

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

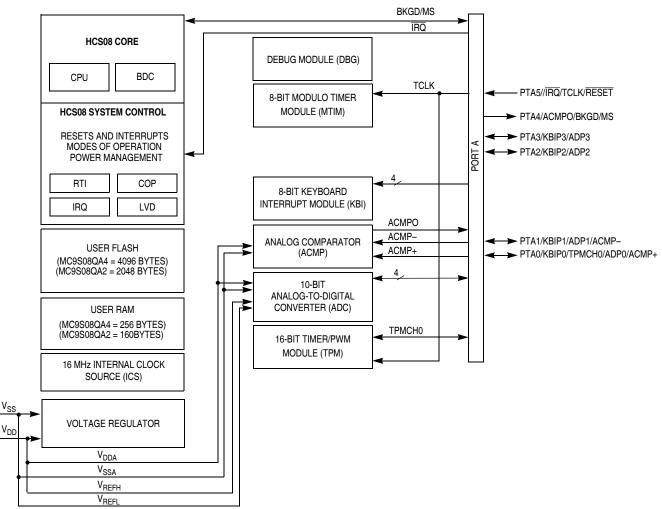
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	LVD, POR, PWM, WDT
Number of I/O	4
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN-EP (4x4)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08qa2cfqe


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9S08QA4 MCU.

NOTES:

- ¹ Port pins are software configurable with pullup device if input port.
- ² Port pins are software configurable for output drive strength.
- ³ Port pins are software configurable for output slew rate control.
- ⁴ IRQ contains a software configurable (IRQPDD) pullup device if PTA5 enabled as IRQ pin function (IRQPE = 1).
- ⁵ RESET contains integrated pullup device if PTA5 enabled as reset pin function (RSTPE = 1).
- ⁶ PTA4 contains integrated pullup device if BKGD enabled (BKGDPE = 1).
- ⁷ When pin functions as KBI (KBIPEn = 1) and associated pin is configured to enable the pullup device, KBEDGn can be used to reconfigure the pullup as a pulldown device.

Figure 1. MC9S08QA4 Series Block Diagram

2 Pin Assignments

This section shows the pin assignments in the packages available for the MC9S08QA4 series.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H –40 to 85	°C
Thermal resistance Single-layer board			
8-pin PDIP		113	
8-pin NB SOIC	θ_{JA}	150	°C/W
8-pin DFN		179	
Thermal resistance Four-layer board			
8-pin PDIP		72	
8-pin NB SOIC	θ_{JA}	87	°C/W
8-pin DFN		41	1

Table 3. Thermal Characteristics

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

— $T_A =$ Ambient temperature, °C

— θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

- P_D = P_{int} + P_{I/O}

— $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

— $P_{I/O}$ = Power dissipation on input and output pins — user-determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2 \qquad \qquad Eqn. 3$$

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.4 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
,	Number of pulses per pin		3	
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	200	pF
	Number of pulses per pin		3	
Latch-up	Minimum input voltage limit		-2.5	V
Laton-up	Maximum input voltage limit		7.5	V

Table 5. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	_	V
2	Machine model (MM)	V _{MM}	±200	_	V
3	Charge device model (CDM)	V _{CDM}	±500	—	V
4	Latch-up current at $T_A = 85^{\circ}C$	I _{LAT}	±100	_	mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.5 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 6. DC Characteristics (Temperature Range = -40 to 85°C Ambient)

Parameter	Symbol	Min	Typical	Max	Unit
Supply voltage (run, wait, and stop modes)					
(V _{DD} falling)	V_{DD}	1.8	—	3.6	v
(V _{DD} rising)		V _{LVDL} (rising)	_	3.6	
Minimum RAM retention supply voltage applied to V_{DD}	V _{RAM}	V _{por} 1,2	—		V
Low-voltage detection threshold (V _{DD} falling) (V _{DD} rising)	V _{LVD}	1.80 1.88	1.82 1.90	1.91 1.99	v
Low-voltage warning threshold (V _{DD} falling)	V _{LVW}	2.08	2.1	2.2	v

