
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	
Peripherals	LVD, POR, PWM, WDT
Number of I/O	4
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08qa4cpae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	MCU	Block Diagram
2	Pin A	ssignments
3	Elect	rical Characteristics
	3.1	Introduction
	3.2	Absolute Maximum Ratings
	3.3	Thermal Characteristics
	3.4	ESD Protection and Latch-Up Immunity6
	3.5	DC Characteristics
	3.6	Supply Current Characteristics
	3.7	Internal Clock Source (ICS) Characteristics11

	3.8	AC Characteristics
		3.8.2 TPM/MTIM Module Timing
	3.9	Analog Comparator (ACMP) Electricals 15
	3.10	ADC Characteristics 15
	3.11	Flash Specifications
4		ring Information
5	Mech	nanical Drawings 19

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

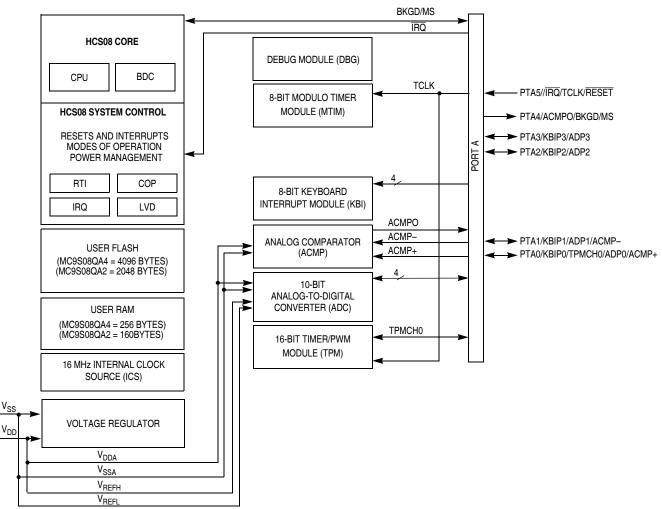
http://freescale.com/

The following revision history table summarizes changes contained in this document.

Revision	Date	Description of Changes				
1	1/2008	Initial public release				
2	2/2008	Changed the designator of the device in Table 15.				
3	1/2009	Changed the condition of Run supply current measured to $f_{Bus} = 1$ MHz in Table 7. Fixed the error of inconsistent table number.				

Related Documentation

Find the most current versions of all documents at: http://www.freescale.com


Reference Manual (MC9S08QA4RM)

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9S08QA4 MCU.

NOTES:

- ¹ Port pins are software configurable with pullup device if input port.
- ² Port pins are software configurable for output drive strength.
- ³ Port pins are software configurable for output slew rate control.
- ⁴ IRQ contains a software configurable (IRQPDD) pullup device if PTA5 enabled as IRQ pin function (IRQPE = 1).
- ⁵ RESET contains integrated pullup device if PTA5 enabled as reset pin function (RSTPE = 1).
- ⁶ PTA4 contains integrated pullup device if BKGD enabled (BKGDPE = 1).
- ⁷ When pin functions as KBI (KBIPEn = 1) and associated pin is configured to enable the pullup device, KBEDGn can be used to reconfigure the pullup as a pulldown device.

Figure 1. MC9S08QA4 Series Block Diagram

2 Pin Assignments

This section shows the pin assignments in the packages available for the MC9S08QA4 series.

3.1 Introduction

This chapter contains electrical and timing specifications for the MC9S08QA4 series of microcontrollers available at the time of publication.

3.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 2 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 3.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	Ι _D	±25	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table	2.	Absolute	Maximum	Ratings
Tuble	_	Absolute	maximani	nuungo

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

- $^2\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}
- ³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H –40 to 85	°C
Thermal resistance Single-layer board			
8-pin PDIP		113	
8-pin NB SOIC	θ_{JA}	150	°C/W
8-pin DFN		179	
Thermal resistance Four-layer board			
8-pin PDIP		72	
8-pin NB SOIC	θ_{JA}	87	°C/W
8-pin DFN		41	1

