Microchip Technology - PIC18LF14K22T-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf14k22t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as either two bytes or four bytes in program memory. The Least Significant Byte (LSB) of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSb will always read '0' (see Section 3.1.1 "Program Counter").

Figure 3-4 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 3-4 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 24.0 "Instruction Set Summary" provides further details of the instruction set.

FIGURE 3-4:	INSTRUCTIONS IN PROGRAM MEMORY	
		2

			LSB = 1	LSB = 0	Word Address \downarrow
	Program N	lemory			000000h
	Byte Locat	ions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	0006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	C1h	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

3.2.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instruction always has '1111' as its four Most Significant bits (MSb); the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed

and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 3-4 shows how this works.

Note: See Section 3.6 "PIC18 Instruction Execution and the Extended Instruction Set" for information on two-word instructions in the extended instruction set.

CASE 1:									
Object Code	Object Code Source Code								
0110 0110 0000 0000	TSTFSZ RI	EG1	; is RAM location 0?						
1100 0001 0010 0011	MOVFF RI	EG1, REG2	; No, skip this word						
1111 0100 0101 0110			; Execute this word as a NOP						
0010 0100 0000 0000	ADDWF RI	EG3	; continue code						
CASE 2:									
Object Code	Source Code								
0110 0110 0000 0000	TSTFSZ RI	EG1	; is RAM location 0?						
1100 0001 0010 0011	MOVFF RI	EG1, REG2	; Yes, execute this word						
1111 0100 0101 0110			; 2nd word of instruction						
0010 0100 0000 0000	ADDWF RI	EG3	; continue code						

EXAMPLE 3-4: TWO-WORD INSTRUCTIONS

4.5 Writing to Flash Program Memory

The programming block size is 8 or 16 bytes, depending on the device (See Table 4-1). Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are only as many holding registers as there are bytes in a write block (See Table 4-1).

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 8, or 16 times, depending on the device, for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. After all the holding registers have been written, the programming operation of that block of memory is started by configuring the EECON1 register for a program memory write and performing the long write sequence. The long write is necessary for programming the internal Flash. Instruction execution is halted during a long write cycle. The long write will be terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all holding registers before executing a long write operation.

4.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the block erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- 6. Write the 8 or 16 byte block into the holding registers with auto-increment.
- 7. Set the EECON1 register for the write operation:
 - set EEPGD bit to point to program memory;
 - clear the CFGS bit to access program memory;
 - set WREN to enable byte writes.

- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Repeat steps 6 to 13 for each block until all 64 bytes are written.
- 15. Verify the memory (table read).

This procedure will require about 6 ms to update each write block of memory. An example of the required code is given in Example 4-3.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the bytes in the holding registers.

13.2.4 CCP PRESCALER

There are four prescaler settings in Capture mode; they are specified as part of the operating mode selected by the mode select bits (CCP1M<3:0>). Whenever the CCP module is turned off or Capture mode is disabled, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared; therefore, the first capture may be from a non-zero prescaler. Example 13-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 13-1: CHANGING BETWEEN CAPTURE PRESCALERS

nodule off
with the
aler mode
CCP ON
CON with
è
1

FIGURE 13-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

14.3 I²C Mode

The MSSP module in I²C mode fully implements all master and slave functions (including general call support) and provides interrupts on Start and Stop bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer:

- Serial clock SCL
- Serial data SDA

Note: The user must configure these pins as inputs with the corresponding TRIS bits.

FIGURE 14-7: MSSP BLOCK DIAGRAM (I²C MODE)

14.3.1 REGISTERS

The MSSP module has seven registers for ${\rm I}^2{\rm C}$ operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Control Register 2 (SSPCON2)
- MSSP Status register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)
- MSSP Address Mask (SSPMSK)

SSPCON1, SSPCON2 and SSPSTAT are the control and STATUS registers in I^2C mode operation. The SSPCON1 and SSPCON2 registers are readable and writable. The lower six bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