Parameter	Symbol	Min	Typical	Max	Unit
(V _{DD} rising)		2.16	2.19	2.27	
Power on reset (POR) re-arm voltage	V _{por}	—	1.4	—	V
Bandgap voltage reference	V _{BG}	1.18	1.20	1.21	V
Input high voltage ($V_{DD} > 2.3 \text{ V}$) (all digital inputs)	M	$0.70 \times V_{DD}$	_	_	V
Input high voltage (1.8 V \leq V_{DD} \leq 2.3 V) (all digital inputs)	V _{IH}	$0.85 \times V_{DD}$	_	_	V
Input low voltage (V _{DD} > 2.3 V) (all digital inputs)		—		$0.35 \times V_{DD}$	
Input low voltage (1.8 V \leq V_{DD} \leq 2.3 V) (all digital inputs)	V _{IL}			$0.30 \times V_{DD}$	V
Input hysteresis (all digital inputs)	V _{hys}	$0.06 \times V_{DD}$		_	V
Input leakage current (per pin) $V_{In} = V_{DD}$ or V_{SS} , all input-only pins	_{In}	_	0.025	1.0	μA
High impedance (off-state) leakage current (per pin) $V_{ln} = V_{DD}$ or V_{SS} , all input/output	ll _{oz} l	_	0.025	1.0	μA
Internal pullup resistors ^{3,4}	R _{PU}	17.5	_	52.5	kΩ
Internal pulldown resistor (KBI)	R _{PD}	17.5	_	52.5	kΩ
Output high voltage — low drive (PTxDSn = 0) $I_{OH} = -2 \text{ mA} (V_{DD} \ge 1.8 \text{ V})$		V _{DD} – 0.5	_	_	
	V _{OH}	V _{DD} – 0.5			V
Maximum total I _{OH} for all port pins	II _{OHT} I	_	_	60	mA
Output low voltage — low drive (PTxDSn = 0) I_{OL} = 2.0 mA (V _{DD} \ge 1.8 V)		_	_	0.5	v
$ \begin{array}{l} \text{Output low voltage } & \text{ high drive } (\text{PTxDSn} = 1) \\ \text{I}_{OL} = 10.0 \text{ mA } (\text{V}_{DD} \geq 2.7 \text{ V}) \\ \text{I}_{OL} = 6 \text{ mA } (\text{V}_{DD} \geq 2.3 \text{ V}) \\ \text{I}_{OL} = 3 \text{ mA } (\text{V}_{DD} \geq 1.8 \text{ V}) \end{array} $	V _{OL}	 		0.5 0.5 0.5	v
Maximum total I _{OL} for all port pins	I _{OLT}	—	—	60	mA
DC injection current ^{2, 5, 6, 7} $V_{In} < V_{SS}, V_{In} > V_{DD}$ Single pin limit Total MCU limit, includes sum of all stressed pins	I _{IC}	-0.2 -5		0.2 5	mA mA
Input capacitance (all non-supply pins)	C _{In}	—	_	7	pF

Table 6. DC Characteristics (Temperature Range = -40 to 85°C Ambient) (continued)

¹ RAM will retain data down to POR voltage. RAM data not guaranteed to be valid following a POR.

² This parameter is characterized and not tested on each device.

 $^3~$ Measurement condition for pull resistors: V_{In} = V_{SS} for pullup and V_{In} = V_{DD} for pulldown.

⁴ PTA5/IRQ/TCLK/RESET pullup resistor may not pull up to the specified minimum V_{IH}. However, all ports are functionally tested to guarantee that a logic 1 will be read on any port input when the pullup is enabled and no DC load is present on the pin.

 $^5\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

- ⁶ Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁷ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

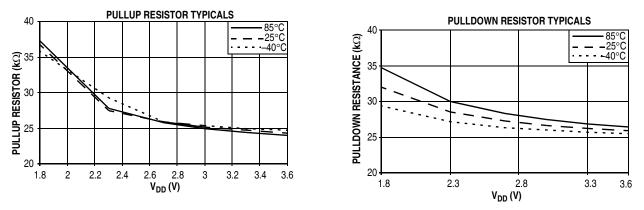


Figure 3. Pullup and Pulldown Typical Resistor Values ($V_{DD} = 3.0 \text{ V}$)

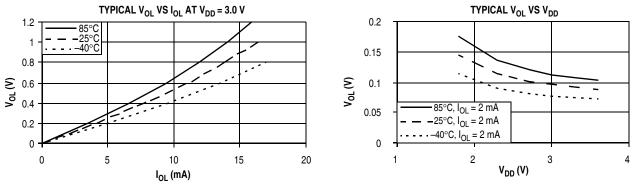


Figure 4. Typical Low-Side Driver (Sink) Characteristics — Low Drive (PTxDSn = 0)