Table 3. Thermal Characteristics

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

— $T_A =$ Ambient temperature, °C

— θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

- P_D = P_{int} + P_{I/O}

— $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

— $P_{I/O}$ = Power dissipation on input and output pins — user-determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2 \qquad \qquad Eqn. 3$$

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.4 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

Parameter	Symbol	Min	Typical	Max	Unit
(V _{DD} rising)		2.16	2.19	2.27	
Power on reset (POR) re-arm voltage	V _{por}	—	1.4	—	V
Bandgap voltage reference	V _{BG}	1.18	1.20	1.21	V
Input high voltage ($V_{DD} > 2.3 \text{ V}$) (all digital inputs)	N	$0.70 \times V_{DD}$	_	_	V
Input high voltage (1.8 V \leq V_{DD} \leq 2.3 V) (all digital inputs)	V _{IH}	$0.85 \times V_{DD}$	_	_	V
Input low voltage (V _{DD} > 2.3 V) (all digital inputs)		—		$0.35 \times V_{DD}$	
Input low voltage (1.8 V \leq V_{DD} \leq 2.3 V) (all digital inputs)	V _{IL}			$0.30 \times V_{DD}$	V
Input hysteresis (all digital inputs)	V _{hys}	$0.06 \times V_{DD}$		_	V
Input leakage current (per pin) $V_{In} = V_{DD}$ or V_{SS} , all input-only pins	_{In}	_	0.025	1.0	μA
High impedance (off-state) leakage current (per pin) $V_{ln} = V_{DD}$ or V_{SS} , all input/output	ll _{oz} l	_	0.025	1.0	μA
Internal pullup resistors ^{3,4}	R _{PU}	17.5	_	52.5	kΩ
Internal pulldown resistor (KBI)	R _{PD}	17.5	_	52.5	kΩ
Output high voltage — low drive (PTxDSn = 0) $I_{OH} = -2 \text{ mA} (V_{DD} \ge 1.8 \text{ V})$		V _{DD} – 0.5	_	_	
	V _{OH}	V _{DD} – 0.5			V
Maximum total I _{OH} for all port pins	II _{OHT} I	_	_	60	mA
Output low voltage — low drive (PTxDSn = 0) I_{OL} = 2.0 mA (V _{DD} \ge 1.8 V)		_	_	0.5	v
$ \begin{array}{l} \text{Output low voltage } & \text{ high drive } (\text{PTxDSn} = 1) \\ \text{I}_{OL} = 10.0 \text{ mA } (\text{V}_{DD} \geq 2.7 \text{ V}) \\ \text{I}_{OL} = 6 \text{ mA } (\text{V}_{DD} \geq 2.3 \text{ V}) \\ \text{I}_{OL} = 3 \text{ mA } (\text{V}_{DD} \geq 1.8 \text{ V}) \end{array} $	V _{OL}	 		0.5 0.5 0.5	v
Maximum total I _{OL} for all port pins	I _{OLT}	—	—	60	mA
DC injection current ^{2, 5, 6, 7} $V_{In} < V_{SS}, V_{In} > V_{DD}$ Single pin limit Total MCU limit, includes sum of all stressed pins	I _{IC}	-0.2 -5		0.2 5	mA mA
Input capacitance (all non-supply pins)	C _{In}	—	_	7	pF

Table 6. DC Characteristics (Temperature Range = -40 to 85°C Ambient) (continued)

¹ RAM will retain data down to POR voltage. RAM data not guaranteed to be valid following a POR.

² This parameter is characterized and not tested on each device.

 $^3~$ Measurement condition for pull resistors: V_{In} = V_{SS} for pullup and V_{In} = V_{DD} for pulldown.

⁴ PTA5/IRQ/TCLK/RESET pullup resistor may not pull up to the specified minimum V_{IH}. However, all ports are functionally tested to guarantee that a logic 1 will be read on any port input when the pullup is enabled and no DC load is present on the pin.

