

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	LVD, POR, PWM, WDT
Number of I/O	4
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08qa2cpae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

ng 14
ectricals 15
19

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

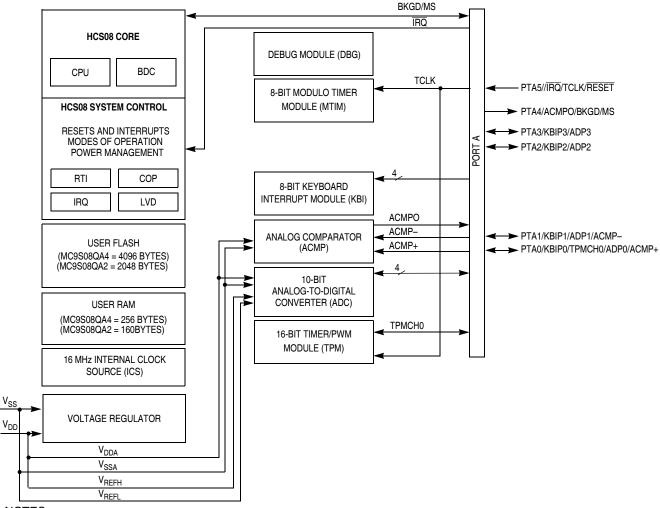
http://freescale.com/

The following revision history table summarizes changes contained in this document.

Revision	Date	Description of Changes
1	1/2008	Initial public release
2	2/2008	Changed the designator of the device in Table 15.
3	1/2009	Changed the condition of Run supply current measured to f _{Bus} = 1 MHz in Table 7. Fixed the error of inconsistent table number.

Related Documentation

Find the most current versions of all documents at: http://www.freescale.com


Reference Manual (MC9S08QA4RM)

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9S08QA4 MCU.

NOTES:

- 1 Port pins are software configurable with pullup device if input port.
- ² Port pins are software configurable for output drive strength.
- ³ Port pins are software configurable for output slew rate control.
- ⁴ IRQ contains a software configurable (IRQPDD) pullup device if PTA5 enabled as IRQ pin function (IRQPE = 1).
- ⁵ RESET contains integrated pullup device if PTA5 enabled as reset pin function (RSTPE = 1).
- ⁶ PTA4 contains integrated pullup device if BKGD enabled (BKGDPE = 1).
- When pin functions as KBI (KBIPEn = 1) and associated pin is configured to enable the pullup device, KBEDGn can be used to reconfigure the pullup as a pulldown device.

Figure 1. MC9S08QA4 Series Block Diagram

2 Pin Assignments

This section shows the pin assignments in the packages available for the MC9S08QA4 series.

Electrical Characteristics 3

3.1 Introduction

This chapter contains electrical and timing specifications for the MC9S08QA4 series of microcontrollers available at the time of publication.

Absolute Maximum Ratings 3.2

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 2 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V_{DD}	-0.3 to 3.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	-0.3 to $V_{DD} + 0.3$	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	I _D	±25	mA
Storage temperature range	T _{stg}	-55 to 150	°C

Table 2. Absolute Maximum Ratings

3.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{\mathrm{I/O}}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

MC9S08QA4 Series MCU Data Sheet, Rev. 3 Freescale Semiconductor 5

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two resistance values.

All functional non-supply pins are internally clamped to V_{SS} and V_{DD} .

Power supply must maintain regulation within operating $V_{\mbox{\scriptsize DD}}$ range during instantaneous and operating maximum current conditions. If positive injection current $(V_{ln} > V_{DD})$ is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 4. ESD and Latch-up Test Conditions

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
	Number of pulses per pin		3	
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	200	pF
	Number of pulses per pin		3	
Latch-up	Minimum input voltage limit		-2.5	V
Lateri-up	Maximum input voltage limit		7.5	٧

Table 5. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V_{HBM}	±2000	_	V
2	Machine model (MM)	V_{MM}	±200	_	V
3	Charge device model (CDM)	V _{CDM}	±500	_	V
4	Latch-up current at T _A = 85°C	I _{LAT}	±100	_	mA

Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.5 DC Characteristics

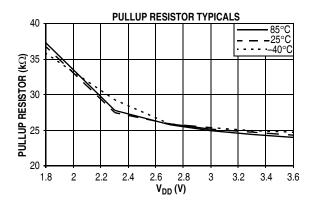

This section includes information about power supply requirements and I/O pin characteristics.