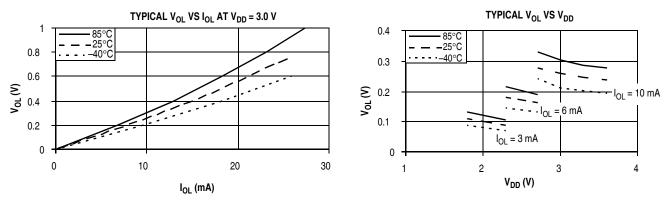


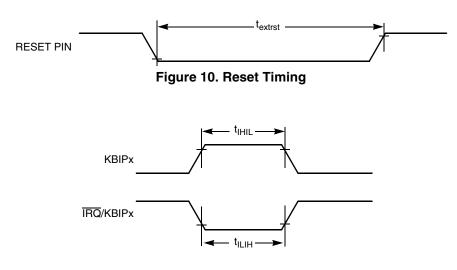
Figure 5. Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1)

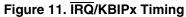
- ¹ 3 V values are 100% tested; 2 V values are characterized but not tested.
- $^2~$ Typicals are measured at 25 °C.
- ³ Does not include any DC loads on port pins.

⁴ Most customers are expected to find that auto-wakeup from a stop mode can be used instead of the higher current wait mode.

3.7 Internal Clock Source (ICS) Characteristics

Table 8. ICS Specifications (Temperature Range = -40 to 85°C Ambient)


Characteristic	Symbol	Min	Typical ¹	Max	Unit
Internal reference start-up time	t _{IRST}		60	100	μS
Average internal reference frequency — untrimmed	f _{int_ut}	25	32.7	41.66	kHz
Average internal reference frequency — trimmed	f _{int_t}	31.25	—	39.06	kHz
DCO output frequency range — untrimmed	f _{dco_ut}	12.8	16.8	21.33	MHz
DCO output frequency range — trimmed	f _{dco_t}	16	_	20	MHz
Resolution of trimmed DCO output frequency at fixed voltage and temperature ²	$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
Total deviation of DCO output from trimmed frequency ² At 8 MHz over full voltage and temperature range At 8 MHz and 3.6 V from 0 to 70 °C	Δf_{dco_t}	_	−1.0 to 0.5 ±0.5	±2 ±1	%f _{dco}
FLL acquisition time ^{2,3}	t _{Acquire}	_	—	1.5	ms
Long term jitter of DCO output clock (averaged over 2 ms interval)	C _{Jitter}	_	0.02	0.2	%f _{dco}


¹ Data in Typical column was characterized at 3.0 V, 25 °C, or is typical recommended value.

² This parameter is characterized and not tested on each device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed.

3.8.2 TPM/MTIM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Function	Symbol	Min	Мах	Unit
External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
External clock period	t _{TCLK}	4	_	t _{cyc}
External clock high time	t _{clkh}	1.5	_	t _{cyc}
External clock low time	t _{clkl}	1.5	_	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

Table 10. TPM/MTIM Input Timing

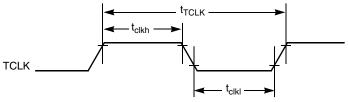


Figure 12. Timer External Clock

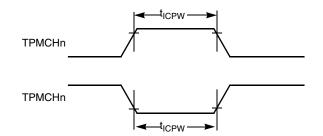


Figure 13. Timer Input Capture Pulse

3.9 Analog Comparator (ACMP) Electricals

Characteristic	Symbol	Min	Typical	Max	Unit
Supply voltage	V _{DD}	1.80	_	3.60	V
Supply current (active)	I _{DDAC}	_	20	_	μA
Analog input voltage	V _{AIN}	$V_{SS} - 0.3$	_	V _{DD}	V
Analog input offset voltage	V _{AIO}	_	20	40	mV
Analog comparator hysteresis	V _H	3.0	9.0	15.0	mV
Analog input leakage current	I _{ALKG}	_	_	1.0	μA
Analog comparator initialization delay	t _{AINIT}	_	_	1.0	μS

