

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	45MHz
Connectivity	I ² C, IrDA, Microwire, SPI, SSI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	55
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1224fbd64-121-1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Applications

- eMetering
- Lighting
- Industrial networking
- Alarm systems
- White goods

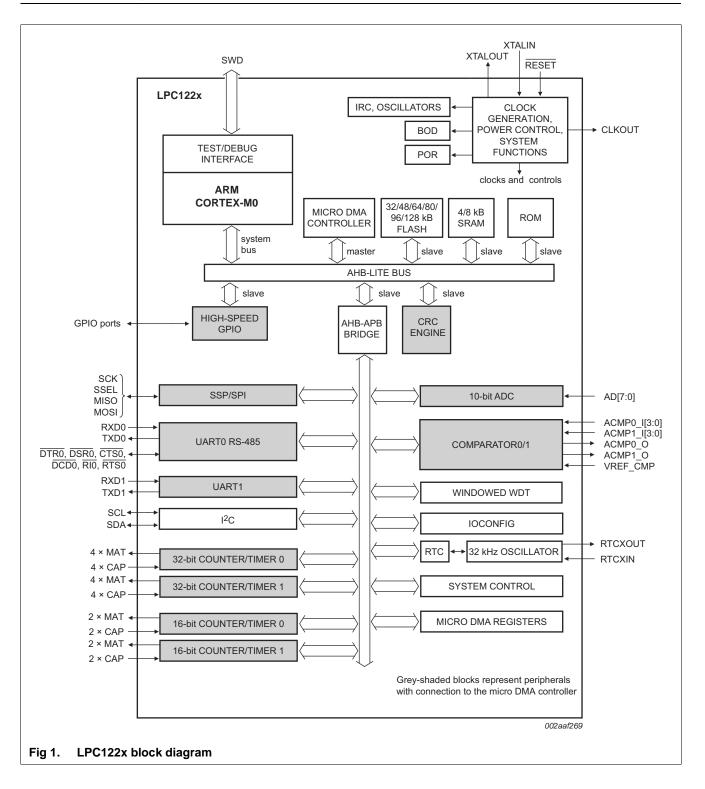
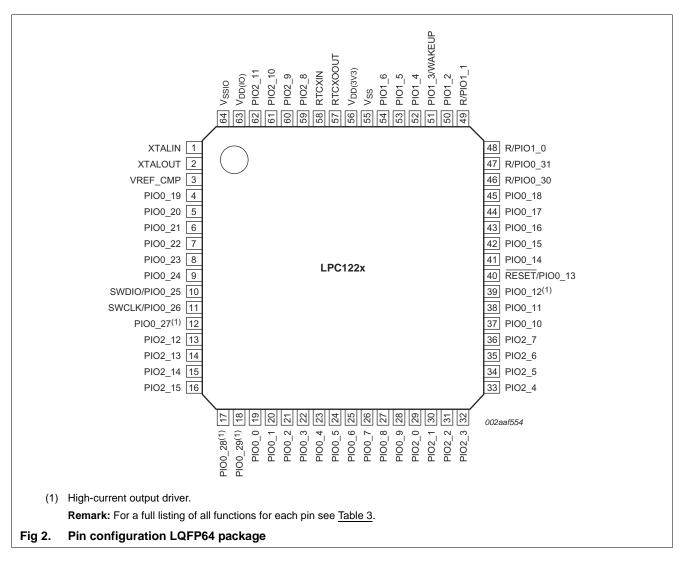

4. Ordering information

Table 1. Ordering information

Type number	number Package			
	Name	Description	Version	
LPC1227FBD64/301	LQFP64	LQFP64: plastic low profile quad flat package; 64 leads; body 10 \times 10 \times 1.4 mm	SOT314-2	
LPC1226FBD64/301	LQFP64	LQFP64: plastic low profile quad flat package; 64 leads; body 10 \times 10 \times 1.4 mm	SOT314-2	
LPC1225FBD64/321	LQFP64	LQFP64: plastic low profile quad flat package; 64 leads; body 10 \times 10 \times 1.4 mm	SOT314-2	
LPC1225FBD64/301	LQFP64	LQFP64: plastic low profile quad flat package; 64 leads; body 10 \times 10 \times 1.4 mm	SOT314-2	
LPC1224FBD64/121	LQFP64	LQFP64: plastic low profile quad flat package; 64 leads; body 10 \times 10 \times 1.4 mm	SOT314-2	
LPC1224FBD64/101	LQFP64	LQFP64: plastic low profile quad flat package; 64 leads; body 10 \times 10 \times 1.4 mm	SOT314-2	
LPC1227FBD48/301	LQFP48	LQFP48: plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2	
LPC1226FBD48/301	LQFP48	LQFP48: plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2	
LPC1225FBD48/321	LQFP48	LQFP48: plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2	
LPC1225FBD48/301	LQFP48	LQFP48: plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2	
LPC1224FBD48/121	LQFP48	LQFP48: plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2	
LPC1224FBD48/101	LQFP48	LQFP48: plastic low profile quad flat package; 48 leads; body 7 \times 7 \times 1.4 mm $-$	SOT313-2	