Table 6. DC Characteristics (Temperature Range = −40 to 85°C Ambient)

Parameter	Symbol	Min	Typical	Max	Unit
Supply voltage (run, wait, and stop modes)					
(V _{DD} falling)	V_{DD}	1.8	_	3.6	V
(V _{DD} rising)		V _{LVDL} (rising)	_	3.6	
Minimum RAM retention supply voltage applied to V _{DD}	V _{RAM}	V _{por} ^{1,2}	_	_	V
Low-voltage detection threshold					
(V _{DD} falling)	V_{LVD}	1.80	1.82	1.91	v
(V _{DD} rising)		1.88	1.90	1.99	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Low-voltage warning threshold (V _{DD} falling)	V _{LVW}	2.08	2.1	2.2	V

- Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

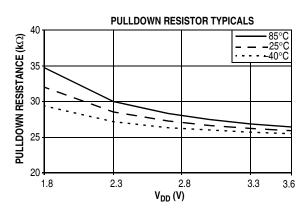
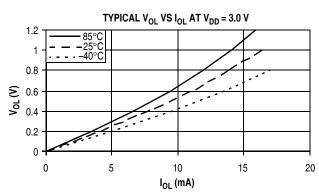



Figure 3. Pullup and Pulldown Typical Resistor Values (V_{DD} = 3.0 V)

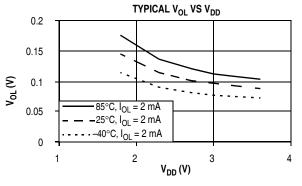
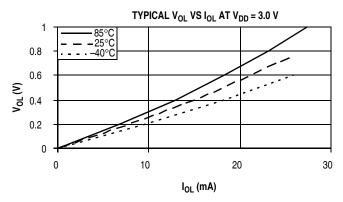



Figure 4. Typical Low-Side Driver (Sink) Characteristics — Low Drive (PTxDSn = 0)

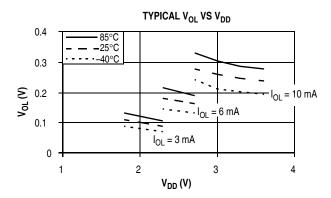


Figure 5. Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1)

- ¹ 3 V values are 100% tested; 2 V values are characterized but not tested.
- 2 Typicals are measured at 25 $^{\circ}\text{C}.$
- ³ Does not include any DC loads on port pins.

3.7 Internal Clock Source (ICS) Characteristics

Table 8. ICS Specifications (Temperature Range = −40 to 85°C Ambient)

Characteristic	Symbol	Min	Typical ¹	Max	Unit
Internal reference start-up time	t _{IRST}	_	60	100	μS
Average internal reference frequency — untrimmed	f _{int_ut}	25	32.7	41.66	kHz
Average internal reference frequency — trimmed	f _{int_t}	31.25	_	39.06	kHz
DCO output frequency range — untrimmed	f _{dco_ut}	12.8	16.8	21.33	MHz
DCO output frequency range — trimmed	f _{dco_t}	16	_	20	MHz
Resolution of trimmed DCO output frequency at fixed voltage and temperature ²	Δf _{dco_res_t}	_	±0.1	±0.2	%f _{dco}
Total deviation of DCO output from trimmed frequency ² At 8 MHz over full voltage and temperature range At 8 MHz and 3.6 V from 0 to 70 °C	Δf_{dco_t}	_	-1.0 to 0.5 ±0.5	±2 ±1	%f _{dco}
FLL acquisition time ^{2,3}	t _{Acquire}	_	_	1.5	ms
Long term jitter of DCO output clock (averaged over 2 ms interval)	C _{Jitter}	_	0.02	0.2	%f _{dco}

¹ Data in Typical column was characterized at 3.0 V, 25 °C, or is typical recommended value.

⁴ Most customers are expected to find that auto-wakeup from a stop mode can be used instead of the higher current wait mode.

² This parameter is characterized and not tested on each device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed.