When the MSSP is configured in Master mode, the SSPADD register acts as the Baud Rate Generator reload value. When the MSSP is configured for I²C Slave mode the SSPADD register holds the slave device address. The MSSP can be configured to respond to a range of addresses by qualifying selected bits of the address register with the SSPMSK register.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not double-buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
GCEN	ACKSTAT	ACKDT ⁽²⁾	ACKEN ⁽¹⁾	RCEN ⁽¹⁾	PEN ⁽¹⁾	RSEN ⁽¹⁾	SEN ⁽¹⁾			
bit 7		•		·			bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 7	bit 7 GCEN: General Call Enable bit (Slave mode only) 1 = Generate interrupt when a general call address 0x00 or 00h is received in the SSPSR									
bit 6	ACKSTAT: A	cknowledge Sta	atus bit (Maste	r Transmit moo	de onlv)					
	1 = Acknowle 0 = Acknowle	dge was not re dge was receiv	ceived from sl ved from slave	ave	,					
bit 5	ACKDT: Ackr 1 = Not Ackno 0 = Acknowle	nowledge Data owledge edge	bit (Master Re	ceive mode on	ıly) ⁽²⁾					
bit 4	ACKEN: Acki 1 = Initiate Ac Automati 0 = Acknowle	nowledge Sequ cknowledge se cally cleared by edge sequence	uence Enable b quence on SD y hardware. e Idle	bit (Master Rec A and SCL pin	eive mode only s and transmit	_{/)} (1) ACKDT data bi	it.			
bit 3	RCEN: Recei 1 = Enables F 0 = Receive le	ve Enable bit (Receive mode f dle	Master mode o for I ² C	only) ⁽¹⁾						
bit 2	PEN: Stop Co	ondition Enable	bit (Master m	ode only) ⁽¹⁾						
	1 = Initiate Sto 0 = Stop conc	op condition or dition Idle	SDA and SCI	₋ pins. Automa	tically cleared	oy hardware.				
bit 1	RSEN: Repea 1 = Initiate R 0 = Repeated	ated Start Conc epeated Start o d Start conditio	dition Enable b condition on SI n Idle	it (Master mod DA and SCL pi	e only) ⁽¹⁾ ns. Automatica	lly cleared by h	ardware.			
bit 0	SEN: Start Co	ondition Enable	/Stretch Enabl	e bit ⁽¹⁾						
	In Master mod 1 = Initiate Sta 0 = Start cond In Slave mode 1 = Clock stre 0 = Clock stre	<u>de:</u> art condition or dition Idle <u>e:</u> etching is enables	n SDA and SCI	L pins. Automa ive transmit an	tically cleared d slave receive	by hardware. (stretch enable	ed)			
Note 1: F	or bits ACKEN, F	RCEN, PEN, R	SEN, SEN: If th	ne I ² C module	is not in the IdI	e mode, these	bits may not			

REGISTER 14-5: SSPCON2: MSSP CONTROL REGISTER (I²C MODE)

be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).2: Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.

14.3.2 OPERATION

The MSSP module functions are enabled by setting SSPEN bit of the SSPCON1 register.

The SSPCON1 register allows control of the I^2C operation. Four mode selection bits of the SSPCON1 register allow one of the following I^2C modes to be selected:

- I²C Master mode, clock = (Fosc/(4*(SSPADD + 1))
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address) with Start and Stop bit interrupts enabled
- I²C Slave mode (10-bit address) with Start and Stop bit interrupts enabled
- I²C Firmware Controlled Master mode, slave is Idle

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain, provided these pins are programmed to inputs by setting the appropriate TRIS bits

Note: To ensure proper operation of the module, pull-up resistors must be provided externally to the SCL and SDA pins.

14.3.3 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs. The MSSP module will override the input state with the output data when required (slave-transmitter).

The I²C Slave mode hardware will always generate an interrupt on an address match. Through the mode select bits, the user can also choose to interrupt on Start and Stop bits

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

Any combination of the following conditions will cause the MSSP module not to give this \overline{ACK} pulse:

- The Buffer Full bit, BF bit of the SSPSTAT register, is set before the transfer is received.
- The overflow bit, SSPOV bit of the SSPCON1 register, is set before the transfer is received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF of the PIR1 register is set. The BF bit is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in **Section 26.0 "Electrical Specifications"**.

14.3.3.1 Addressing

Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the eight bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPSR register value is loaded into the SSPBUF register.
- 2. The Buffer Full bit, BF, is set.
- 3. An ACK pulse is generated.
- 4. MSSP Interrupt Flag bit, SSPIF of the PIR1 register, is set (interrupt is generated, if enabled) on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W of the SSPSTAT register must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7 through 9 for the slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF and UA of the SSPSTAT register are set).
- 2. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.
- 3. Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- Receive second (low) byte of address (bits SSPIF, BF and UA are set). If the address matches then the SCL is held until the next step. Otherwise the SCL line is not held.
- 5. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.
- 6. Update the SSPADD register with the first (high) byte of address. (This will clear bit UA and release a held SCL line.)
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address with R/W bit set (bits SSPIF, BF, R/W are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.
- 10. Load SSPBUF with byte the slave is to transmit, sets the BF bit.
- 11. Set the CKP bit to release SCL.

14.3.3.2 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and the SDA line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF bit of the SSPSTAT register is set, or bit SSPOV bit of the SSPCON1 register is set.

An MSSP interrupt is generated for each data transfer byte. Flag bit, SSPIF of the PIR1 register, must be cleared by software.

When the SEN bit of the SSPCON2 register is set, SCL will be held low (clock stretch) following each data transfer. The clock must be released by setting the CKP bit of the SSPCON1 register. See **Section 14.3.4** "**Clock Stretching**" for more detail.

14.3.3.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin SCK/SCL is held low regardless of SEN (see Section 14.3.4 "Clock Stretching" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then pin SCK/SCL should be released by setting the CKP bit of the SSPCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 14-9).