3.10 ADC Characteristics

Characteristic	Conditions	Symbol	Min	Typical ¹	Мах	Unit	Comment
Supply voltage	Absolute	V _{DD}	1.8	—	3.6	V	
Input voltage		V _{ADIN}	V _{SS}	—	V _{DD}	V	
Input capacitance		C _{ADIN}	—	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	5	7	kΩ	
Analog source resistance	10 bit mode f _{ADCK} > 4 MHz f _{ADCK} < 4 MHz	R _{AS}	_	_	5 10	kΩ	External to MCU
	8 bit mode (all valid f _{ADCK})			—	10	1	
ADC conversion clock frequency	High Speed (ADLPC=0)	f	0.4	—	8.0	MHz	
	Low Power (ADLPC=1)	f _{ADCK}	0.4	—	4.0		

Typical values assume V_{DD} = 3.0 V, Temp = 25°C, f_{ADCK} =1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

1

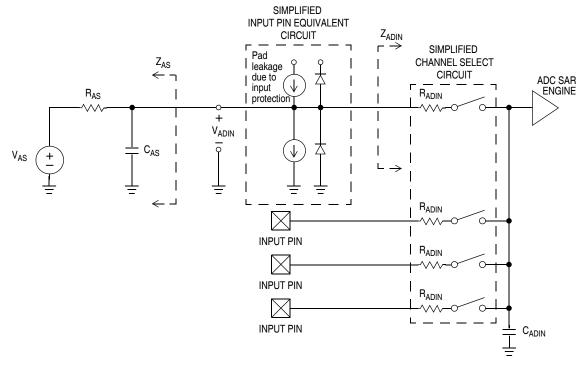


Figure 14. ADC Input Impedance Equivalency Diagram

Characteristic	Conditions	Symbol	Min	Typical ¹	Max	Unit	Comment
Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDAD}	_	120	_	μA	
Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1		I _{DDAD}	_	202	_	μA	
Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		I _{DDAD}	_	288	_	μA	
Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1		I _{DDAD}	_	532	646	μA	
ADC asynchronous clock source	High speed (ADLPC=0)	f	2	3.3	5		t _{ADACK} =
	Low power (ADLPC=1)	f _{ADACK}	1.25	2	3.3	MHz	1/f _{ADACK}

Table 13.	3 V 10-Bit A	DC Characteristics
-----------	--------------	--------------------

Characteristic	Conditions	Symbol	Min	Typical ¹	Мах	Unit	Comment
Conversion time	Short sample (ADLSMP=0)		_	20	_	ADCK	See
(including sample time)	Long sample (ADLSMP=1)	t _{ADC}	_	40	_	cycles	MC9S08QA4 Series
	Short sample (ADLSMP=0)			3.5		ADCK	<i>Reference</i> <i>Manual</i> for
Sample time	Long sample (ADLSMP=1)	t _{ADS}	_	23.5	_	cycles	conversion time variances
- - - - - - - - - -	10-bit mode	_	_	±1.5	±3.5	1.002	Includes
Total unadjusted error	adjusted error 8-bit mode	E _{TUE}	_	±0.7	±1.5	LSB ²	quantization
B	10-bit mode			±0.5	±1.0		Monotonicity
Differential non-linearity	8-bit mode	DNL	_	±0.3	±0.5	LSB ²	and no missing codes guaranteed
Integral non-linearity	10-bit mode	INL	_	±0.5	±1.0	LSB ²	
integral non-linearity	8-bit mode		_	±0.3	±0.5		
Zero-scale error	10-bit mode	E	_	±1.5	±2.1	LSB ²	V _{ADIN} = V _{SS}
Zero-scale error	8-bit mode	E _{ZS}		±0.5	±0.7		
Full-scale error	10-bit mode	E _{FS}	0	±1.0	±1.5	LSB ²	$V_{ADIN} = V_{DD}$
	8-bit mode	⊢FS	0	±0.5	±0.5	LOD	
Quantization error	10-bit mode	E _Q		—	±0.5	LSB ²	
Quantization entri	8-bit mode	LQ		—	±0.5	100	
Input leakage error	10-bit mode	Ε _{IL}	0	±0.2	±4	LSB ²	Pad leakage ^{3 *}
Input leakage entit	8-bit mode		0	±0.1	±1.2	130	R _{AS}
Temp sensor	-40°C − 25°C	m	—	1.646	_	mV/°C	
slope	25°C – 85°C		_	1.769		mv/°C	
Temp sensor voltage	25°C	V _{TEMP25}	_	701.2	_	mV	