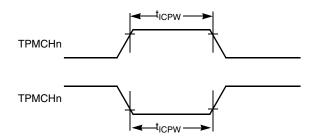


Figure 13. Timer Input Capture Pulse

3.9 Analog Comparator (ACMP) Electricals

Table 11. Analog Comparator Electrical Specifications

Characteristic	Symbol	Min	Typical	Max	Unit
Supply voltage	V_{DD}	1.80	_	3.60	٧
Supply current (active)	I _{DDAC}	_	20	_	μΑ
Analog input voltage	V _{AIN}	V _{SS} – 0.3	_	V_{DD}	V
Analog input offset voltage	V _{AIO}	_	20	40	mV
Analog comparator hysteresis	V _H	3.0	9.0	15.0	mV
Analog input leakage current	I _{ALKG}	_	_	1.0	μΑ
Analog comparator initialization delay	t _{AINIT}	_	_	1.0	μS

3.10 ADC Characteristics

Table 12. 3 V 10-Bit ADC Operating Conditions

Characteristic	Conditions	Symbol	Min	Typical ¹	Max	Unit	Comment
Supply voltage	Absolute	V_{DD}	1.8	_	3.6	V	
Input voltage		V _{ADIN}	V _{SS}	_	V_{DD}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	5	7	kΩ	
Analog source resistance	10 bit mode f _{ADCK} > 4 MHz f _{ADCK} < 4 MHz	R _{AS}	_ _	_ _	5 10	kΩ	External to MCU
	8 bit mode (all valid f _{ADCK})		_	_	10		
ADC conversion	High Speed (ADLPC=0)	f	0.4	_	8.0	- MHz	
clock frequency	Low Power (ADLPC=1)	f _{ADCK}	0.4	_	4.0		

Typical values assume V_{DD} = 3.0 V, Temp = 25°C, f_{ADCK} =1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

Electrical Characteristics

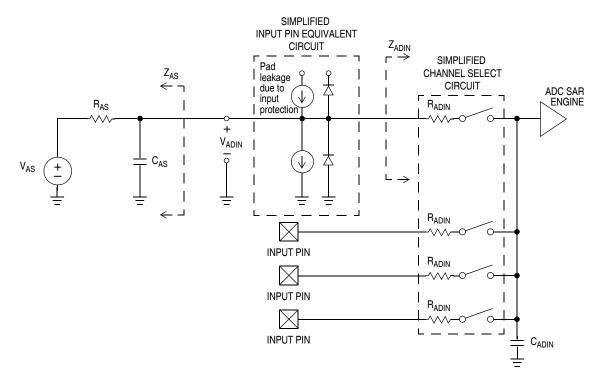


Figure 14. ADC Input Impedance Equivalency Diagram

Table 13. 3 V 10-Bit ADC Characteristics

Characteristic	Conditions	Symbol	Min	Typical ¹	Max	Unit	Comment
Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDAD}	_	120	_	μА	
Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1		I _{DDAD}	_	202	_	μΑ	
Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		I _{DDAD}	_	288	_	μΑ	
Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1		I _{DDAD}	_	532	646	μА	
ADC asynchronous	High speed (ADLPC=0)		2	3.3	5	NALI-	t _{ADACK} =
clock source	Low power (ADLPC=1)	† _{ADACK}	1.25	2	3.3	MHz	1/f _{ADACK}

Electrical Characteristics

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see MC9S08QA4 Series Reference Manual.

Table 14. Flash Characteristics

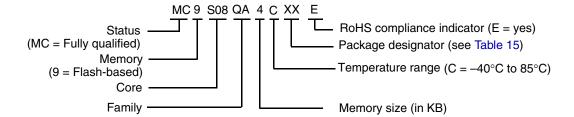
Characteristic	Symbol	Min	Typical	Max	Unit
Supply voltage for program/erase -40°C to 85°C	V _{prog/erase}	1.8	_	3.6	V
Supply voltage for read operation	V _{Read}	1.8	_	3.6	V
Internal FCLK frequency ¹	f _{FCLK}	150	_	200	kHz
Internal FCLK period (1/FCLK)	t _{Fcyc}	5	_	6.67	μS
Byte program time (random location) ²	t _{prog}	9			t _{Fcyc}
Byte program time (burst mode) ²	t _{Burst}		4		t _{Fcyc}
Page erase time ²	t _{Page}		4000		t _{Fcyc}
Mass erase time ²	t _{Mass}		20,000		t _{Fcyc}
Program/erase endurance ³ T_L to $T_H = -40^{\circ}C$ to + 85°C $T = 25^{\circ}C$		10,000	 100,000		cycles
Data retention ⁴	t _{D_ret}	15	100	_	years

¹ The frequency of this clock is controlled by a software setting.