The \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not \overline{ACK}), then the data transfer is complete. In this case, when the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave monitors for another occurrence of the Start bit. If the SDA line was low (\overline{ACK}), the next transmit data must be loaded into the SSPBUF register. Again, pin SCK/SCL must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared by software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

15.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (HFINTOSC). However, the HFINTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind. The first (preferred) method uses the OSCTUNE register to adjust the HFINTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 2.7.1** "**OSCTUNE Register**" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 15.3.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

CSRC TX9 TXEN ⁽¹⁾ SYNC SENDB BRGH TRMT TX9D bit 7 bit 0 bit 0 bit 0 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 CSRC: Clock Source Select bit Asynchronous mode: Don't care Synchronous mode: ynchronous mode: Don't care ynchronous mode: 0 = Slave mode (clock generated internally from BRG) 0 = Slave mode (clock from external source) i i i bit 6 TX9: 9-bit transmit Enable bit 1 = Selects 8-bit transmission 0 = Selects 8-bit transmission i i i i bit 4 SYNC: EUSART Mode Select bit 1 = Transmit enabled i i i i i bit 3 SENDB: Send Break Character bit Asynchronous mode: i	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 CSRC: Clock Source Select bit Asynchronous mode: Don't care Don't care Synchronous mode: Don't care Synchronous mode: 1 = Master mode (clock from external source) Bit 6 bit 6 TX9: 9-bit transmission 0 = Slave mode (clock from external source) bit 5 TXEN: Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission 0 = Transmit disabled 0 = Transmit disabled 0 = Transmit disabled 0 = Transmit disabled SENDE: Send Break Character bit 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Synchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Synchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Synchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Synchronous mode: 1 = Send Sync Break on next transmission completed Synchronous mode: 1 = TSR empty	CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 CSRC: Clock Source Select bit Asynchronous mode: x = Sit is unknown Don't care Synchronous mode: Don't care Synchronous mode: 1 = Master mode (clock generated internally from BRG) 0 = Slave mode (clock from external source) bit 6 TV9: 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 9-bit transmission 0 = Selects 9-bit transmission 0 = Selects 8-bit transmission 0 = Transmit disabled bit 4 STVE: EUSART Mode Select bit 1 = Send Synchronous mode 0 = Asynchronous mode 0 = Asynchronous mode 0 = Selects 8-bit transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: 1 = Send Sync Break on completed Synchronous mode: 0 = Low speed 2 Synchronous mode: Synchronous mode: 0 = Lo	bit 7							bit 0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' ·n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 CSRC: Clock Source Select bit Asynchronous mode: 1 = Master mode (clock generated internally from BRG) 0 = Silave mode (clock from external source) bit 6 TS9: 9-bit Transmit Enable bit 1 = Selects 8-bit transmission 0 = Selects 8-bit transmission 0 = Selects 8-bit transmission bit 5 TSEX: Transmit Enable bit 1 = Transmit enable di 1 = Transmit enable bit 1 = Transmit enable bit 1 = Transmit disabled bit 4 SYNC: EUSART Mode Select bit Asynchronous mode: 1 = Synchronous mode bit 3 SENDB: Send Break Character bit Asynchronous mode: 1 = Send Sync Ereak non next transmission (cleared by hardware upon completion) 0 = Synchronous mode: 1 = Sinchronous mode: 1 = Sinchronous mode: bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed bit 2 BRGH: High Baud Rate Select bit 1 = TRSM: Law Character Status bit 1 = TSR empty 0 = TSR full bit 0 TSD: Ninh bit of Transmit Data Can be address/data bit or a parity bit.								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 CSRC: Clock Source Select bit Asynchronous mode: Don't care Synchronous mode: Don't care Synchronous mode: Don't care Synchronous mode: 1 = Master mode (clock generated internally from BRG) 0 = Slave mode (clock from external source) bit 6 TX9: 9-bit TransmitEnable bit 1 = Selects 9-bit transmission 0 = Selects 9-bit transmission bit 5 TXEN: Transmit Enable bit(¹) 1 = Transmit enabled 0 = Transmit enabled 0 = Transmit enabled 0 = Transmit enabled 0 = Transmit enabled 0 = Transmit enabled 1 = Synchronous mode bit 4 SYNC: EUSART Mode Select bit Asynchronous mode SENDB: Send Break Character bit 0 = Sive Break to n ext transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: bit 2 BRCH: High Baud Rate Select bit Asynchronous mode: Synchronous mode: 0 = Low speed Synchronous mode: Synchronous mode: Synchronous mode: bit 2 BRCH: High Baud Rate Select bit Asynchronous mode:<	Legend:							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 CSRC: Clock Source Select bit Asynchronous mode: Don't care Synchronous mode: 1 = Master mode (clock generated internally from BRG) 0 = Slave mode (clock from external source) bit 6 TX9: 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission 0 = Selects 8-bit transmission 0 = Transmit Enable bit 1 = Synchronous mode 0 = Transmit enable bit 1 = Synchronous mode 1 = Synchronous mode bit 3 SENDB: Send Break Character bit Asynchronous mode 0 = Siync Break con next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: 1 = Synchronous mode: 1 = Synchronous mode: bit 3 SENDB: Send Break Character bit Asynchronous mode: 0 = Sync Break transmission completed Synchronous mode: Don't care bit 2 BROH: High Baud Rate Select bit Asynchronous mode: I = High speed I = Low speed Synchronous mode: 1 = High speed I = Low speed Synchronous mode: I = TSR empty I = TSR empty I = TSR empty I = TSR full <td< td=""><td>R = Readable b</td><td>it</td><td>W = Writable bit</td><td></td><td>U = Unimplem</td><td>ented bit, read as</td><td>'0'</td><td></td></td<>	R = Readable b	it	W = Writable bit		U = Unimplem	ented bit, read as	'0'	
bit 7 CSRC: Clock Source Select bit Asynchronous mode: Don't care Synchronous mode: 1 = Master mode (clock generated internally from BRG) 0 = Slave mode (clock from external source) bit 6 TX9: 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission 0 = Selects 8-bit transmission 0 = Transmit enable dit ⁴ 1 = Transmit enable dit ⁴ 0 = Transmit fisable dit ⁴ 1 = Transmit enable dit ⁴ 0 = Transmit disabled bit 4 SYNC: EUSART Mode Select bit 1 = Synchronous mode 0 = Asynchronous mode 1 = Send Sync Break Character bit Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: 1 = Send Sync Break an next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: 1 = Send Sync Break transmission completed Synchronous mode bit 2 BRGH: High Baud Rate Select bit Asynchronous mode bit 1 = TSR empty 0 = TSR full bit 0 TXDF: Ninth bit of Transmit Data Can be address/data bit or a parity bit.	-n = Value at PC)R	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	wn
bit 7 CSRC: Clock Source Select bit Asynchronous mode:								
Asynchronous mode: Don't care Synchronous mode: 1 = Master mode (clock generated internally from BRG) 0 = Slave mode (clock from external source) bit 6 TX9: 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission 0 = Selects 8-bit transmission 0 = Transmit Enable bit ⁽¹⁾ 1 = Transmit enabled 0 = Transmit enabled 0 = Transmit fisabled 0 = Transmit disabled bit 4 Synchronous mode 0 = Asynchronous mode 0 = Asynchronous mode 0 = Synchronous mode bit 3 SENDB: Send Break Character bit Asynchronous mode: Don't care bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: Don't care bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TSD: Ninth bit of Transmit Data Can be address/data bit or a parity bit.	bit 7	CSRC: Clock S	Source Select bit					
Sinchronous mode: 1 = Master mode (clock generated internally from BRG) 0 = Slave mode (clock from external source) bit 6 TX9: 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission 0 = Selects 8-bit transmission 0 = Transmit Enable bit ⁽¹⁾ 1 = Transmit Enable bit ⁽¹⁾ 1 = Transmit enabled 0 = Transmit fisabled 0 = Transmit disabled bit 4 SYNC: EUSART Mode Select bit 1 = Synchronous mode 0 = Transmit disabled bit 3 SENDB: Send Break Character bit Asynchronous mode: Don't care bit 2 BRCH: High Baud Rate Select bit Asynchronous mode: Don't care bit 1 TRMT: Transmit Shift Register Status bit 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TSD: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		Asynchronous	<u>mode</u> :					
1 = Master mode (clock generated internally from BRG) 0 = Slave mode (clock from external source) bit 6 TX9: 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission bit 5 TXEN: Transmit Enable bit ⁽¹⁾ 1 = Transmit enabled 0 = Transmit disabled bit 4 SYNC: EUSART Mode Select bit 1 = Synchronous mode 0 = Asynchronous mode 0 = Asynchronous mode 0 = Selects 8-bit transmission (cleared by hardware upon completion) 0 = Synchronous mode: 1 = Synchronous mode: 1 = Synchronous mode: 0 = Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: 1 = High speed 0 = Low speed Synchronous mode: 1 = High speed 0 = Low speed Synchronous mode: 1 = TSR empty 0 = TSR full bit 0 TXBU: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		Don't care	odo:					
bit 1 TX9: 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Slave mode (dlock from external source) bit 6 TX9: 9-bit transmission 0 = Selects 9-bit transmission 0 = Synchronous mode 0 = Asynchronous mode 0 = Asynchronous mode 1 = Sync Break On next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: Don't care bit 2 BrGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data		1 = Master m	<u>ioue</u> . ode (clock gener:	ated internally	from BRG)			
