

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	45MHz
Connectivity	I ² C, IrDA, Microwire, SPI, SSI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	39
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1224fbd48-121-1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M0 microcontroller

5. Block diagram

6.2 Pin description

All pins except the supply pins can have more than one function as shown in <u>Table 3</u>. The pin function is selected through the pin's IOCON register in the IOCONFIG block. The multiplexed functions (see <u>Table 4</u>) include the counter/timer inputs and outputs, the UART receive, transmit, and control functions, and the serial wire debug functions.

For each pin, the default function is listed first together with the pin's reset state.

Symbol	Pin LQFP48	Pin LQFP64		Start logic input	Туре	Reset state [1]	Description
PIO0_0 to PIO0_31					I/O		Port 0 — Port 0 is a 32-bit I/O port with individual direction and function controls for each bit. The operation of port 0 pins depends on the function selected through the IOCONFIG register block.
PIO0_0/RTS0	15	19	[2]	yes	I/O	I; PU	PIO0_0 — General purpose digital input/output pin.
			<u>[]</u>		0	-	RTS0 — Request To Send output for UART0.
PIO0_1/RXD0/	16	20	[2]	yes	I/O	I; PU	PIO0_1 — General purpose digital input/output pin.
C132B0_CAP0/ CT32B0_MAT0			[3]		I	-	RXD0 — Receiver input for UART0.
010200_10100					I	-	CT32B0_CAP0 — Capture input, channel 0 for 32-bit timer 0.
					0	-	CT32B0_MAT0 — Match output, channel 0 for 32-bit timer 0.
PIO0_2/TXD0/	17	21	[2]	yes	I/O	I; PU	PIO0_2 — General purpose digital input/output pin.
CT32B0_CAP1/ CT32B0_MAT1			[3]		0	-	TXD0 — Transmitter output for UART0.
010200_10/11					I	-	CT32B0_CAP1 — Capture input, channel 1 for 32-bit timer 0.
					0	-	CT32B0_MAT1 — Match output, channel 1 for 32-bit timer 0.
PIO0_3/DTR0/	18	22	[2]	yes	I/O	I; PU	PIO0_3 — General purpose digital input/output pin.
C132B0_CAP2/ CT32B0_MAT2			[3]		0	-	DTR0 — Data Terminal Ready output for UART0.
010200_10/112					I	-	CT32B0_CAP2 — Capture input, channel 2 for 32-bit timer 0.
					0	-	CT32B0_MAT2 — Match output, channel 2 for 32-bit timer 0.
PIO0_4/DSR0/	19	23	[2]	yes	I/O	I; PU	PIO0_4 — General purpose digital input/output pin.
CT32B0_CAP3/ CT32B0_MAT3			[3]		I	-	DSR0 — Data Set Ready input for UART0.
010200_10/110					I	-	CT32B0_CAP3 — Capture input, channel 3 for 32-bit timer 0.
					0	-	CT32B0_MAT3 — Match output, channel 3 for 32-bit timer 0.
PIO0_5/DCD0	20	24	[2]	yes	I/O	I; PU	PIO0_5 — General purpose digital input/output pin.
			[3]		I	-	DCD0 — Data Carrier Detect input for UART0.
PIO0_6/RI0/	21	25	[2]	yes	I/O	I; PU	PIO0_6 — General purpose digital input/output pin.
CT32B1_CAP0/			[3]		I	-	RIO — Ring Indicator input for UARTO.
UT32DT_IVIATU					Ι	-	CT32B1_CAP0 — Capture input, channel 0 for 32-bit timer 1.
					0	-	CT32B1_MAT0 — Match output, channel 0 for 32-bit timer 1.