These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ **Typical endurance for flash** was evaluated for this product family on the 9S12Dx64. For additional information on how Motorola defines typical endurance, please refer to Engineering Bulletin EB619/D, *Typical Endurance for Nonvolatile Memory*.

Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.

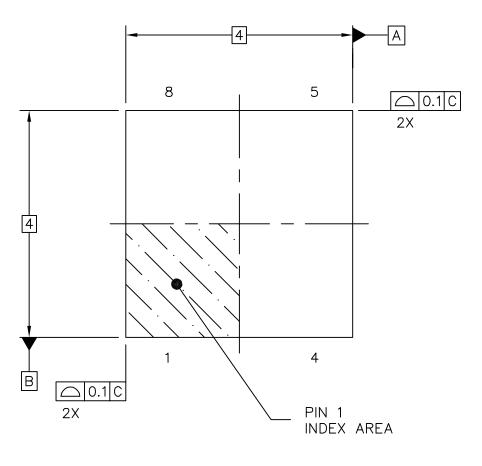


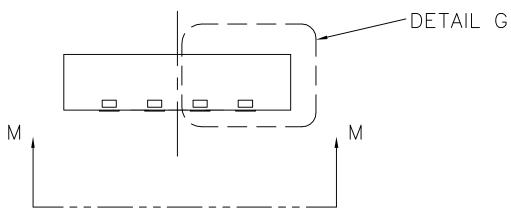
4 Ordering Information

This section contains ordering numbers for MC9S08QA4 series devices. See below for an example of the device numbering system.

Memory **Package Device Number** Flash **RAM Type** Designator **Document No.** 8 DFN FQ 98ARL10557D MC9S08QA4 4 KB 256 bytes 8 PDIP PA 98ASB42420B MC9S08QA2 2 KB 160 bytes 8 NB SOIC DN 98ASB42564B