bit 6 TX9: 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission bit 5 TXEN: Transmit Enable bit ⁽¹⁾ 1 = Transmit enabled 0 = Transmit disabled bit 4 SYNC: EUSART Mode Select bit 1 = Synchronous mode 0 = Asynchronous mode bit 3 SENDB: Send Break Character bit Asynchronous mode 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: 1 = High speed 0 = Low speed Synchronous mode: 1 = High speed 0 = Low speed Synchronous mode: 1 = TSR empty 0 = TSR full bit 0 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		0 = Slave mo	de (clock from ex	ternal source)				
1 = Selects 9-bit transmissionbit 5TXEN: Transmit Enable bit(1)1 = Transmit enabled0 = Transmit disabledbit 4SYNC: EUSART Mode Select bit1 = Synchronous mode0 = Asynchronous modebit 3SENDB: Send Break Character bitAsynchronous mode:1 = Synchronous mode:0 = Sync Break no next transmission (cleared by hardware upon completion)0 = Sync Break transmission completedSynchronous mode:Don't carebit 2BRCH: High Baud Rate Select bitAsynchronous mode:1 = High speed0 = Low speedSynchronous mode:1 = TSR empty0 = TSR fullbit 0TSR fullbit 1TSR fullbit 2bit 3TRMT: Transmit Shift Register Status bit1 = TSR empty0 = TSR fullbit 4TXPD: Ninth bit of Transmit Data Can be address/data bit or a parity bit.	bit 6	TX9: 9-bit Tran	smit Enable bit					
bit 5 TXEN: Transmit Enable bit ⁽¹⁾ 1 = Transmit enabled 0 = Transmit enabled 1 = Transmit enabled 0 = Transmit enabled bit 4 SYNC: EUSART Mode Select bit 1 = Synchronous mode 0 = Asynchronous mode bit 3 SENDB: Send Break Character bit Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: 1 = Send Sync Break transmission completed Synchronous mode: 1 = High speed 0 = Low speed Synchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TXSP: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		1 = Selects 9	-bit transmission					
bit 5 TXEN: Transmit Enable bit ⁽¹⁾ 1 = Transmit enabled 0 = Transmit disabled bit 4 SYNC: EUSART Mode Select bit 1 = Synchronous mode 0 = Asynchronous mode bit 3 SENDB: Send Break Character bit Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TXSP: Ninth bit of Transmit Data Can be address/data bit or a parity bit. 1		0 = Selects 8-	-bit transmission					
1 = Transmit enabled 0 = Transmit disabled bit 4 SYNC: EUSART Mode Select bit 1 = Synchronous mode 0 = Asynchronous mode bit 3 SENDB: Send Break Character bit Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: Don't care bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.	bit 5	TXEN: Transmi	it Enable bit ⁽¹⁾					
bit 4 SYNC: EUSART Mode Select bit 1 = Synchronous mode 0 = Asynchronous mode bit 3 SENDB: Send Break Character bit Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: Don't care bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		1 = Transmit e	enabled					
bit 4 STNC: EDSART Mode Select bit 1 = Synchronous mode 0 = Asynchronous mode bit 3 SENDB: Send Break Character bit Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: Don't care Don't care bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.	bit 4		usableu					
bit 3 SENDB: Send Break Character bit Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: Don't care bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.	DIL 4	1 = Synchrono	n woue Select bi	l				
bit 3 SENDB: Send Break Character bit Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: Don't care Don't care bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		0 = Asynchror	nous mode					
Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: Don't care bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.	bit 3	SENDB: Send	Break Character	bit				
1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: Don't care bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		Asynchronous	mode:					
bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		1 = Send Syn	c Break on next tr	ansmission (c	leared by hardwa	are upon completi	on)	
bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		0 = Sync Brea	ik transmission co	ompleted				
bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		Don't care	ioue.					
Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.	bit 2	BRGH: High Ba	aud Rate Select b	oit				
1 = High speed 0 = Low speed Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		Asynchronous	mode:					
0 = Low speed Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		1 = High spee	d					
Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		0 = Low speed	d .					
bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		Synchronous in	<u>100e:</u> mode					
bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.	hit 1	TPMT. Transmi	it Shift Dogistor S	tatue hit				
bit 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.	DICT	1 = TSR empt						
bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.		0 = TSR full	5					
Can be address/data bit or a parity bit.	bit 0	TX9D: Ninth bit	t of Transmit Data	l				
		Can be address	s/data bit or a par	ity bit.				