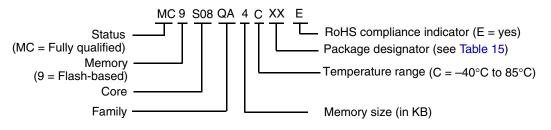
Table 13. 3 V 10-Bit ADC Characteristics ((continued)
--	-------------

¹ Typical values assume V_{DD} = 3.0 V, Temp = 25°C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
 ² 1 LSB = (V_{REFH} - V_{REFL})/2^N

³ Based on input pad leakage current. Refer to pad electricals.

3.11 **Flash Specifications**

This section provides details about program/erase times and program-erase endurance for the flash memory.

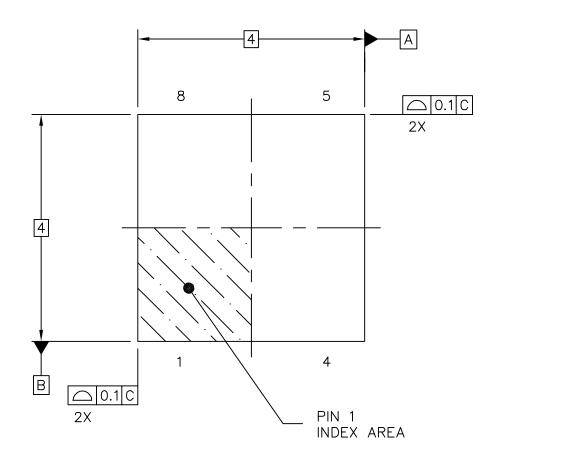


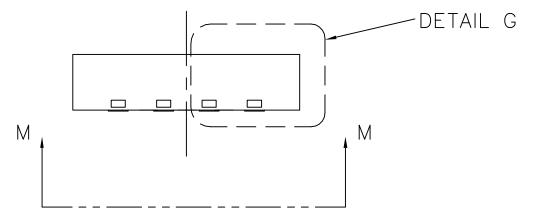
4 Ordering Information

This section contains ordering numbers for MC9S08QA4 series devices. See below for an example of the device numbering system.

Device Number	Memory		Package			
Device Number	Flash	RAM	Туре	Designator	Document No.	
MC9S08QA4	4 KB	256 bytes	8 DFN 8 PDIP	FQ PA	98ARL10557D 98ASB42420B	
MC9S08QA2	2 KB	160 bytes	8 NB SOIC	DN	98ASB42564B	