 $^5\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

- ⁶ Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁷ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

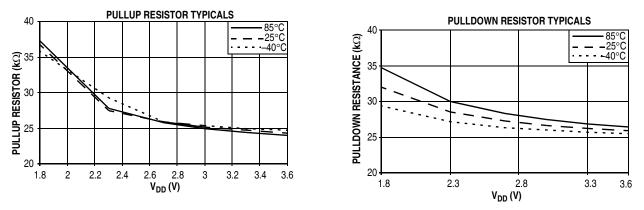


Figure 3. Pullup and Pulldown Typical Resistor Values ($V_{DD} = 3.0 \text{ V}$)

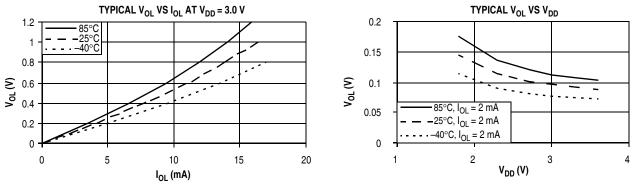


Figure 4. Typical Low-Side Driver (Sink) Characteristics — Low Drive (PTxDSn = 0)

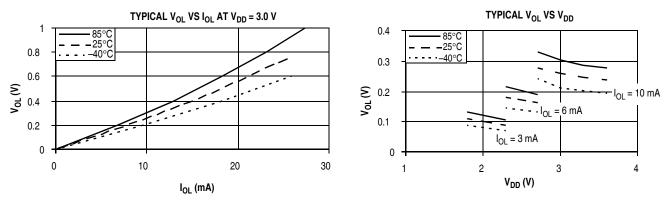


Figure 5. Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1)

3.8.1 Control Timing

Parameter	Symbol	Min	Typical ¹	Мах	Unit
Bus frequency $(t_{cyc} = 1/f_{Bus})$	f _{Bus}	0		10	MHz
Real-time interrupt internal oscillator period (see Table 9)	t _{RTI}	700	1000	1300	μs
External reset pulse width ²	t _{extrst}	100	—	—	ns
IRQ pulse width Asynchronous path ² Synchronous path ³	tı∟ıн	100 1.5 t _{cyc}	_	_	ns
KBIPx pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 t _{cyc}	_	_	ns
Port rise and fall time (load = 50 pF) ⁴ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		3 30		ns
BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	—	—	ns
BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ⁵	t _{MSH}	100	_	_	μs

Table 9. Control Timing

¹ Data in Typical column was characterized at 3.0 V, 25°C.

 2 This is the shortest pulse that is guaranteed to be recognized.

³ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 85°C.

⁵ To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.

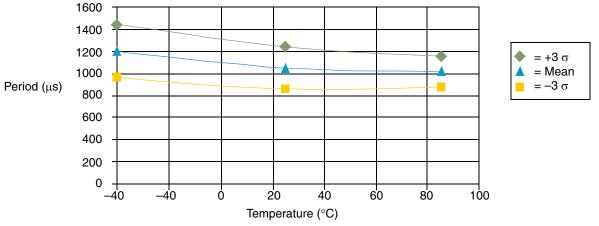
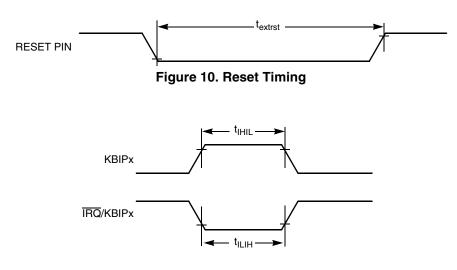
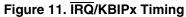




Figure 9. Typical RTI Clock Period vs. Temperature

3.8.2 TPM/MTIM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Function	Symbol	Min	Мах	Unit
External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
External clock period	t _{TCLK}	4	_	t _{cyc}
External clock high time	t _{clkh}	1.5	_	t _{cyc}
External clock low time	t _{clkl}	1.5	_	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