Table 3.LPC122x pin description

32-bit ARM Cortex-M0 microcontroller

Symbol	Pin LQFP48	Pin LQFP64		Start logic input	Туре	Reset state [1]	Description
PIO0_17/MOSI	32	44	[<u>2]</u> [3]	no	I/O	I; PU	PIO0_17 — General purpose digital input/output pin.
					I/O	-	MOSI — Master Out Slave In for SSP/SPI.
PIO0_18/SWCLK/	33	45	[<u>2]</u> [3]	no	I/O	I; PU	PIO0_18 — General purpose digital input/output pin.
CT32B0_MAT0			<u></u>		1	-	SWCLK — Serial wire clock, alternate location.
					<u> </u>	-	CT32B0_CAP0 — Capture input, channel 0 for 32-bit timer 0.
			[0]		0	-	CT32B0_MAT0 — Match output, channel 0 for 32-bit timer 0.
PIO0_19/ACMP0_10/ CT32B0_CAP1/	4	4	[<u>0]</u> [7]	no	1/0	I; PU	PIO0_19 — General purpose digital input/output pin.
CT32B0_MAT1			_		 	-	ACMP0_10 — Input 0 for comparator 0.
					 	-	CI32B0_CAP1 — Capture input, channel 1 for 32-bit timer 0.
	_	-	[6]		0	-	CI32B0_MAI1 — Match output, channel 1 for 32-bit timer 0
PIOU_20/ACMPU_11/ CT32B0_CAP2/	5	5	[<u>0]</u> [7]	no	1/0	I; PU	PIO0_20 — General purpose digital input/output pin.
CT32B0_MAT2					 	-	ACMP0_11 — Input 1 for comparator 0.
						-	CT32B0_CAP2 — Capture input, channel 2 for 32-bit timer 0.
	•	0	[6]		0	-	CI32BU_MAI2 — Match output, channel 2 for 32-bit timer 0.
CT32B0 CAP3/	6	6	[<u>0]</u> [7]	no	1/0	I; PU	PIOU_21 — General purpose digital input/output pin.
CT32B0_MAT3						-	ACMP0_12 — Input 2 for comparator 0.
						-	CT32B0_CAP3 — Capture input, channel 3 for 32-bit timer 0.
	7	7	[6]		0	-	CI32B0_MAI3 — Match output, channel 3 for 32-bit timer 0.
PIOU_22/ACMPU_13	1	1	[7]	no	1/0	I; PU	PIOU_22 — General purpose digital input/output pin.
BIO0 22/	0	0	[6]			-	ACMP0_13 — Input 3 for comparator 0.
ACMP1 10/	0	o	[7]	no	1/0	I, PU	PIOU_23 — General purpose digital input/output pin.
CT32B1_CAP0/						-	CT22P1 CAP0 Conture input channel 0 for 22 hit timer 1
CT32B1_MAT0					<u> </u>	-	CT32B1_CAP0 — Capture input, channel 0 for 32-bit timer 1.
	0	0	[6]	20		- I. DI I	PIOD 24 Constal purpose digital input/output pip
CT32B1_CAP1/	9	9	[7]	ΠŪ	1/0	I, FU	ACMP1 11 Input 1 for comparator 1
CT32B1_MAT1					1	-	CT32B1 CAB1 Conture input channel 1 for 32 bit timer 1
						-	CT32B1_CAP1 — Captule input, channel 1 for 32-bit timer 1.
	10	10	[6]	no		- I· DI I	SWDIO — Serial wire debug input/output, default location
CT32B1_CAP2/	10	10	[7]	ΠŪ	1/0	I, FU	ACMP1 12 — Input 2 for comparator 1
CT32B1_MAT2/					· ·		CT32B1 CAP2 — Capture input channel 2 for 32-bit timer 1
PIO0_25					<u> </u>		CT32B1_CAP2 — Capture input, channel 2 for 32-bit timer 1
							BIOD 25 — General purpose digital input/output nin
	11	11	[6]	no	1/0		SWCLK — Serial wire clock default location
CT32B1_CAP3/			[7]	no	<u> </u>	1, 1 0	ACMP1 13 - Input 3 for comparator 1
CT32B1_MAT3/						-	CT32B1 CAB2 Conture input channel 3 or 32 bit timer 1
PIO0_26					<u> </u>		CT32B1_CAF3 — Capture input, channel 3 for 32-bit timer 1
						-	PIO0 26 — General purpose digital input/output pip
					10		

Table 3. LPC122x pin description ...continued

LPC122X Product data sheet

Symbol	Pin LQFP48	Pin LQFP64	Start logic input	Туре	Reset state [1]	Description
V _{DD(IO)}	47	63	-	I	-	Input/output supply voltage.
V _{DD(3V3)}	44	56	-	I	-	3.3 V supply voltage to the internal regulator and the ADC. Also used as the ADC reference voltage.
V _{SSIO}	48	64	-	I	-	Ground.
V _{SS}	43	55	-	I	-	Ground.

Table 3. LPC122x pin description ...continued

[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled.