32-bit ARM Cortex-M0 microcontroller

5. Block diagram

6. Pinning information

6.1 Pinning

32-bit ARM Cortex-M0 microcontroller

Table 4. Pin mult	iplexing				
Peripheral	Function	Туре	Available of	on ports:	
ADC	AD0	I	PIO0_30	-	-
	AD1	I	PIO0_31	-	-
	AD2	I	PIO1_0	-	-
	AD3	I	PIO1_1	-	-
	AD4	I	PIO1_2	-	-
	AD5	I	PIO1_3	-	-
	AD6	I	PIO1_4	-	-
	AD7	I	PIO1_5	-	-
CT16B0	CT16B0_CAP0	I	PIO0_11	PIO0_28	PIO2_0
	CT16B0_CAP1	I	PIO0_12	PIO0_29	PIO2_1
	CT16B0_MAT0	0	PIO0_11	PIO0_28	PIO2_0
	CT16B0_MAT1	0	PIO0_12	PIO0_29	PIO2_1
CT16B1	CT16B1_CAP0	I	PIO0_15	PIO1_5	PIO2_2
	CT16B1_CAP1	I	PIO0_16	PIO1_6	PIO2_3
	CT16B1_MAT0	0	PIO0_15	PIO1_5	PIO2_2
	CT16B1_MAT1	0	PIO0_16	PIO1_6	PIO2_3
CT32B0	CT32B0_CAP0	I	PIO0_1	PIO0_18	PIO2_4
	CT32B0_CAP1	I	PIO0_2	PIO0_19	PIO2_5
	CT32B0_CAP2	I	PIO0_3	PIO0_20	PIO2_6
	CT32B0_CAP3	I	PIO0_4	PIO0_21	PIO2_7
	CT32B0_MAT0	0	PIO0_1	PIO0_18	PIO2_4
	CT32B0_MAT1	0	PIO0_2	PIO0_19	PIO2_5
	CT32B0_MAT2	0	PIO0_3	PIO0_20	PIO2_6
	CT32B0_MAT3	0	PIO0_4	PIO0_21	PIO2_7
CT32B1	CT32B1_CAP0	I	PIO0_6	PIO0_23	PIO2_8
	CT32B1_CAP1	I	PIO0_7	PIO0_24	PIO2_9
	CT32B1_CAP2	I	PIO0_8	PIO0_25	PIO2_10
	CT32B1_CAP3	I	PIO0_9	PIO0_26	PIO2_11
	CT32B1_MAT0	0	PIO0_6	PIO0_23	PIO2_8
	CT32B1_MAT1	0	PIO0_7	PIO0_24	PIO2_9
	CT32B1_MAT2	0	PIO0_8	PIO0_25	PIO2_10
	CT32B1_MAT3	0	PIO0_9	PIO0_26	PIO2_11
UART0	RXD0	I	PIO0_1	PIO2_1	-
	TXD0	0	PIO0_2	PIO2_2	-
	CTS0	I	PIO0_7	PIO2_4	-
	DCD0	I	PIO0_5	PIO2_6	-
	DSR0	I	PIO0_4	PIO2_7	-
	DTR0	0	PIO0_3	PIO2_3	-
	RIO	I	PIO0_6	PIO2_5	-
	RTS0	0	PIO0_0	PIO2_0	-

LPC122X Product data sheet

NXP Semiconductors

LPC122x

32-bit ARM Cortex-M0 microcontroller



Fig 4. LPC122x memory map

7.5 Nested Vectored Interrupt Controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M0. The tight coupling to the CPU allows for low interrupt latency and efficient processing of late arriving interrupts.