Table 10. TPM/MTIM Input Timing

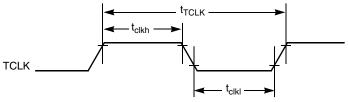


Figure 12. Timer External Clock

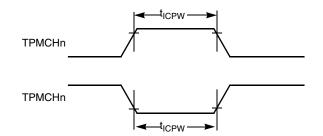


Figure 13. Timer Input Capture Pulse

3.9 Analog Comparator (ACMP) Electricals

Characteristic	Symbol	Min	Typical	Max	Unit
Supply voltage	V _{DD}	1.80	_	3.60	V
Supply current (active)	I _{DDAC}	_	20	_	μA
Analog input voltage	V _{AIN}	$V_{SS} - 0.3$	_	V _{DD}	V
Analog input offset voltage	V _{AIO}	_	20	40	mV
Analog comparator hysteresis	V _H	3.0	9.0	15.0	mV
Analog input leakage current	I _{ALKG}	_	_	1.0	μA
Analog comparator initialization delay	t _{AINIT}	_	_	1.0	μS

3.10 ADC Characteristics

Characteristic	Conditions	Symbol	Min	Typical ¹	Мах	Unit	Comment
Supply voltage	Absolute	V _{DD}	1.8	—	3.6	V	
Input voltage		V _{ADIN}	V _{SS}	—	V _{DD}	V	
Input capacitance		C _{ADIN}	—	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	5	7	kΩ	
Analog source resistance	10 bit mode f _{ADCK} > 4 MHz f _{ADCK} < 4 MHz	R _{AS}		_	5 10	kΩ	External to MCU
	8 bit mode (all valid f _{ADCK})			—	10		
ADC conversion	High Speed (ADLPC=0)	f	0.4	—	8.0	MHz	
clock frequency	Low Power (ADLPC=1)	f _{ADCK}	0.4	—	4.0		

Typical values assume V_{DD} = 3.0 V, Temp = 25°C, f_{ADCK} =1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

1

Characteristic	Conditions	Symbol	Min	Typical ¹	Мах	Unit	Comment
Conversion time	Short sample (ADLSMP=0)		_	20	_	ADCK	See
(including sample time)	Long sample (ADLSMP=1)	t _{ADC}	_	40	_	cycles	MC9S08QA4 Series
	Short sample (ADLSMP=0)			3.5		ADCK	<i>Reference</i> <i>Manual</i> for
Sample time	Long sample (ADLSMP=1)	t _{ADS}	_	23.5	_	cycles	conversion time variances
- - - - - - - - - -	10-bit mode	_	_	±1.5	±3.5	1.002	Includes
Total unadjusted error	8-bit mode	E _{TUE}	_	±0.7	±1.5	LSB ²	quantization
B	10-bit mode			±0.5	±1.0		Monotonicity
Differential non-linearity	8-bit mode	DNL	_	±0.3	±0.5	LSB ²	and no missing codes guaranteed
Integral non-linearity	0-bit mode	INL	_	±0.5	±1.0	– LSB ²	
integral non-linearity	8-bit mode		_	±0.3	±0.5		
Zero-scale error	10-bit mode	- E _{ZS}	_	±1.5	±2.1	LSB ²	V _{ADIN} = V _{SS}
Zero-scale error	8-bit mode	►ZS		±0.5	±0.7	130	
Full-scale error	10-bit mode	E _{FS}	0	±1.0	±1.5	LSB ²	V _{ADIN} = V _{DD}
	8-bit mode	⊢FS	0	±0.5	±0.5	LOD	VADIN − VDD
Quantization error	10-bit mode	E _Q		—	±0.5	LSB ²	
Quantization entri	8-bit mode	LQ		—	±0.5	100	
Input leakage error	10-bit mode	Ε _{IL}	0	±0.2	±4	LSB ²	Pad leakage ^{3 *}
Input leakage endi	8-bit mode		0	±0.1	±1.2	130	R _{AS}
Temp sensor	−40°C − 25°C	m	—	1.646	_	mV/°C	
slope	25°C – 85°C		_	1.769		mv/°C	
Temp sensor voltage	25°C	V _{TEMP25}	_	701.2	_	mV	

Table 13. 3 V 10-Bit ADC Characteristics ((continued)
--	-------------

¹ Typical values assume V_{DD} = 3.0 V, Temp = 25°C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
 ² 1 LSB = (V_{REFH} - V_{REFL})/2^N

³ Based on input pad leakage current. Refer to pad electricals.