[2] 3.3 V tolerant, digital I/O pin; default: pull-up enabled, no hysteresis.

[3] If set to output, this normal-drive pin is in low mode by default.

[4] I²C-bus pins; 5 V tolerant; open-drain; default: no pull-up/pull-down; no hysteresis.

[5] 3.3 V tolerant, digital I/O pin with RESET function; default: pull-up enabled, no hysteresis. An external pull-up resistor is required on this pin for the Deep power-down mode.

[6] 3.3 V tolerant, digital I/O pin with analog function; default: pull-up enabled, no hysteresis.

[7] If set to output, this normal-drive pin is in high mode by default.

[8] 3.3 V tolerant, digital I/O pin with analog function and WAKEUP function; default: pull-up enabled, no hysteresis.

[9] 3.3 V tolerant, high-drive digital I/O pin; default: pull-up enabled, no hysteresis.

[10] If the RTC is not used, RTCXIN and RTCXOUT can be left floating.

To enable a peripheral function, find the corresponding port pin, or select a port pin if the function is multiplexed, and program the port pin's IOCONFIG register to enable that function. The primary SWD functions and RESET are the default functions on their pins after reset.

Peripheral	Function	Туре	Available or	n ports:	
Analog comparators	ROSC	I/O	PIO0_29	-	-
	ACMP0_I0	I	PIO0_19	-	-
	ACMP0_I1	I	PIO0_20	-	-
	ACMP0_I2	I	PIO0_21	-	-
	ACMP0_I3	I	PIO0_22	-	-
	ACMP0_O	0	PIO0_27	-	-
	ACMP1_I0	I	PIO0_23	-	-
	ACMP1_I1	I	PIO0_24	-	-
	ACMP1_I2	I	PIO0_25	-	-
	ACMP1_I3	I	PIO0_26	-	-
	ACMP1_O	0	PIO0_28	-	-

Table 4. Pin multiplexing

• Comparator outputs connect to two timers, allowing for the recording of comparison event time stamps.

7.15 General purpose external event counter/timers

The LPC122x includes two 32-bit counter/timers and two 16-bit counter/timers. The counter/timer is designed to count cycles of the system derived clock. It can optionally generate interrupts or perform other actions at specified timer values, based on four match registers. Each counter/timer also includes up to four capture inputs to trap the timer value when an input signal transitions, optionally generating an interrupt.

7.15.1 Features

- A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.
- Counter or timer operation.
- Up to four capture channels per timer, that can take a snapshot of the timer value when an input signal transitions. A capture event may also generate an interrupt.
- Four match registers per timer that allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.
- Up to four external outputs corresponding to match registers, with the following capabilities:
 - Set LOW on match.
 - Set HIGH on match.
 - Toggle on match.
 - Do nothing on match.
- The timer and prescaler may be configured to be cleared on a designated capture event. This feature permits easy pulse width measurement by clearing the timer on the leading edge of an input pulse and capturing the timer value on the trailing edge.
- Supports timed DMA requests.

7.16 Windowed WatchDog timer (WWDT)

The purpose of the watchdog is to reset the microcontroller within a windowed amount of time if it enters an erroneous state. When enabled, the watchdog will generate a system reset if the user program fails to 'feed' (or reload) the watchdog within a predetermined amount of time.

7.16.1 Features

- Internally resets chip if not periodically reloaded.
- Debug mode.
- Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.
- Safe operation: can be locked by software to be always on.
- Flag to indicate watchdog reset.
- Programmable 24-bit timer with internal prescaler.

NXP Semiconductors

32-bit ARM Cortex-M0 microcontroller

7.18.1.1 Internal RC oscillator

The IRC may be used as the clock source for the WDT, and/or as the clock that drives the PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC is trimmed to 1 % accuracy over the entire voltage and temperature range.

Upon power-up or any chip reset, the LPC122x use the IRC as the clock source. Software may later switch to one of the other available clock sources.

7.18.1.2 System oscillator

The system oscillator can be used as the clock source for the CPU, with or without using the PLL.

An external pull-up resistor is required on the RESET pin if Deep power-down mode is used.

7.19.3 Brownout detection

The LPC122x includes four levels for monitoring the voltage on the $V_{DD(3V3)}$ pin. If this voltage falls below one of the four selected levels, the BOD asserts an interrupt signal to the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading a dedicated status register. An additional threshold level can be selected to cause a forced reset of the chip.

