

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	LINbusSCI, SPI
Peripherals	LVD, Motor Control PWM, POR, PWM, WDT
Number of I/O	26
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st7fmc2s4tce

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Development tools	. 360
14.3.1 Starter kits	360
14.3.2 Development and debugging tools	360
14.3.3 Programming tools	360
14.3.4 Development tool order codes for the ST7MCxxx-Auto family	361
14.3.5 Package/socket footprint proposal	361
wn limitations	. 361
Flash/FASTROM devices only	. 361
Clearing active interrupts outside interrupt routine	. 361
TIMD set simultaneously with OC interrupt	. 362
15.3.1 Impact on the application	362
15.3.2 Workaround	363
LINSCI limitations	. 363
15.4.1 LINSCI wrong break duration	363
15.4.2 Header time-out does not preven wake-up from mute mode	364
Missing detection of BLDC 'Z event	. 366
Reset value of unavailable oin ،	. 366
Maximum values of AVD thresholds	. 366
External interrypt missed	. 366
ision history	. 369
Producils	
	Development tools

9/371

	Pin number				Le	vel	Port						Main												
	544 532		Pin name		Pin name		Pin name		Pin name		Pin name		Pin name		Ħ	at a		Input			Out	put	function (after	Alternate	function ⁽²⁾
	LQFI	LQFI			dul	Out		mdm	int ⁽³⁾	ana	OD	РР	reset)												
														Timer A out compare 2	put										
	29	21	PD0/OCMP2_A/ MCPWMW ⁽¹⁰⁾ /AIN11	I/O	C _T		x			х	Х	Х	Port D0	MTC PWM W ⁽¹⁰⁾	output										
														ADC analog	յ inpu: 11										
			PD1(HS)/OCMP1_A/											Timer A cut compa e 1	ut										
	30	22	MCPWMV ⁽¹⁰⁾ /	I/O	C_T	HS	Х		ei0		Х	Х	Port D1	MIC F WM	output V ⁽¹⁰⁾										
			MCDEM										P10	MTC demagnetiz	ation ⁽¹¹⁾										
												×C		Timer A inp	ut capture 2										
	31	23	PD2/ICAP2_A/ MCZEM ⁽¹¹⁾ /AIN12	I/O	C_T		Х	е	i0	Х	X	Х	Port D2	MTC BEMF	(11)										
								5		5)		20	ADC analog	input 12										
	32	24	PD3/ICAP1_A/AIN13	I/O	CT		x		ei0	x	x	x	Port D3	Timer A input capture 1	ADC analog input 13										
			PD4/EXTCLK_A/ICCC	Ċ		5		(5	5)			Timer A extension	ernal clock										
	33	25	LK/ AIN14	D's			X	ei0		X	XX		Port D4	ICC clock o	utput										
			100			1								ADC analog	input 14										
	34	26	PD5/ICCD/TA/AIN15	1/0	Ст	51	x	е	iO	х	х	х	Port D5	ICC data in	out										
			<u>×0</u>	Č		1								ADC analog	input 15										
	35	27	[6/RDI	1/0	C_{T}	HS	X		ei0		Х	Х	Port D6	SCI receive	data in										
0	26	28	PD7/TDO	I/O	CT	HS	x	Х			х	х	Port D7	SCI transmi output	t data										
U			V _{SS_2} ⁽⁷⁾	S									Digital grou	und voltage											
		\mathbf{a}	V _{DD_2} ⁽⁷⁾	S									Digital mai	n supply volt	age										
	(5)	(5)	PH4	I/O	Τ _Τ		X	Х			Х	Х	Port H4												
C	Y		PH5	I/O	Τ _Τ		X	Х			Х	Х	Port H5												
			PH6	I/O	Τ _T		Х	Х			Х	Х	Port H6												

Table 2. Device pin description⁽¹⁾ (continued)

- V.DGHALT is an option bit. See option byte section for more details. 1.
- Peripherals clocked with an external clock source can still be active. 2
- Only some specific interrupts can exit the MCU from Halt mode (such as external interrupt). Refer to *Table 22: Interrupt mapping on page 70* for more details.
- 005019<u>3</u>. 4. 005019<u>4</u>. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped.