7.5.1 Features

• Controls system exceptions and peripheral interrupts.

- Selectable time period from $(T_{cy(WDCLK)} \times 256 \times 4)$ to $(T_{cy(WDCLK)} \times 2^{24} \times 4)$ in multiples of $T_{cy(WDCLK)} \times 4$.
- The Watchdog Clock (WDCLK) source can be selected from the Internal RC oscillator (IRC) or the Watchdog oscillator. This gives a wide range of potential timing choices of Watchdog operation under different power reduction conditions. It also provides the ability to run the WDT from an entirely internal source that is not dependent on an external crystal and its associated components and wiring for increased reliability.

7.17 Real-time clock (RTC)

The RTC provides a basic alarm function or can be used as a long time base counter. The RTC generates an interrupt after counting for a programmed number of cycles of the RTC clock input.

7.17.1 Features

- Uses dedicated 32 kHz ultra low-power oscillator.
- Selectable clock inputs: RTC oscillator (1 Hz, delayed 1 Hz, or 1 kHz clock) or main clock with programmable clock divider.
- 32-bit counter.
- Programmable 32-bit match/compare register.
- Software maskable interrupt when counter and compare registers are identical.
- Generates wake-up from Deep-sleep and Deep power-down modes.

7.18 Clocking and power control

7.18.1 Crystal oscillators

The LPC122x include four independent oscillators. These are the system oscillator, the Internal RC oscillator (IRC), the RTC 32 kHz oscillator (for the RTC only), and the Watchdog oscillator. Except for the RTC oscillator, each oscillator can be used for more than one purpose as required in a particular application.

Following reset, the LPC122x will operate from the Internal RC oscillator until switched by software. This allows systems to operate without any external crystal and the bootloader code to operate at a known frequency.

See Figure 5 for an overview of the LPC122x clock generation.

An external pull-up resistor is required on the RESET pin if Deep power-down mode is used.

7.19.3 Brownout detection

The LPC122x includes four levels for monitoring the voltage on the $V_{DD(3V3)}$ pin. If this voltage falls below one of the four selected levels, the BOD asserts an interrupt signal to the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading a dedicated status register. An additional threshold level can be selected to cause a forced reset of the chip.

7.19.4 Code security (Code Read Protection - CRP)

This feature of the LPC122x allows user to enable different levels of security in the system so that access to the on-chip flash and use of the SWD and ISP can be restricted. When needed, CRP is invoked by programming a specific pattern into a dedicated flash location. IAP commands are not affected by the CRP.

There are three levels of Code Read Protection:

- 1. CRP1 disables access to chip via the SWD and allows partial flash update (excluding flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is required and flash field updates are needed but all sectors can not be erased.
- CRP2 disables access to chip via the SWD and only allows full flash erase and update using a reduced set of the ISP commands.
- 3. Running an application with level CRP3 selected fully disables any access to chip via the SWD pins and the ISP. This mode effectively disables ISP override using PIO0_12 pin, too. It is up to the user's application to provide (if needed) flash update mechanism using IAP calls or call reinvoke ISP command to enable flash update via UART0.

CAUTION

If level three Code Read Protection (CRP3) is selected, no future factory testing can be performed on the device.

In addition to the three CRP levels, sampling of pin PIO0_12 for valid user code can be disabled.

7.19.5 APB interface

The APB peripherals are located on one APB bus.

7.19.6 AHB-Lite

The AHB-Lite connects the CPU bus of the ARM Cortex-M0 to the flash memory, the main static RAM, and the Boot ROM.

7.19.7 External interrupt inputs

All GPIO pins can be level or edge sensitive interrupt inputs.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).[1]

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD(3V3)}	supply voltage (3.3 V)		3.0	3.6	V
V _{DD(IO)}	input/output supply voltage		3.0	3.6	V
VI	input voltage	on all digital pins	[2] -0.5	+3.6	V
		on pins PIO0_10 and PIO0_11 (I ² C-bus pins)	0	5.5	V
I _{DD}	supply current	per supply pin	[3] _	100	mA
I _{SS}	ground current	per ground pin	<u>[3]</u> _	100	mA
I _{latch}	I/O latch-up current	–(0.5V _{DD}) < V _I < (1.5V _{DD});	-	100	mA
		T _j < 125 ℃			
T _{stg}	storage temperature		<u>[4]</u> –65	+150	°C
P _{tot(pack)}	total power dissipation (per package)	based on package heat transfer, not device power consumption	-	1.5	W
V _{ESD}	electrostatic discharge voltage	human body model; all pins	<u>[5]</u> –8000	+8000	V

[1] The following applies to the limiting values:

a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.

 b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.