7.19.4 Code security (Code Read Protection - CRP)

This feature of the LPC122x allows user to enable different levels of security in the system so that access to the on-chip flash and use of the SWD and ISP can be restricted. When needed, CRP is invoked by programming a specific pattern into a dedicated flash location. IAP commands are not affected by the CRP.

There are three levels of Code Read Protection:

- 1. CRP1 disables access to chip via the SWD and allows partial flash update (excluding flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is required and flash field updates are needed but all sectors can not be erased.
- CRP2 disables access to chip via the SWD and only allows full flash erase and update using a reduced set of the ISP commands.
- 3. Running an application with level CRP3 selected fully disables any access to chip via the SWD pins and the ISP. This mode effectively disables ISP override using PIO0_12 pin, too. It is up to the user's application to provide (if needed) flash update mechanism using IAP calls or call reinvoke ISP command to enable flash update via UART0.

CAUTION

If level three Code Read Protection (CRP3) is selected, no future factory testing can be performed on the device.

In addition to the three CRP levels, sampling of pin PIO0_12 for valid user code can be disabled.

7.19.5 APB interface

The APB peripherals are located on one APB bus.

7.19.6 AHB-Lite

The AHB-Lite connects the CPU bus of the ARM Cortex-M0 to the flash memory, the main static RAM, and the Boot ROM.

7.19.7 External interrupt inputs

All GPIO pins can be level or edge sensitive interrupt inputs.

7.20 Emulation and debugging

Debug functions are integrated into the ARM Cortex-M0. Serial wire debug is supported.

7.21 Integer division routines

The LPC122x contain performance-optimized integer division routines with support for up to 32-bit width in the numerator and denominator. Routines for signed and unsigned division and division with remainder are available. The integer division routines are ROM-based to reduce code-size.

32-bit ARM Cortex-M0 microcontroller

Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
VIL	LOW-level input voltage			-	-	0.3V _{DD(I} _{O)}	V
V _{hys}	hysteresis voltage			-	0.4	-	V
V _{OH}	HIGH-level output voltage	low mode; $I_{OH} = -2 \text{ mA}$		V _{DD(IO)} – 0.4	-	-	V
		high mode; $I_{OH} = -4 \text{ mA}$		V _{DD(IO)} – 0.4	-	-	V
V _{OL}	LOW-level output	low mode; I _{OL} = 2 mA		-	-	0.4	V
	voltage	high mode; $I_{OL} = 4 \text{ mA}$				0.4	
I _{OH}	HIGH-level output current	low mode; $V_{OH} = V_{DD(IO)} - 0.4 V$		-2	-	-	mA
		high mode; $V_{OH} = V_{DD(IO)} - 0.4 V$		-4	-	-	mA
I _{OL}	LOW-level output	low mode; V_{OL} = 0.4 V		2	-	-	mA
	current	high mode; V_{OL} = 0.4 V		4	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	V _{OH} = 0 V	[5]	-	-	-45	mA
I _{OLS}	LOW-level short-circuit output current	$V_{OL} = V_{DDA}$	[5]	-	-	50	mA
I _{pu}	pull-up current	$V_{I} = 0 V$		-50	-80	-100	μΑ
High-drive out	put pins (PIO0_27, PIO	0_28, PIO0_29, PIO0_12)					
I _{IL}	LOW-level input current	V ₁ = 0 V;		-	-	100	nA
I _{IH}	HIGH-level input current	$V_{I} = V_{DD(IO)};$		-	-	100	nA
I _{OZ}	OFF-state output current	$V_O = 0 \ V; \ V_O = V_{DD(IO)};$		-	-	100	nA
VI	input voltage	pin configured to provide a digital function	<u>[2][3]</u> [4]	0	-	V _{DD(IO)}	V
Vo	output voltage	output active		0	-	V _{DD(IO)}	V
V _{IH}	HIGH-level input voltage			$0.7V_{DD(IO)}$	-	-	V
V _{IL}	LOW-level input voltage		-	-	$0.3V_{DD(IO)}$	-	-
V _{hys}	hysteresis voltage				-	-	V
V _{OH}	HIGH-level output voltage	low mode; $I_{OH} = -20 \text{ mA}$		V _{DD(IO)} – 0.7	-	-	V
		high mode; $I_{OH} = -28 \text{ mA}$		V _{DD(IO)} - 0.7	-	-	V
V _{OL}	LOW-level output	low mode; I _{OL} = 12 mA		-	-	0.4	V
	voltage	high mode; I _{OL} = 18 mA		-	-	0.4	V

Table 7.Static characteristics ... continued $T_{amb} = -40$ °C to +85 °C, unless otherwise specified.