3.11 **Flash Specifications**

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see *MC9S08QA4 Series Reference Manual*.

Characteristic	Symbol	Min	Typical	Мах	Unit
Supply voltage for program/erase -40°C to 85°C	V _{prog/erase}	1.8	_	3.6	V
Supply voltage for read operation	V _{Read}	1.8	—	3.6	V
Internal FCLK frequency ¹	f _{FCLK}	150	—	200	kHz
Internal FCLK period (1/FCLK)	t _{Fcyc}	5	—	6.67	μS
Byte program time (random location) ²	t _{prog}		9		t _{Fcyc}
Byte program time (burst mode) ²	t _{Burst}		4		t _{Fcyc}
Page erase time ²	t _{Page}		4000		t _{Fcyc}
Mass erase time ²	t _{Mass}		20,000		t _{Fcyc}
Program/erase endurance ³ T _L to T _H = -40° C to + 85°C T = 25°C		10,000			cycles
Data retention ⁴	t _{D_ret}	15	100		years

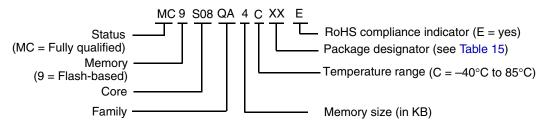
Table 14. Flash Characteristics

¹ The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ **Typical endurance for flash** was evaluated for this product family on the 9S12Dx64. For additional information on how Motorola defines typical endurance, please refer to Engineering Bulletin EB619/D, *Typical Endurance for Nonvolatile Memory*.

⁴ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618/D, *Typical Data Retention for Nonvolatile Memory.*

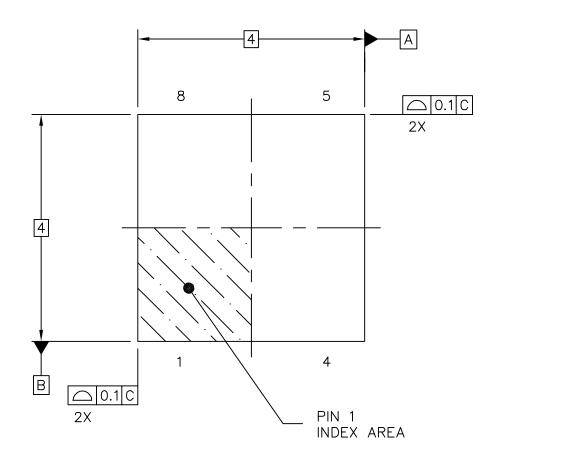


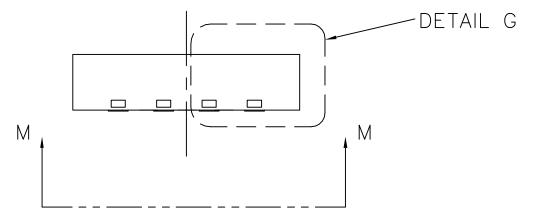
4 Ordering Information

This section contains ordering numbers for MC9S08QA4 series devices. See below for an example of the device numbering system.

Device Number	Memory		Package			
Device Number	Flash	RAM	Туре	Designator	Document No.	
MC9S08QA4	4 KB	256 bytes	8 DFN 8 PDIP	FQ PA	98ARL10557D 98ASB42420B	
MC9S08QA2	2 KB	160 bytes	8 NB SOIC	DN	98ASB42564B	