Bit	Name	Function
7:6	-	Reserved, must be kept cleared.
5:4	CS[2:1]	 Capture sensitivity These bits are set and cleared by software. They determine the trigger event polarity on the corresponding input capture channel. 0: Falling edge triggers capture on channel x 1: Rising edge triggers capture on channel x
3:2	CIE[2:1]	Capture interrupt enable These bits are set and cleared by software. They enable or disable the input capture channel interrupts independently. 0: Input capture channel x interrupt disabled 1: Input capture channel x interrupt enabled
1:0	CF[2:1]	Capture flag These bits are set by hardware and cleared by software reacting the corresponding ARTICRx register. Each CFx bit indicates that an input capture x has occurred. 0: No input capture on channel x 1: An input capture has occurred on channel x

 Table 44.
 ARTICCSR register description

ART input capture registers (ARTICRx)

5

6

ARTICRx

7

4 3 2 1 0 IC[7:0]

Table 45.	ARTICRX register description	

Bit	Name	Function
	IC[7:0]	Input capture data These read-only bits are set and cleared by hardware. An ARTICRx register contains the 8-bit auto-reload counter value transferred by the input capture channel x event.
Obsuete	P(
Obsolie		

RO

Figure 40. Timer block diagram

1. If IC, OC and TO interrupt requests have separate vectors then the last OR is not present (see Table 22: Interrupt mapping)

	Bit	Name	Function
	7	ICIE	Input capture interrupt enable 0: Interrupt is inhibited 1: A timer interrupt is generated whenever the ICF1 or ICF2 bit of the SR register is set
	6	OCIE	Output compare interrupt enable 0: Interrupt is inhibited 1: A timer interrupt is generated whenever the OCF1 or OCF2 bit of the SR register is set
	5	TOIE	Timer overflow interrupt enable 0: Interrupt is inhibited 1: A timer interrupt is enabled whenever the TOF bit of the SR register is set
	4	FOLV2	 Forced output compare 2 This bit is set and cleared by software. 0: No effect on the OCMP2 pin 1: Forces the OLVL2 bit to be copied to the OCMP2 oir, in the OC2E bit is set and even if there is no successful comparison
	3	FOLV1	Forced output compare 1 This bit is set and cleared by software. 0: No effect on the OCMP1 pin 1: Forces OLVL1 to be conication whe OCMP1 pin, if the OC1E bit is set and even if there is no successful commarison
	2	OLVL2	Output level 2 This bit is copied to the OCMP2 pin whenever a successful comparison occurs with the OC2R register and OCxE is set in the CR2 register. This value is copied to the OCMP1 or in one pulse mode and pulse width modulation mode.
	1	IEDG1	Inp it eage 1 This bit determines which type of level transition on the ICAP1 pin triggers the capture. 0: A falling edge triggers the capture 1: A rising edge triggers the capture
obsole	0	OLVL1	Output level 1 The OLVL1 bit is copied to the OCMP1 pin whenever a successful comparison occurs with the OC1R register and the OC1E bit is set in the CR2 register.
obsole		5	
U			

Table 50. CR1 register description

Bit	Name	Function
3	OCF2	Output compare flag 2 0: No match (reset value) 1: The content of the free running counter has matched the content of the OC2R register. To clear this bit, first read the SR register, then read or write the low byte of the OC2R (OC2LR) register.
2	TIMD	 Timer disable This bit is set and cleared by software. When set, it freezes the timer prescaler and counter and disabled the output functions (OCMP1 and OCMP2 pins) to reduce power consumption. Access to the timer registers is still available, allowing the timer configuration to be changed while it is disabled. 0: Timer enabled 1: Timer prescaler, counter and outputs disabled
1:0	-	Reserved, must be kept cleared

Table 52. CSR register description (continued)

Input capture 1 high register (IC1HR)

This is an 8-bit read-only register that contains the high part of the counter value (transferred by the input capture 1 event).