32-bit ARM Cortex-M0 microcontroller

10.4 ADC characteristics

Table 9. ADC static characteristics

 $T_{amb} = -40$ °C to +85 °C unless otherwise specified; ADC frequency 9 MHz, $V_{DD(3V3)} = 3.0$ V to 3.6 V.

Symbol	Parameter	Conditions		Min	Тур <u>[1]</u>	Мах	Unit
VIA	analog input voltage			0	-	V _{DD(3V3)}	V
C _{ia}	analog input capacitance			-	-	1	pF
ED	differential linearity error		[2][3][4]	-	-	± 1	LSB
E _{L(adj)}	integral non-linearity		[2][5]	-	-	±2.5	LSB
Eo	offset error		[2][6]	-	-	± 1	LSB
E _G	gain error		[2][7]	-	-	± 3	LSB
ET	absolute error		[2][8]	-	-	± 3	LSB
f _{c(ADC)}	ADC conversion frequency			-	-	257	kHz
R _i	input resistance		[9][10]	-	-	3.9	MΩ

[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

- [2] Conditions: $V_{SS} = 0$ V, $V_{DD(3V3)} = 3.3$ V.
- [3] The ADC is monotonic, there are no missing codes.
- [4] The differential linearity error (E_D) is the difference between the actual step width and the ideal step width. See Figure 19.
- [5] The integral non-linearity (E_{L(adj)}) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See <u>Figure 19</u>.
- [6] The offset error (E_0) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See <u>Figure 19</u>.
- [7] The gain error (E_G) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See <u>Figure 19</u>.
- [8] The absolute error (E_T) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC and the ideal transfer curve. See Figure 19.
- [9] $T_{amb} = 25 \text{ °C}$; maximum sampling frequency $f_s = 257 \text{ kHz}$ and analog input capacitance $C_{ia} = 1 \text{ pF}$.
- [10] Input resistance R_i depends on the sampling frequency fs: R_i = 1 / (f_s × C_{ia}).

32-bit ARM Cortex-M0 microcontroller

10.5 BOD static characteristics

Table 10. BOD static characteristics^[1]

$I_{amb} = 25 \ ^{\circ}C.$	
-----------------------------	--

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{th}	threshold voltage	interrupt level 1				
		assertion	-	2.25	-	V
		de-assertion	-	2.39	-	V
		interrupt level 2				
		assertion	-	2.54	-	V
		de-assertion	-	2.67	-	V
	interrupt level 3					
		assertion	-	2.83	-	V
		de-assertion	-	2.93	-	V
		reset level 1				
		assertion	-	2.04	-	V
		de-assertion	-	2.18	-	V
		reset level 2				
		assertion	-	2.34	-	V
		de-assertion	-	2.47	-	V
		reset level 3				
		assertion	-	2.62	-	V
	de-assertion	-	2.76	-	V	

[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see *LPC122x* user manual.

11. Dynamic characteristics

11.1 Power-up ramp conditions

Table 11. Power-up characteristics

$T_{amb} = -40$	°C to	+85	°C.
-----------------	-------	-----	-----

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
tr	rise time	at t = t ₁ : 0 < V _I \leq 400 mV	[1]	0	-	500	ms
t _{wait}	wait time		[1][2]	12	-	-	μS
VI	input voltage	at $t = t_1$ on pin V_{DD}		0	-	400	mV

[1] See Figure 20.

[2] The wait time specifies the time the power supply must be at levels below 400 mV before ramping up.