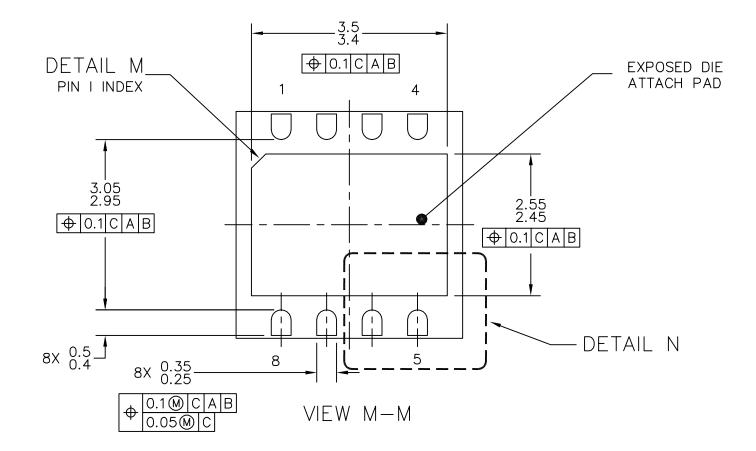
Table 15. Device Numbering System

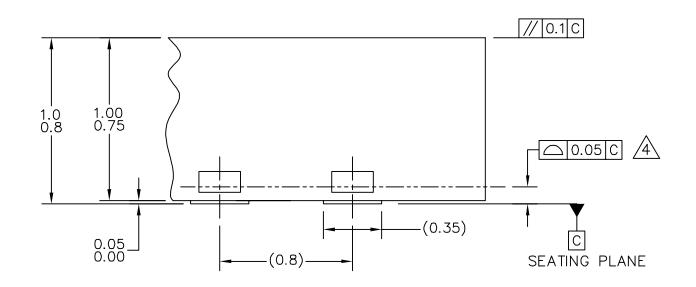



5 Mechanical Drawings

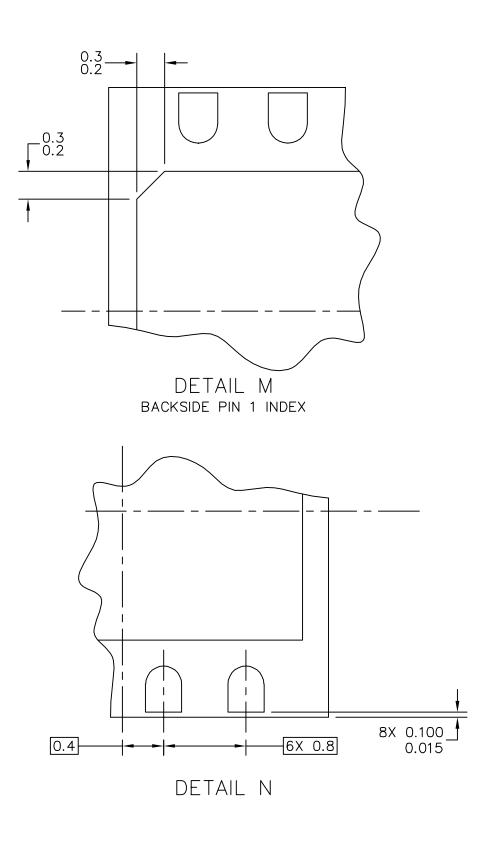
The following pages contain mechanical specifications for MC9S08QA4 series package options.

- 8-pin DFN (plastic dual in-line pin)
- 8-pin NB SOIC (narrow body small outline integrated circuit)
- 8-pin PDIP (plastic dual in-line pin)





© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE: THERMALLY ENHANCED	DUAL	DOCUMENT NO): 98ARL10557D	REV: B
FLAT NO LEAD PACKAGE	CASE NUMBER: 1452-02 28 DEC 2005		28 DEC 2005	
8 TERMINAL, 0.8 PITCH (4	STANDARD: NON-JEDEC			



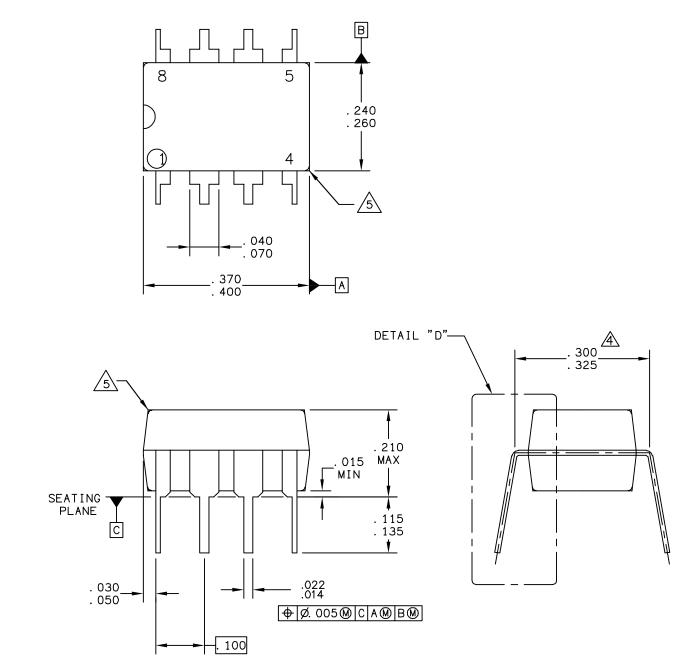
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	DECHANICA	LOUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: THERMALLY ENHANCED DUAL		DOCUMENT NO: 98ARL10557D REV: B		REV: B
FLAT NO LEAD PACKAGE	CASE NUMBER	: 1452–02	28 DEC 2005	
8 TERMINAL, 0.8 PITCH (4 X 4 X 1)		STANDARD: NO	N-JEDEC	

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE: THERMALLY ENHANCED	DOCUMENT NO: 98ARL10557D REV: B		REV: B	
FLAT NO LEAD PACKAGE	CASE NUMBER: 1452-02 28 DEC 200		28 DEC 2005	
8 TERMINAL, 0.8 PITCH (4	STANDARD: NON-JEDEC			

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.