[2] Including voltage on outputs in 3-state mode.

[3] The peak current is limited to 25 times the corresponding maximum current.

[4] Dependent on package type.

[5] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k Ω series resistor.

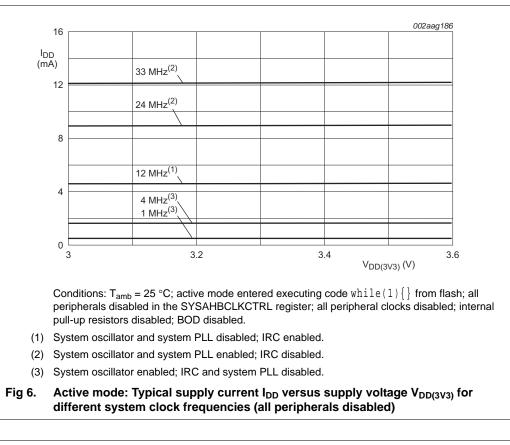
32-bit ARM Cortex-M0 microcontroller

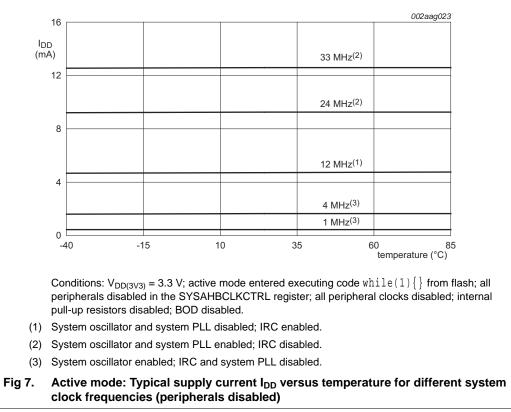
Symbol	Parameter	Conditions		Min	Typ <u>[1]</u>	Max	Unit
I _{OH}	HIGH-level output current	low mode; $V_{OH} = V_{DD(IO)} - 0.7$		20	-	-	mA
		high mode; $V_{OH} = V_{DD(IO)} - 0.7$		28	-	-	mA
I _{OL}	LOW-level output current	V _{OL} = 0.4 V low mode		12	-	-	mA
		high mode		18	-	-	mA
I _{OLS}	LOW-level short-circuit output current	$V_{OL} = V_{DD}$	<u>[5]</u>	-	-		mA
I _{pu}	pull-up current	$V_{I} = 0 V$		-50	-80	-100	μΑ
I ² C-bus pins	s (PIO0_10 and PIO0_11)						
V _{IH}	HIGH-level input voltage			$0.7V_{DD(IO)}$	-	-	V
V _{IL}	LOW-level input voltage			-	-	0.3V _{DD(I} 0)	V
V _{hys}	hysteresis voltage			-	$0.05V_{DD(IO)}$	-	V
V _{OL}	LOW-level output voltage	I _{OLS} = 20 mA		-	-	0.4	V
ILI	input leakage current	$V_{I} = V_{DD(IO)}$	[6]	-	2	4	μA
		V _I = 5 V		-	10	22	μA
Ci	capacitance for each I/O pin	on pins PIO0_10 and PIO0_11		-	-	8	pF
Oscillator pi	ins						
V _{i(xtal)}	crystal input voltage	see Section 12.1		0	1.8	1.95	V
V _{o(xtal)}	crystal output voltage			0	1.8	1.95	V

Table 7. Static characteristics ... continued 7. 40 % to : 25 % unloss otherwise specified

[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

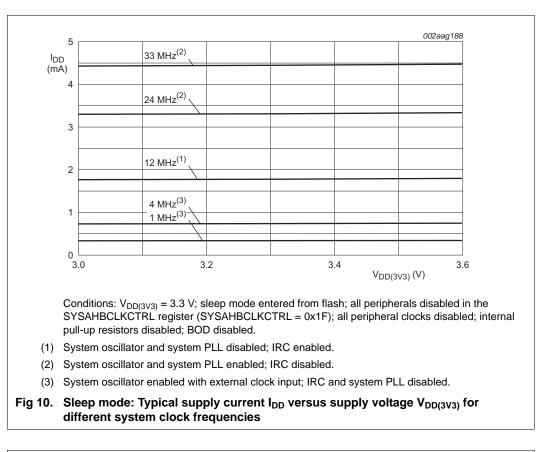
[2] Including voltage on outputs in 3-state mode.