REGISTER 15-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

Note 1: SREN/CREN overrides TXEN in Sync mode.

17.5 Operation During Sleep

The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in **Section 26.0 "Electrical Specifications"**. If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. Each comparator is turned off by clearing the CxON bit of the CMxCON0 register.

A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CxIE bit of the PIE2 register and the PEIE bit of the INTCON register must be set. The instruction following the SLEEP instruction always executes following a wake from Sleep. If the GIE bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine.

17.6 Effects of a Reset

A device Reset forces the CMxCON0 and CM2CON1 registers to their Reset states. This forces both comparators and the voltage references to their Off states.

R/W-0	R/W-1	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	SBOREN ⁽¹⁾	_	RI	TO	PD	POR ⁽²⁾	BOR
bit 7							bit 0
							
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is cl	eared	x = Bit is unkr	nown
bit 7	IPEN: Interrup 1 = Enable pr	ot Priority Enal iority levels on	ole bit interrupts				
	0 = Disable pi	iority levels or	n interrupts (P	IC16CXXX Co	ompatibility mod	le)	
bit 6	SBOREN: BC <u>If BOREN<1:(</u> 1 = BOR is er 0 = BOR is dis <u>If BOREN<1:(</u> Bit is disabled	DR Software E <u>)> = 01;</u> habled sabled <u>)> = 00, 10 or</u> and read as '	nable bit ⁽¹⁾ _ <u>11:</u> 0'.				
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	RI: RESET INS	truction Flag b	bit				
	1 = The RESE 0 = The RESE code-exe	T instruction T instruction cuted Reset o	was not execu was executed ccurs)	uted (set by find d causing a de	mware or Powe evice Reset (m	r-on Reset) ust be set in fir	mware after a
bit 3	TO: Watchdog	g Time-out Fla	g bit				
	1 = Set by po 0 = A WDT ti	wer-up, CLRW	DT instruction ed	or SLEEP inst	ruction		
bit 2	PD: Power-do	wn Detection	Flag bit				
	1 = Set by po 0 = Set by ex	wer-up or by t ecution of the	he CLRWDT in SLEEP instru	struction ction			
bit 1	POR: Power-	on Reset Statu	ıs bit ⁽²⁾				
	1 = No Power 0 = A Power-0	on Reset occ	urred rred (must be	set in softwar	e after a Power	-on Reset occur	s)
bit 0	BOR: Brown-	out Reset Stat	us bit ⁽³⁾				
	1 = A Brown- 0 = A Brown-	out Reset has out Reset occ	not occurred urred (must b	(set by firmwa e set by firmwa	are only) are after a POR	or Brown-out R	leset occurs)
Note 1:	f SBOREN is enat	oled, its Reset	state is '1'; ot	herwise, it is '	0'.		

REGISTER 22-1: RCON: RESET CONTROL REGISTER

2: The actual Reset value of POR is determined by the type of device Reset. See the notes following this register and Section 22.6 "Reset State of Registers" for additional information.

3: See Table 22-3.

PIC18(L)F1XK22

TABLE 24-2: PIC18FXXXX INSTRUCTION SET

Mnemonic,		Description	Cycles	16-	Bit Instr	uction W	ord	Status	Notos
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED O	OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and CARRY bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1, 2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
		borrow							
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
		borrow							
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

PIC18(L)F1XK22

ADD	OWFC	ADD W a	ADD W and CARRY bit to f						
Synta	ax:	ADDWFC	f {,d {,	a}}					
Oper	Operands: $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$								
Oper	ation:	(W) + (f) +	$(C) \rightarrow de$	est					
Statu	is Affected:	N,OV, C, I	DC, Z						
Enco	oding:	0010	00da	ffff	ffff				
Desc	nption:	Add W, the CARRY flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 24.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed							
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3	-	Q4				
	Decode	Read register 'f'	Proce Dat	ess V a de	Vrite to estination				
<u>Exan</u>	nple:	ADDWFC	REG,	0, 1					
	Before Instruct CARRY I REG W After Instructio CARRY I REG W	tion bit = 1 = 02h = 4Dh on bit = 0 = 02h = 50h							

ANDLW	Α	ND liter	al with	w		
Syntax:	A	NDLW	k			
Operands:	0	≤ k ≤ 255	5			
Operation:	(V	/) .AND.	$k\toW$			
Status Affected:	N,	Z				
Encoding:		0000	1011	kkk	k	kkkk
Description:	Tł 8-	ne conter bit literal	nts of W a 'k'. The r	are AN esult i	ID'eo s pla	d with the aced in W.
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1		Q2	Q3	5		Q4
Decode	Rea	ad literal 'k'	Proce Dat	ess a	W	rite to W
Example:	Al	IDLW	05Fh			
Before Instruc	tion					
W	=	A3h				
After Instruction	on					
W	=	03h				

PIC18(L)F1XK22

SUB	LW	5	Subtract	W from	n liter	ral		
Synta	ax:	S	SUBLW I	<				
Oper	ands:	C) ≤ k ≤ 25	5				
Oper	ation:	k	$x - (W) \rightarrow$	W				
Statu	s Affected:	١	N, OV, C,	DC, Z				
Enco	ding:		0000	1000	kkk	k	kkkk	
Desc	ription	V	V is subtr iteral 'k'. 1	acted from	m the t is pla	8-b acec	it 1 in W.	
Word	ls:	1	l					
Cycle	es:	1	l					
QC	ycle Activity:							
	Q1		Q2	Q3			Q4	
	Decode	lit	Read eral 'k'	Proce Data	:SS a	W	rite to W	
Exan	nple 1:	S	SUBLW ()2h				
	Before Instruc W C After Instructic W C Z	tion = = n = = =	n 01h ? 01h 1 ; result is positive 0					
Fxan	n N	=	U STIBLW ()2h				
	Before Instruc W C	tion = =	02h ?	5211				
	After Instruction W = 00h C = 1 ; result is zero Z = 1 N = 0							
<u>Exan</u>	nple 3:	S	SUBLW ()2h				
	Before Instruc W C After Instructic W C Z N	tion = on = = =	03h ? FFh ;(0 ;r 1	2's comp esult is n	lemer egativ	nt) ⁄e		