2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14. 5M-1994.


3. THE COMPLETE JEDEC DESIGNATOR FOR THIS PACKAGE IS: HP-VFDFP-N.

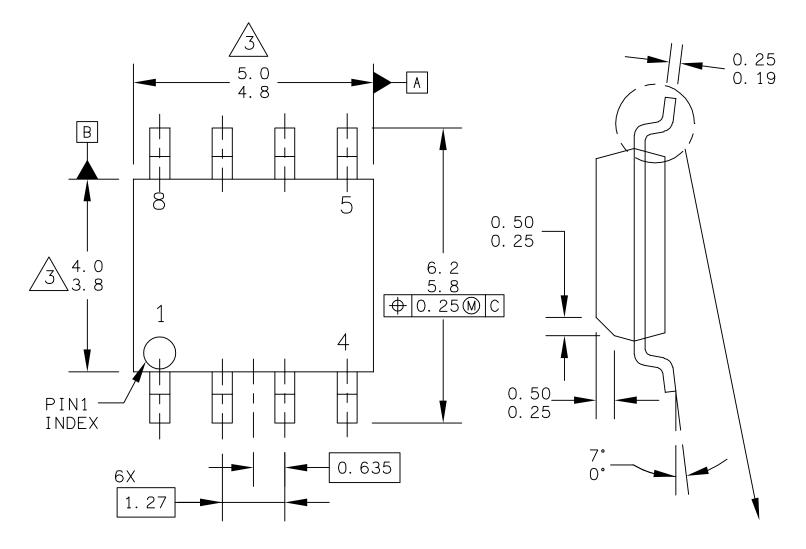
4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH PAD.

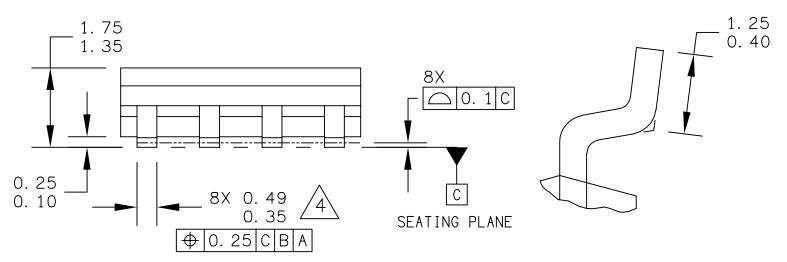
5. MIN. METAL GAP SHOULD BE 0.2MM.

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:THERMALLY ENHANCED	DUAL	DOCUMENT NO	: 98ARL10557D	REV: B
FLAT NO LEAD PACKAGE	CASE NUMBER: 1452-02 28 DEC 2005			
8 TERMINAL, O. 8 PITCH(4	X 4 X 1)	STANDARD: NC	N-JEDEC	

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42420B	REV: N
8 LD PDIP	CASE NUMBER	8: 626–06	19 MAY 2005	
		STANDARD: NO	N-JEDEC	

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- 2. ALL DIMENSIONS ARE IN INCHES.
- 3. 626-03 TO 626-06 OBSOLETE. NEW STANDARD 626-07.
- \triangle DIMENSION TO CENTER OF LEAD WHEN FORMED PARALLEL.
- A PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CONERS). STYLE 1:


PIN	1.	AC	ΙN	
	2.	DC	+ IN	
	3.	DC	— IN	
	4.	AC	ΙN	

- 5. GROUND
- OUTPUT
 AUXILIARY
- 8. VCC

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		LOUTLINE	PRINT VERSION NOT TO SCALE	
TITLE:		DOCUMENT NO): 98ASB42420B	REV: N
8 LD PDIP		CASE NUMBER	8: 626–06	19 MAY 2005
		STANDARD: NON-JEDEC		

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42564B	REV: U
8LD SOIC NARROW BODY		CASE NUMBER	8: 751–07	07 APR 2005
		STANDARD: JE	DEC MS-012AA	

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- A DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- A. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42564B	REV: U
8LD SOIC NARROW BOD'		CASE NUMBER	2: 751–07	07 APR 2005
		STANDARD: JE	DEC MS-012AA	

NP

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC9S08QA4 Rev. 3 1/2009 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008-2009. All rights reserved.