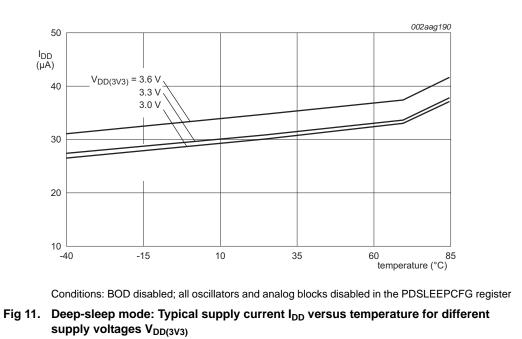

 $V_{DD(3V3)}$ and $V_{DD(IO)}$ supply voltages must be present. [3]


3-state outputs go into 3-state mode when $V_{DD(IO)}$ is grounded. [4]

Allowed as long as the current limit does not exceed the maximum current allowed by the device. [5]

[6] To V_{SS}.


32-bit ARM Cortex-M0 microcontroller



All information provided in this document is subject to legal disclaimers

32-bit ARM Cortex-M0 microcontroller

10.5 BOD static characteristics

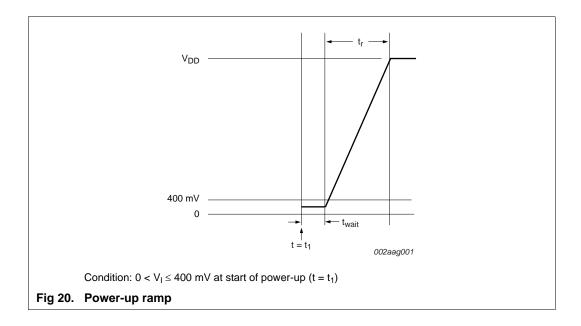
Table 10. BOD static characteristics^[1]

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{th}	threshold voltage	interrupt level 1				
		assertion	-	2.25	-	V
		de-assertion	-	2.39	-	V
		interrupt level 2				
		assertion	-	2.54	-	V
		de-assertion	-	2.67	-	V
		interrupt level 3				
		assertion	-	2.83	-	V
		de-assertion	-	2.93	-	V
		reset level 1				
		assertion	-	2.04	-	V
		de-assertion	-	2.18	-	V
		reset level 2				
		assertion	-	2.34	-	V
		de-assertion	-	2.47	-	V
		reset level 3				
		assertion	-	2.62	-	V
		de-assertion	-	2.76	-	V

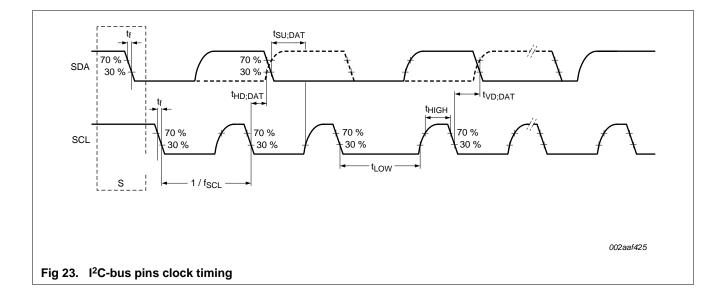
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see *LPC122x* user manual.

11. Dynamic characteristics

11.1 Power-up ramp conditions

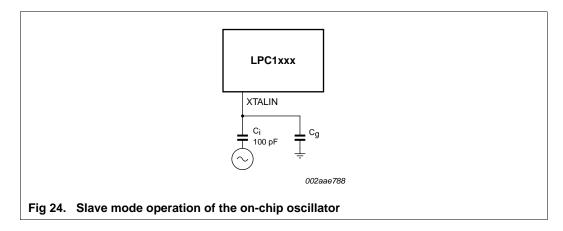

Table 11. Power-up characteristics

$T_{amb} = -40$	°C to	+85 °C.
-----------------	-------	---------


Symbol	Parameter	Conditions		Min	Тур	Max	Unit
tr	rise time	at t = t ₁ : 0 < V ₁ \leq 400 mV	[1]	0	-	500	ms
t _{wait}	wait time		[1][2]	12	-	-	μs
VI	input voltage	at t = t_1 on pin V_{DD}		0	-	400	mV

[1] See Figure 20.