IC1HR					20	Reset value	e: undefined
7	6	5	-0	3	2	1	0
MSB					0		LSB
RO	RO	RO	RO	RO	RO	RO	RO

Input capture 1 lov register (IC1LR)

This is an 8-bit read only register that contains the low part of the counter value (transferred by the input capture 1 event).

	IC D.R	.(Reset value	e: undefined
18	7	6	5	4	3	2	1	0
cO'	MSB	00						LSB
005	RO	RO	RO	RO	RO	RO	RO	RO
18	Output con	npare 1 h	igh regis	ter (OC1H	R)			
00501	This is an 8-l register.	oit register	that contai	ns the high	part of the	alue to be	compared to	o the CHR

Output compare 1 high register (OC1HR)

Output compare 1 low register (OC1LR)

This is an 8-bit register that contains the low part of the value to be compared to the CLR register.

Output compare 2 high register (OC2HR)

This is an 8-bit register that contains the high part of the value to be compared to the CHR register.

Output compare 2 low register (OC2LR)

This is an 8-bit register that contains the 'cw part of the value to be compared to the CLR register.

Counter high register (CHR)

This is an 8-bit read-only register that contains the high part of the counter value.

Clearing the WCOL bit is done through a software sequence (see Figure 59).

Figure 59. Clearing the WCOL bit (write collision flag) software sequence

1. Writing to the SPIDR register instead of reading it does not reset the WCOL bit.

Single master and multimaster configurations leteP

There are two types of SPI systems:

- Single master system
- Multimaster system

Single master system

A typical single master system may be configured using a device as the master and four devices as slaves (see Figure 60).

The master device selects the individual slave devices by using four pins of a parallel port to control the tour \overline{SS} pins of the slave devices.

The $\overline{3S}$ pins are pulled high during reset since the master device ports are forced to be inputs at that time, thus disabling the slave devices.

To prevent a bus conflict on the MISO line, the master allows only one active slave device during a transmission.

For more security, the slave device may respond to the master with the received data byte. Then the master receives the previous byte back from the slave device if all MISO and MOSI pins are connected and the slave has not written to its SPIDR register.

Other transmission security methods can use ports for handshake lines or data bytes with command fields.

Multimaster system

A multimaster system may also be configured by the user. Transfer of master control could be implemented using a handshake method through the I/O ports or by an exchange of code messages through the serial peripheral interface system.

The multimaster system is principally handled by the MSTR bit in the SPICR register and the MODF bit in the SPICSR register.

Nota:

Bit	Name	Function
4	М	 Word length This bit determines the word length. It is set or cleared by software. 0: 1 start bit, 8 data bits, 1 stop bit 1: 1 start bit, 9 data bits, 1 stop bit Note: The M bit must not be modified during a data transfer (both transmission and reception).
3	WAKE	 Wake-up method This bit determines the SCI wake-up method. It is set or cleared by software. 0: Idle line 1: Address mark Note: If the LINE bit is set, the WAKE bit is deactivated and replaced by the LPDM bit.
2	PCE	Parity control enable This bit is set and cleared by software. It selects the hardware party control for LIN identifier parity check. 0: Parity control disabled 1: Parity control enabled When a parity error occurs, the PE bit in the SCICR register is set.
1	-	Reserved, must be kept cleared
0	PIE	 Parity interrupt enable This bit enables the interrupt cope bility of the hardware parity control when a parity error is detected (PE bit s it). The parity error involved can be a byte parity error (if bit PCE is set and bit LPE is recer) or a LIN parity error (if bit PCE is set and bit LPE is set). 0: Parity error interrupt disabled 1: Parity error interrupt enabled

Table 69.	SCICR1 register description ⁽¹⁾ (continued)
-----------	--

1. Bits 7:3 and bit C have t.c same function as in SCI mode; please refer to SCI control register 1 (SCICR1) on page 153.