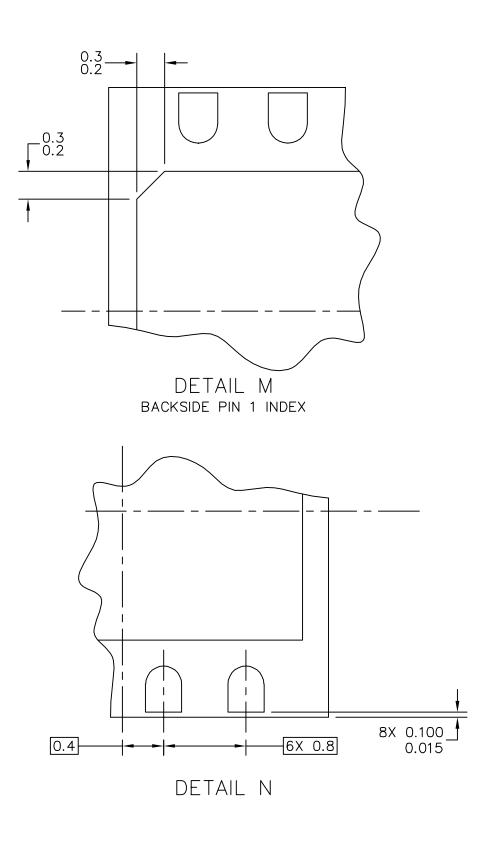
Table 15. Device Numbering System




5 Mechanical Drawings

The following pages contain mechanical specifications for MC9S08QA4 series package options.

- 8-pin DFN (plastic dual in-line pin)
- 8-pin NB SOIC (narrow body small outline integrated circuit)
- 8-pin PDIP (plastic dual in-line pin)



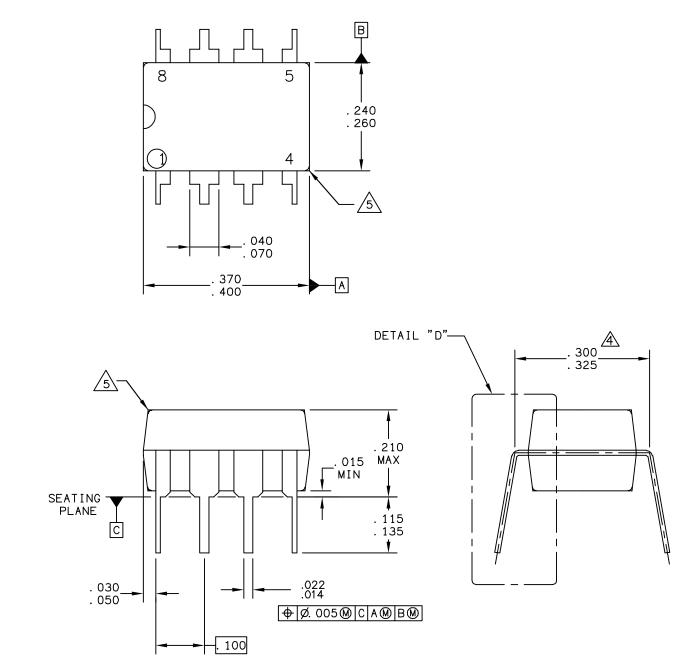
© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE: THERMALLY ENHANCED DUAL FLAT NO LEAD PACKAGE (DFN) 8 TERMINAL, 0.8 PITCH (4 X 4 X 1)		DOCUMENT NO): 98ARL10557D	REV: B
		CASE NUMBER	: 1452–02	28 DEC 2005
		STANDARD: NO	N-JEDEC	

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE: THERMALLY ENHANCED DUAL FLAT NO LEAD PACKAGE (DFN) 8 TERMINAL, 0.8 PITCH (4 X 4 X 1)		DOCUMENT NO): 98ARL10557D	REV: B
		CASE NUMBER: 1452-02 28 DEC 20		28 DEC 2005
		STANDARD: NO	N-JEDEC	

NOTES:

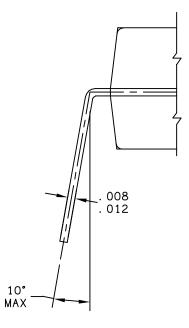
1. ALL DIMENSIONS ARE IN MILLIMETERS.

2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14. 5M-1994.


3. THE COMPLETE JEDEC DESIGNATOR FOR THIS PACKAGE IS: HP-VFDFP-N.

4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH PAD.