[2] The wait time specifies the time the power supply must be at levels below 400 mV before ramping up.


32-bit ARM Cortex-M0 microcontroller

12. Application information

12.1 XTAL input

The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a clock in slave mode, it is recommended that the input be coupled through a capacitor with $C_i = 100 \text{ pF}$. To limit the input voltage to the specified range, choose an additional capacitor to ground C_g which attenuates the input voltage by a factor $C_i/(C_i + C_g)$. In slave mode, a minimum of 200 mV(RMS) is needed.

12.2 XTAL Printed Circuit Board (PCB) layout guidelines

The crystal should be connected on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors C_{x1} , C_{x2} , and C_{x3} in case of third overtone crystal usage have a common ground plane. The external components must also be connected to the ground plain. Loops must be made as small as possible in order to keep the noise coupled in via the PCB as small as possible. Also parasitics should stay as small as possible. Values of C_{x1} and C_{x2} should be chosen smaller accordingly to the increase in parasitics of the PCB layout.

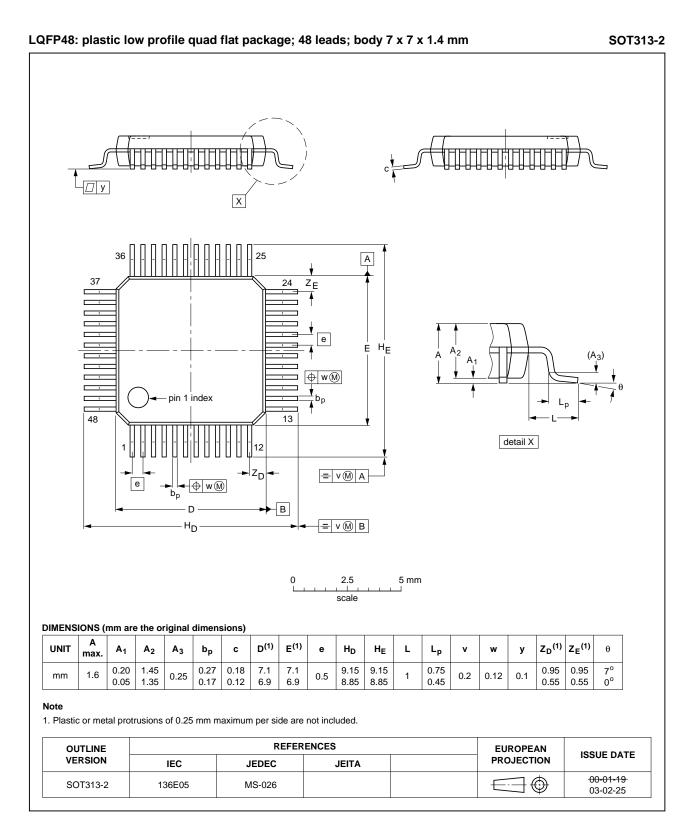


Fig 26. Package outline SOT313-2 (LQFP48)

