FVR1S<1:0> — — — — 247

VREFCON1 D1EN D1LPS DAC1OE --- D1PSS<1:0> — D1NSS 247

TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 248

TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 248

Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the comparator module.
Note 1: Unimplemented, read as ‘1’.
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23.2 Watchdog Timer (WDT)

For PIC18(L)F1XK22 devices, the WDT is driven by the
LFINTOSC source. When the WDT is enabled, the
clock source is also enabled. The nominal WDT period
is 4 ms and has the same stability as the LFINTOSC
oscillator.

The 4-millisecond period of the WDT is multiplied by a
16-bit postscaler. Any output of the WDT postscaler is
selected by a multiplexer, controlled by bits in
Configuration register 2H. Available periods range from
4 ms to 131.072 seconds (2.18 minutes). The WDT and
postscaler are cleared when any of the following events
occur: a SLEEP or CLRWDT instruction is executed, the
IRCF bits of the OSCCON register are changed or a
clock failure has occurred.

FIGURE 23-1: WDT BLOCK DIAGRAM

Note 1: The CLRWDT and SLEEP instructions
clear the WDT and postscaler counts
when executed.

2: Changing the setting of the IRCF bits of
the OSCCON register clears the WDT
and postscaler counts.
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ADDWFC ADD W and CARRY bit to f

Syntax: ADDWFC      f {,d {,a}}

Operands: 0  f  255
d [0,1]
a [0,1]

Operation: (W) + (f) + (C)  dest

Status Affected: N,OV, C, DC, Z

Encoding: 0010 00da ffff ffff

Description: Add W, the CARRY flag and data mem-
ory location ‘f’. If ‘d’ is ‘0’, the result is 
placed in W. If ‘d’ is ‘1’, the result is 
placed in data memory location ‘f’. 
If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank (default). 
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See 
Section 24.2.3 “Byte-Oriented and 
Bit-Oriented Instructions in Indexed 
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to 
destination

Example: ADDWFC REG, 0, 1

Before Instruction
CARRY bit = 1
REG = 02h
W = 4Dh

After Instruction
CARRY bit = 0
REG = 02h
W = 50h

ANDLW AND literal with W

Syntax: ANDLW     k

Operands: 0  k  255

Operation: (W) .AND. k  W

Status Affected: N, Z

Encoding: 0000 1011 kkkk kkkk

Description: The contents of W are AND’ed with the 
8-bit literal ‘k’. The result is placed in W.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read literal 
‘k’

Process 
Data

Write to W

Example: ANDLW 05Fh

Before Instruction

W = A3h

After Instruction

W  = 03h
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SUBWFB Subtract W from f with Borrow

Syntax: SUBWFB    f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) – (W) – (C) dest

Status Affected: N, OV, C, DC, Z

Encoding: 0101 10da ffff ffff

Description: Subtract W and the CARRY flag 
(borrow) from register ‘f’ (2’s comple-
ment method). If ‘d’ is ‘0’, the result is 
stored in W. If ‘d’ is ‘1’, the result is 
stored back in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank (default). 
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See 
Section 24.2.3 “Byte-Oriented and 
Bit-Oriented Instructions in Indexed 
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register ‘f’
Process 

Data
Write to 

destination

Example 1: SUBWFB  REG, 1, 0

Before Instruction
REG = 19h (0001 1001)
W = 0Dh (0000 1101)
C = 1

After Instruction
REG = 0Ch (0000 1011)
W = 0Dh (0000 1101)
C = 1
Z = 0
N = 0  ; result is positive

Example 2: SUBWFB REG, 0, 0

Before Instruction
REG = 1Bh (0001 1011)
W = 1Ah (0001 1010)
C = 0

After Instruction
REG = 1Bh (0001 1011)
W = 00h
C = 1
Z = 1     ; result is zero
N = 0

Example 3: SUBWFB  REG, 1, 0

Before Instruction
REG = 03h (0000 0011)
W = 0Eh (0000 1101)
C = 1

After Instruction
REG = F5h (1111 0100) 

; [2’s comp]
W = 0Eh (0000 1101)
C = 0
Z = 0
N = 1     ; result is negative

SWAPF Swap f

Syntax: SWAPF   f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f<3:0>)  dest<7:4>,
(f<7:4>)  dest<3:0>

Status Affected: None

Encoding: 0011 10da ffff ffff

Description: The upper and lower nibbles of register 
‘f’ are exchanged. If ‘d’ is ‘0’, the result 
is placed in W. If ‘d’ is ‘1’, the result is 
placed in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank (default). 
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See 
Section 24.2.3 “Byte-Oriented and 
Bit-Oriented Instructions in Indexed 
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to 
destination

Example: SWAPF REG, 1, 0

Before Instruction
REG = 53h

After Instruction
REG = 35h
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