5. MIN. METAL GAP SHOULD BE 0.2MM.

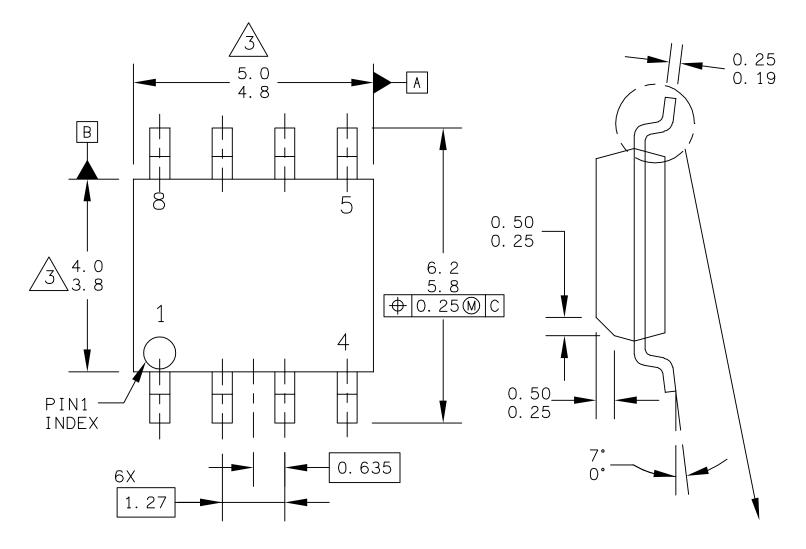

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	DT TO SCALE
TITLE:THERMALLY ENHANCED	DUAL	DOCUMENT NO	: 98ARL10557D	REV: B
FLAT NO LEAD PACKAGE (DFN) 8 TERMINAL, O. 8 PITCH(4 X 4 X 1)		CASE NUMBER: 1452-02 28 DEC 200		28 DEC 2005
		STANDARD: NC	N-JEDEC	

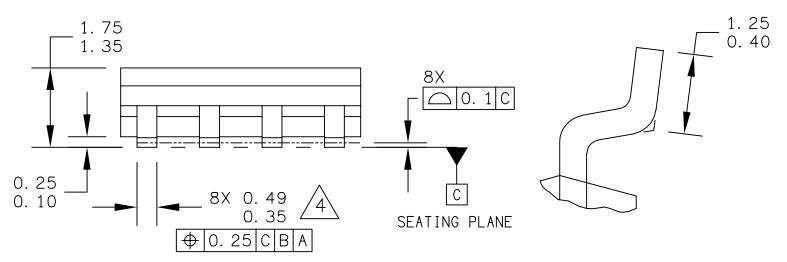
© FREESCALE SEMICONDUCTOR, INC. All Rights reserved.		LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42420B	REV: N
8 LD PDIP		CASE NUMBER	8: 626–06	19 MAY 2005
		STANDARD: NO	N-JEDEC	

DETAIL "D"

© FREESCALE SEMICONDUCTOR, INC. All Rights reserved.	MECHANICAL OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:	DOCUMENT NO): 98ASB42420B	REV: N
8 LD PDIP	CASE NUMBER	₹: 626–06	19 MAY 2005
	STANDARD: NO	DN-JEDEC	

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- 2. ALL DIMENSIONS ARE IN INCHES.
- 3. 626-03 TO 626-06 OBSOLETE. NEW STANDARD 626-07.
- \triangle DIMENSION TO CENTER OF LEAD WHEN FORMED PARALLEL.
- A PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CONERS). STYLE 1:


PIN	1.	AC	ΙN	
	2.	DC	+ IN	
	3.	DC	— IN	
	4.	AC	ΙN	

- 5. GROUND
- OUTPUT
 AUXILIARY
- 8. VCC

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		LOUTLINE	PRINT VERSION NOT TO SCALE	
TITLE:		DOCUMENT NO): 98ASB42420B	REV: N
8 LD PDIP		CASE NUMBER	8: 626–06	19 MAY 2005
		STANDARD: NON-JEDEC		

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42564B	REV: U
8LD SOIC NARROW BODY		CASE NUMBER	8: 751–07	07 APR 2005
		STANDARD: JE	DEC MS-012AA	

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- A DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- A. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42564B	REV: U
8LD SOIC NARROW BOD'		CASE NUMBER	2: 751–07	07 APR 2005
		STANDARD: JE	DEC MS-012AA	