SUBWF			Subtract W from f					
Synt	ax:		SUBWF f {,d {,a}}					
Oper	rands:		$0 \le f \le 255$					
			$d \in [0, 1]$	L]				
~	•		$a \in [0, 1]$	L]				
Oper	Operation:		(†) – (VV) —	→ dest			
Statu	is Affected:		N, OV,	C, I	DC, Z			
Enco	oding:		0101		11da fff	ff ffff		
Desc	Subtract completer result is result is (default If 'a' is ' selecter to select If 'a' is ' set is e operate Address $f \le 95$ (! "Byte-C Instruct Mode"	xt W me s sto s sto s sto c o', d. I c' o', d. I c' o', d. I c' o', s in sin 5 F h Drie tion	/ from register nt method). If ored in W. If 'd ored back in re- the Access Ba f 'a' is '1', the I are GPR bank (ind the extend bled, this instru- n Indexed Litee g mode whene (). See Section onted and Bit- ns in Indexed I details.	"f' (2's d' is '0', the i' is '1', the egister 'f' ank is BSR is used default). ed instruction inction ral Offset ever n 24.2.3 Oriented Literal Offset				
Word	ds:		1	101				
Cycle	es:		1					
QC	ycle Activity:							
	Q1		Q2		Q3	Q4		
	Decode	re	Read egister '	f	Process Data	Write to destination		
Exar	<u>nple 1</u> :		SUBWF		REG, 1, 0			
	Before Instruc	tion						
	W	=	3 2					
	С	=	?					
	After Instructio	n =	1					
	W	=	2					
	C 7	=	1	; re	sult is positive	9		
	Ň	=	Ö					
Exar	<u>nple 2</u> :		SUBWF		REG, 0, 0			
	Before Instruct	tion						
	REG W	=	2					
	Ċ	=	?					
	After Instructio	n						
	REG	=	2					
	C	=	1	: re	sult is zero			
	Z	=	1	, -				
N =		=	0					
Exar	nple 3:		SUBWF		REG, 1, 0			
	Before Instruc	tion =	1					
	W	=	2					
	C	=	?					
	REG	n =	FFh	:(2	s complement	t)		
	W	=	2	,,		1		
	C 7	=	0	; re	sult is negativ	е		
	Ň	=	1					

24.2.2 EXTENDED INSTRUCTION SET

ADD	ADDFSR Add Literal to FSR								
Synta	ax:	ADDFSR	f, k						
Oper	ands:	$0 \leq k \leq 63$							
		f ∈ [0, 1, 2	2]						
Oper	ation:	FSR(f) + k	$x \rightarrow FSR($	f)					
Statu	s Affected:	None	None						
Enco	oding:	1110	1000	ffkk kkk		kkkk			
Desc	cription:	The 6-bit I contents c	The 6-bit literal 'k' is added to the contents of the FSR specified by 'f'.						
Word	ls:	1	1						
Cycle	es:	1							
QC	ycle Activity:								
Q1		Q2	Q3	3		Q4			
	Decode	Read	Proce	SS	۷	Vrite to			
		literal 'k'	Data	a		FSR			

ADDFSR 2, 23h

03FFh

0422h

Example:

Before Instruction FSR2

After Instruction

FSR2

=

=

ADDULNK	Add Literal to FSR2 and Return							
Syntax:	ADDULN	ADDULNK k						
Operands:	$0 \le k \le 6$	$0 \le k \le 63$						
Operation:	FSR2 + I	$FSR2 + k \rightarrow FSR2$,						
	$(TOS) \rightarrow PC$							
Status Affected:	None							
Encoding:	1110 1000 11kk kkkk							
Description.	The o-bill contents executed TOS. The instr execute; the seco This may case of t where f = only on F	d FSR2 by loadin uction tak a NOP is p nd cycle. be thoug he ADDFS: 3 (binary SR2.	a the PC of the	t is then with the cles to during special on, perates				
Words:	1							
Cycles:	2	2						

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No	No	No	No
Operation	Operation	Operation	Operation

Example: ADDULNK 23h

Before Instru	ction	
FSR2	=	03FFh
PC	=	0100h
After Instruct	ion	
FSR2	=	0422h
PC	=	(TOS)

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

26.0 ELECTRICAL SPECIFICATIONS

26.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC18F1XK22	0.3V to +6.5V
PIC18LF1XK22	0.3V to +4.0V
on MCLR pin	0.3V to +9.0V
on all other pins	3V to (VDD + 0.3V)
Maximum current ⁽¹⁾	
on Vss pin	
-40°C \leq TA \leq +85°C, Industrial	250 mA
-40°C \leq TA \leq +125°C, Extended	85 mA
on VDD pin	
-40°C \leq TA \leq +85°C,Industrial	250 mA
-40°C \leq TA \leq +125°C, Extended	85 mA
sunk by all ports	250 mA
sourced by all ports	250 mA
Maximum output current	
sunk by any I/O pin	±50 mA
sourced by any I/O pin	±50 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	±20 mA
Total power dissipation ⁽²⁾	800 mW

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 26-8 to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD - Σ IOH} + Σ {VDD - VOH) x IOH} + Σ (VOL x IOI).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

26.2 Standard Operating Conditions

ne standard operating conditions for any device are defined as:
perating Voltage:VDDMIN \leq VDD \leq VDDMAXperating Temperature:Ta_MIN \leq Ta \leq Ta_MAX
DD — Operating Supply Voltage ⁽¹⁾
PIC18LF1XK22
VDDMIN (Fosc \leq 16 MHz) +1.8V
VDDMIN (Fosc \leq 20 MHz)+2.0V
VDDMIN (Fosc \leq 64 MHz)+3.0V
VDDMAX
PIC18F1XK22
VDDMIN (Fosc \leq 20 MHz) +2.3V
VDDMIN (Fosc \leq 64 MHz)+3.0V
VDDMAX
A — Operating Ambient Temperature Range
Industrial Temperature
TA_MIN40°C
TA_MAX +85°C
Extended Temperature
TA_MIN40°C
TA_MAX
lote 1: See Parameter D001, DC Characteristics: Supply Voltage.