32-bit ARM Cortex-M0 microcontroller

14. Soldering

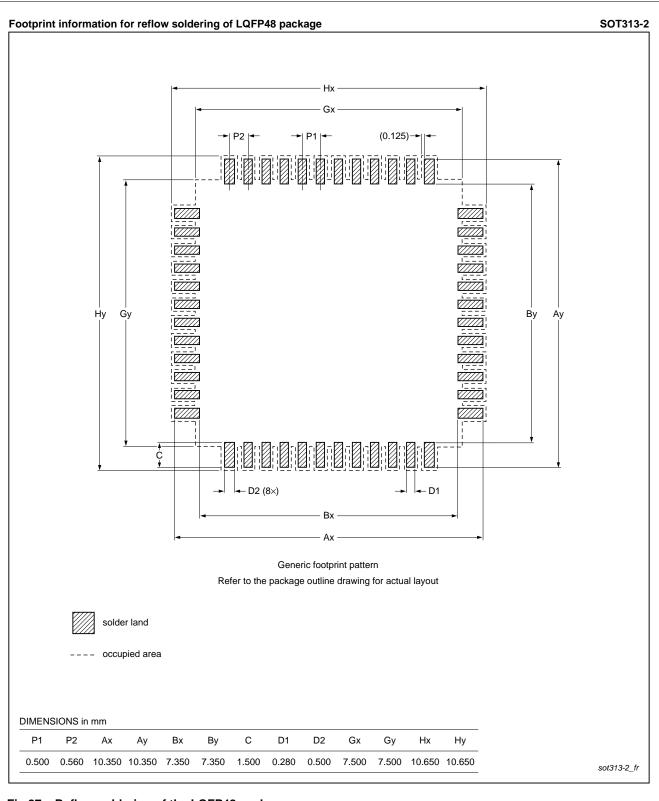
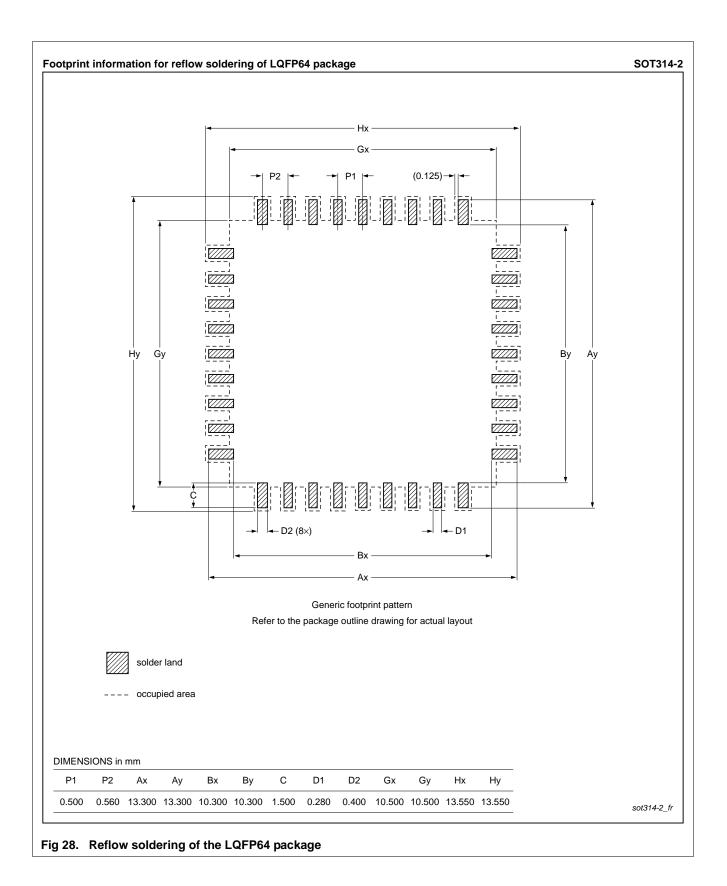



Fig 27. Reflow soldering of the LQFP48 package

32-bit ARM Cortex-M0 microcontroller

16. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
LPC122X v.2	20110826	Product data sheet		LPC122X v.1.2
Modifications:	 Power cons 	sumption data updated in Ta	ble 7.	
	 Power cons 	sumption graphs added in <u>Se</u>	ection 10.2.	
	 Electrical pi 	n characteristics updated fo	r all pins in <u>Table 7</u> and	Section 10.3.
	Parameter	R _i added to <u>Table 9</u> .		
	 EMC data a 	dded (Section 12.3).		
	 Parameter ' 	V _I updated for I ² C-bus pins i	n <u>Table 5</u> .	
	 Section 11. 	1 "Power-up ramp condition	<u>s"</u> added.	
	 Data sheet 	status updated to Product D	ata Sheet.	
	 SSP dynam 	ic characteristics removed.		
LPC122X v.1.2	20110329	Objective data sheet	-	LPC122X v.1.1
Modifications:		n configuration LQFP64 pac changed to 57.	ckage": Pin RTCXIN ch	anged to 58 and pin
		C122x pin description": In co CXOUT changed to 57.	blumn Pin LQFP64, pin	RTCXIN changed to 5
LPC122X v.1.1	20110221	Objective data sheet	-	LPC122X v.1
Modifications:	 Section 1 "C 	General description": Update	ed text.	
	 Section 2 "F 	Features and benefits": Upda	ated text.	
LPC122X v.1	20110214	Objective data sheet	-	-

to 58

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions"

The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. [3]

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for guick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer. unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

LPC122X

58 of 61