11.5 I²C-bus

Table 16. Dynamic characteristic: I²C-bus pins

$T_{amb} = -40 \ ^{\circ}C t$	to +85	°C.[1
-------------------------------	--------	-------

Symbol	Parameter		Conditions	Min	Max	Unit
f _{SCL}	SCL clock frequency		Standard-mode	0	100	kHz
			Fast-mode	0	400	kHz
			Fast-mode Plus	0	1	MHz
t _f	fall time	[3][4][5][6]	of both SDA and SCL signals	-	300	ns
			Standard-mode			
			Fast-mode	$20 + 0.1 \times C_b$	300	ns
			Fast-mode Plus	-	120	ns
t _{LOW}	LOW period of the SCL clock		Standard-mode	4.7	-	μS
			Fast-mode	1.3	-	μS
			Fast-mode Plus	0.5	-	μS
t _{HIGH}	HIGH period of the SCL clock		Standard-mode	4.0	-	μS
			Fast-mode	0.6	-	μS
			Fast-mode Plus	0.26	-	μS
t _{HD;DAT}	data hold time	[2][3][7]	Standard-mode	0	-	μS
			Fast-mode	0	-	μS
			Fast-mode Plus	0	-	μS
t _{SU;DAT}	data set-up time	[8][9]	Standard-mode	250	-	ns
			Fast-mode	100	-	ns
			Fast-mode Plus	50	-	ns

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.

- [3] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the V_{IH}(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- [4] C_b = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.
- [5] The maximum t_f for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage t_f is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified t_f.
- [6] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing.
- [7] The maximum t_{HD;DAT} could be 3.45 μs and 0.9 μs for Standard-mode and Fast-mode but must be less than the maximum of t_{VD;DAT} or t_{VD;ACK} by a transition time. This maximum must only be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
- [8] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the acknowledge.
- [9] A Fast-mode l²C-bus device can be used in a Standard-mode l²C-bus system but the requirement $t_{SU;DAT} = 250$ ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{r(max)} + t_{SU;DAT} = 1000 + 250 = 1250$ ns (according to the Standard-mode l²C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.

Fig 26. Package outline SOT313-2 (LQFP48)

15. Abbreviations

Table 18.	Abbreviations
Acronym	Description
ADC	Analog-to-Digital-Converter
AHB	Advanced High-performance Bus
APB	Advanced Peripheral Bus
BOD	BrownOut Detection
CCITT	Comité Consultatif International Téléphonique et Télégraphique
CRC	Cyclic Redundancy Check
DMA	Direct Memory Access
FIFO	First-In-First-Out
GPIO	General Purpose Input/Output
I/O	Input/Output
IrDA	Infrared Data Association
IRC	Internal Resistor-Capacitor
JEDEC	Joint Electron Devices Engineering Council
PLL	Phase-Locked Loop
SPI	Serial Peripheral Interface
SSI	Serial Synchronous Interface
SSP	Synchronous Serial Port
UART	Universal Asynchronous Receiver/Transmitter

16. Revision history

Table 19. Revision h	istory						
Document ID	Release date	Data sheet status	Change notice	Supersedes			
LPC122X v.2	20110826	Product data sheet	-	LPC122X v.1.2			
Modifications:	 Power cons 	sumption data updated in Ta	able 7.				
	 Power cons 	 Power consumption graphs added in <u>Section 10.2</u>. 					
	 Electrical pi 	n characteristics updated for	or all pins in <u>Table 7</u> and	Section 10.3.			
	Parameter	R _i added to <u>Table 9</u> .					
	 EMC data a 	added (Section 12.3).					
	 Parameter ' 	 Parameter V₁ updated for I²C-bus pins in <u>Table 5</u>. 					
	 Section 11. 	 <u>Section 11.1 "Power-up ramp conditions"</u> added. 					
	 Data sheet 	status updated to Product I	Data Sheet.				
	 SSP dynam 	nic characteristics removed					
LPC122X v.1.2	20110329	Objective data sheet	-	LPC122X v.1.1			
Modifications:	 Figure 2 "Pi RTCXOUT 	in configuration LQFP64 pa changed to 57.	ackage": Pin RTCXIN ch	anged to 58 and pin			
	 Table 3 "LP and pin RT(C122x pin description": In c CXOUT changed to 57.	olumn Pin LQFP64, pin	RTCXIN changed to			
LPC122X v.1.1	20110221	Objective data sheet	-	LPC122X v.1			
Modifications:	 Section 1 "0 	General description": Updat	ed text.				
	 Section 2 "F 	Features and benefits": Upo	lated text.				
LPC122X v.1	20110214	Objective data sheet	-	-			

to 58

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's

18. Contact information

own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors

LPC122x

32-bit ARM Cortex-M0 microcontroller

17.4	Trademarks	59
18	Contact information	59
19	Contents	60

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2011.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 26 August 2011 Document identifier: LPC122X