PIC18LF	PIC18LF1XK22			Standard Operating Conditions (unless otherwise stated)						
PIC18F12	XK22	Standard Operating Conditions (unless otherwise stated)								
Param. No.	Device Characteristics	Тур.	Max.	Units	Conditions					
D014	Supply Current (IDD) ^(1, 2, 4, 5)	0.20	0.32	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 1 MHz			
D014A		0.27	0.39	mA	-40°C to +125°C	VDD = 3.0V	(PRI_RUN , EC Med Osc)			
D014		.20	.32	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 1 MHz			
D014A		.27	.39	mA	-40°C to +125°C	VDD = 3.0V	(PRI_RUN,			
D014B		.30	.42	mA	-40°C to +125°C	VDD = 5.0V	EC Med Osc)			
D015		1.7	2.6	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 16 MHz			
D015A		3.0	4.2	mA	-40°C to +125°C	VDD = 3.0V	(PRI_RUN , EC High Osc)			
D015		2.4	3.2	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 16 MHz			
D015A		3.0	4.2	mA	-40°C to +125°C	VDD = 3.0V	(PRI_RUN,			
D015B		3.3	4.4	mA	-40°C to +125°C	VDD = 5.0V	EC High Osc)			
D016		11.5	14.0	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 64 MHz (PRI_RUN , EC High Osc)			
D016		11.9	14.4	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 64 MHz			
D016A		12.1	14.6	mA	-40°C to +125°C	VDD = 5.0V	(PRI_RUN , EC High Osc)			
D017		2.1	2.9	mA	-40°C to +125°C	VDD = 1.8V	Fosc = 4 MHz			
D017A		3.1	4.0	mA	-40°C to +125°C	VDD = 3.0V	16 MHz Internal (PRI_RUN HS+PLL)			
D017		2.1	2.9	mA	-40°C to +125°C	VDD = 2.3V	Fosc = 4 MHz			
D017A		3.1	4.0	mA	-40°C to +125°C	VDD = 3.0V	16 MHz Internal (PRI_RUN HS+PLL)			
D017B		3.3	4.5	mA	-40°C to +125°C	VDD = 5.0V				
D018		10	15	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 16 MHz 64 MHz Internal (PRI_RUN HS+PLL)			
D018		12.4	15.4	mA	-40°C to +125°C	VDD = 3.0V	Fosc = 16 MHz			
D018A		12.6	15.6	mA	-40°C to +125°C	VDD = 5.0V	64 MHz Internal (PRI_RUN HS+PLL)			

TABLE 26-4:PRIMARY RUN SUPPLY CURRENT

* These parameters are characterized but not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: When a single temperature range is provided for a parameter, the specification applies to both industrial and extended temperature devices.

DC CHA	RACTER	ISTICS	Standard Operating Conditions (unless otherwise stated)				
Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions
		Internal Program Memory Programming Specifications ⁽¹⁾					
D110	VPP	Voltage on MCLR/VPP/RA3 pin	8	—	9	V	(Note 3, Note 4)
D113	IDDP	Supply Current during Programming	—	—	10	mA	
		Data EEPROM Memory ⁽²⁾					
D120	ED	Byte Endurance	100K	—	—	E/W	-40°C to +85°C
D121	VDRW	VDD for Read/Write	VDDMIN	—	VDDMAX	V	Using EECON to read/write
D122	TDEW	Erase/Write Cycle Time	—	3	4	ms	
D123	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C
D130		Program Flash Memory					
	Ер	Cell Endurance	10k	—	—	E/W	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$
D131	Vpr	VDD for Read	VDDMIN	_	VDDMAX	V	
D131A		Voltage on MCLR/VPP during Erase/Program	8.0	—	9.0	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$
D131B	VBE	VDD for Bulk Erase	2.7	—	VDDMAX	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$
D132	VPEW	VDD for Write or Row Erase	2.2 Vddmin		Vddmax Vddmax	V	PIC18LF1XK22 PIC18F1XK22
D132A	IPPPGM	Current on MCLR/VPP during Erase/Write	—	1.0	—	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$
D132B	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$
D133	TPEW	Erase/Write cycle time	—	2.0	2.8	ms	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$
D134	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated

TABLE 26-10: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: Refer to Section 5.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the ICD 2 VPP voltage must be placed between the ICD 2 and target system when programming or debugging with the ICD 2.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X20)	X			0.60
Contact Pad Length (X20)	Y			1.95
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.45		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A

20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN] With 0.40 mm Contact Length

	Units			S
Dimensior	n Limits	MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			2.50
Optional Center Pad Length	T2			2.50
Contact Pad Spacing	C1		3.93	
Contact Pad Spacing	C2		3.93	
Contact Pad Width	X1			0.30
Contact Pad Length	Y1			0.73
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2126A