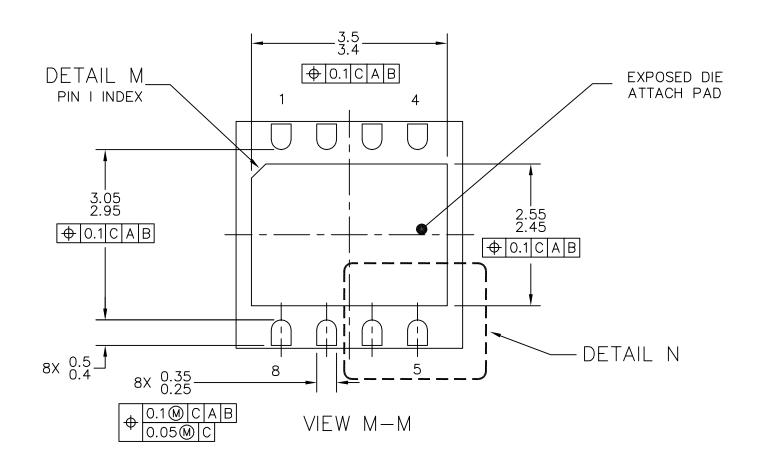
Table 15. Device Numbering System

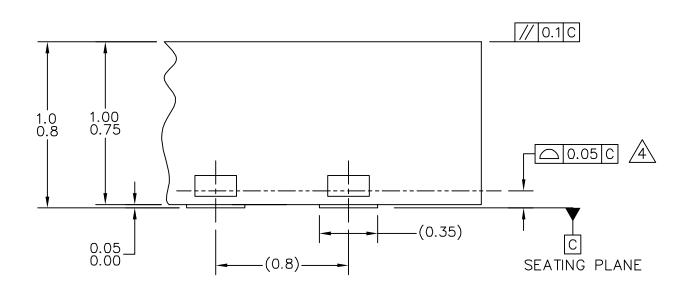



5 Mechanical Drawings

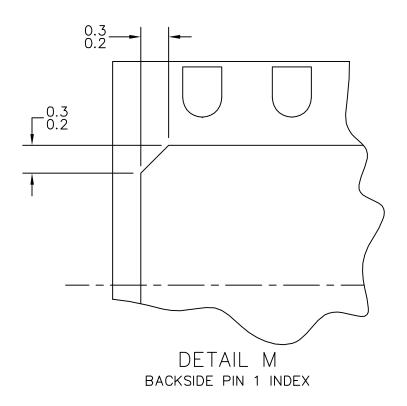
The following pages contain mechanical specifications for MC9S08QA4 series package options.

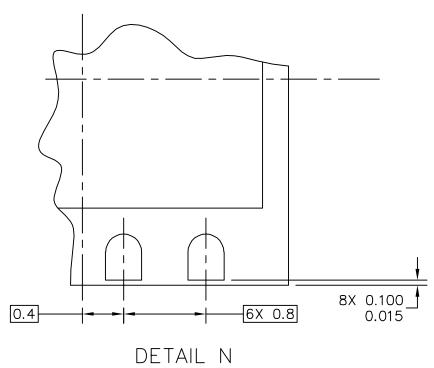
- 8-pin DFN (plastic dual in-line pin)
- 8-pin NB SOIC (narrow body small outline integrated circuit)
- 8-pin PDIP (plastic dual in-line pin)





© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE: THERMALLY ENHANCED DUAL FLAT NO LEAD PACKAGE (DFN)		DOCUMENT NO): 98ARL10557D	REV: B
		CASE NUMBER	: 1452–02	28 DEC 2005
8 TERMINAL, 0.8 PITCH (4	8 TERMINAL, 0.8 PITCH (4 X 4 X 1)		STANDARD: NON-JEDEC	



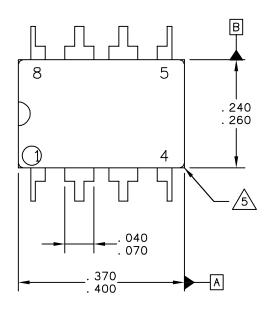


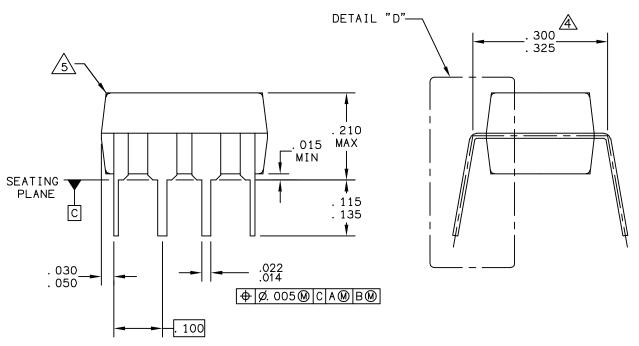
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	DMECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: THERMALLY ENHANCED DUAL FLAT NO LEAD PACKAGE (DFN)		DOCUMENT NO): 98ARL10557D	REV: B
		CASE NUMBER	2: 1452–02	28 DEC 2005
8 TERMINAL, 0.8 PITCH (4)	X 4 X I)	STANDARD: NO	N-JEDEC	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE: THERMALLY ENHANCED DUAL FLAT NO LEAD PACKAGE (DFN)		DOCUMENT NO): 98ARL10557D	REV: B
		CASE NUMBER	2: 1452–02	28 DEC 2005
8 TERMINAL, 0.8 PITCH (4	8 TERMINAL, 0.8 PITCH (4 X 4 X 1)		STANDARD: NON-JEDEC	

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. THE COMPLETE JEDEC DESIGNATOR FOR THIS PACKAGE IS: HP-VFDFP-N.


4.


COPLANARITY APPLIES TO LEADS AND DIE ATTACH PAD.

5. MIN. METAL GAP SHOULD BE 0.2MM.

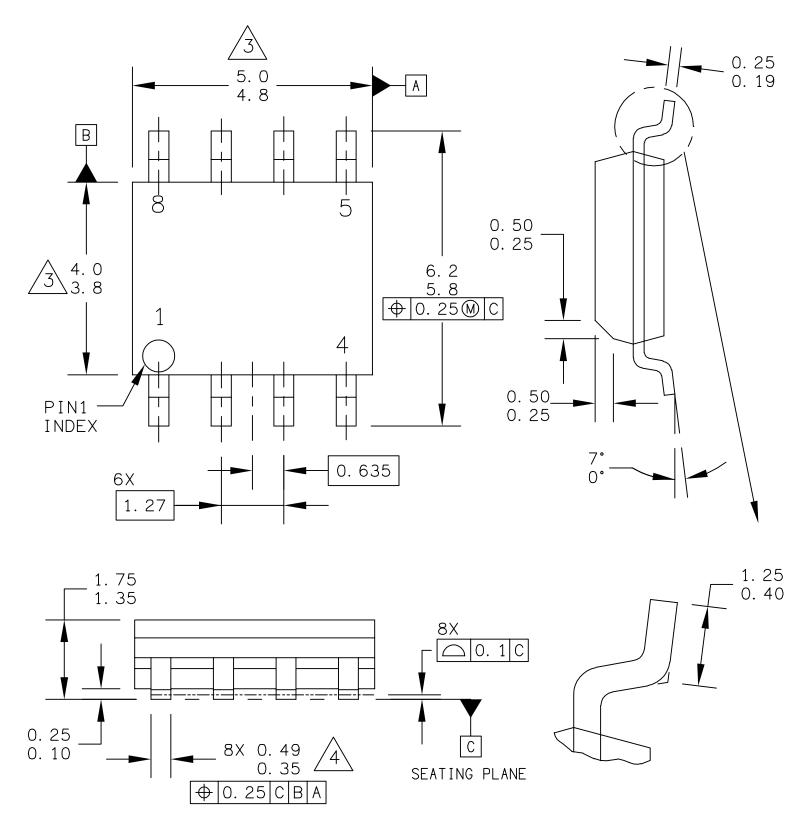
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:THERMALLY ENHANCED	DUAL	DOCUMENT NO	: 98ARL10557D	REV: B
FLAT NO LEAD PACKAGE		CASE NUMBER	l: 1452–02	28 DEC 2005
8 TERMINAL, O. 8 PITCH(4	X 4 X 1)	STANDARD: NO	N-JEDEC	•

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL OUTLINE		PRINT VERSION NO	OT TO SCALE	
TITLE: 8 LD PDIP		DOCUMENT NO): 98ASB42420B	REV: N
		CASE NUMBER	2: 626–06	19 MAY 2005
		STANDARD: NON-JEDEC		

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M - 1994.
- 2. ALL DIMENSIONS ARE IN INCHES.
- 3. 626-03 TO 626-06 OBSOLETE. NEW STANDARD 626-07.
- *A*. DIMENSION TO CENTER OF LEAD WHEN FORMED PARALLEL.
- *f*5. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CONERS).

STYLE 1:


PIN AC IN GROUND 1. 5. OUTPUT 2. DC + IN6. 3.

DC - IN AUXILIARY 7.

AC IN 4. 8. VCC

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42420B	REV: N
8 LD PDIP		CASE NUMBER	R: 626–06	19 MAY 2005
		STANDARD: NO	N-JEDEC	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE:		DOCUMENT NO	: 98ASB42564B	REV: U
8LD SOIC NARROW	BODY	CASE NUMBER	2: 751–07	07 APR 2005
			DEC MS-012AA	

STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE #1 2. COLLECTOR, #2 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #2 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1
STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE	STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE	STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE
STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd	STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1	STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON
STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42564B	REV: U
8LD SOIC NARROV	OIC NARROW BODY		R: 751–07	07 APR 2005
		STANDARD: JEDEC MS-012AA		

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	ECHANICAL OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:	DOCUMENT NO	: 98ASB42564B	REV: U
8LD SOIC NARROW BC	ODY CASE NUMBER	: 751–07	07 APR 2005
	STANDARD: JE	DEC MS-012AA	