SCI control register 2 (SCICR2) ~

	30.	CR2	(Rese	et value: 0000	0000 (00h)
	5	7	6	5	4	3	2	1	0
absol		TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
OP	×	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Tab	le 70.	SCICR2 re	egister des	cription ⁽¹⁾				
abso	Bit	Name				Function			
Ob	7	тіс	Transmitter in This bit is	ransmitter interrupt enable This bit is set and cleared by software.					

Table 70.	SCICR2 register	description ⁽¹⁾

Bit	Name	Function
7	TIE	Transmitter interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An SCI interrupt is generated whenever TDRE = 1 in the SCISR register
6	TCIE	 Transmission complete interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An SCI interrupt is generated whenever TC = 1 in the SCISR register

Bit	Name	Function				
3	LHDM	 LIN header detection method This bit is set and cleared by software. It is only usable in LIN slave mode. It enables the header detection method. In addition if the RWU bit in the SCICR2 register is set, the LHDM bit selects the wake-up method (replacing the WAKE bit). 0: LIN synch break detection method 1: LIN identifier field detection method 				
2	LHIE	LIN header interrupt enable This bit is set and cleared by software. It is only usable in LIN slave mode. 0: LIN header interrupt is inhibited 1: An SCI interrupt is generated whenever LHDF = 1				
1	LHDF	LIN header detection flag This bit is set by hardware when a LIN header is detected and cleared by a software sequence (an access to the SCISR register followed by a read of the SCICR3 register). It is only usable in LIN slave mode. 0: No LIN header detected 1: LIN header detected Note: The header detection method decords on the LHDM bit: - If LHDM = 0, a header is detected as a LIN synch break - If LHDM = 1, a header is detected as a LIN Identifier, meaning that a LIN synch break field + a LIN synch field - a LIN identifier field have been consecutively received.				
0	LSF	LIN synch field state This bit indicates that the LIN synch field is being analyzed. It is only used in LIN slave mode. In auto synchronization mode (LASE bit = 1), when the SCI is in the LIN synch field state it waits or counts the falling edges on the RDI line. It is control by hardware as soon as a LIN synch break is detected and cleared by hardware when the LIN synch field analysis is finished (see <i>Figure 73</i>). This bit can also be cleared by software to exit LIN Synch state and return to idle mode. 0: The current character is not the LIN synch field 1: LIN synch field state (LIN synch field undergoing analysis)				

Table 71. SCICR3 register description (continued)

Sensorless mode

This mode is used to detect BEMF zero crossing and end of demagnetization events.

The analog phase multiplexer connects the non-excited motor winding to an analog 100mV hysteresis comparator referred to a selectable reference voltage.

IS[1:0] bits in MPHST register allow the input to be selected which drives to the comparator (either MCIA, B or C). Be careful that the comparator is OFF until CKE and/or DAC bits are set in MCRA register.

The VR[2:0] bits in the MCRC register select the reference voltage from seven internal values depending on the noise level and the application voltage supply. The reference voltage can also be set externally through the MCVREF pin when the VR[2:0] bits are set.

		nage setting	
VR2	VR1	VR0	V _{REF} voltage threshold
1	1	1	Threshold voltage set by external MCVREF pin typical value for V _{DD} = 5V
1	1	0	3.5V
1	0	1	2.5V
1	0	0	20
0	1	1	1.5V
0	1	0	1V
0	0	1	0.6V
0	0	50	0.2V

Table 83. Threshold voltage setting

BEMF detections are pe formed during the measurement window, when the excited windings are free wheeling through the low side switches and diodes. At this stage the common stal confliction voltage is near to ground voltage (instead of $V_{DD}/2$ when the excite (windings are powered) and the complete BEMF voltage is present on the non-excited vinding terminal, referred to the ground terminal.

The zero crossing sampling frequency is then defined, in current mode, by the measurement window generator frequency (SA[3:0] bits in the MPRSR register) or, in voltage mode, by the PWM generator frequency and phase U duty cycle.

During a short period after a phase commutation (C event), the winding where the back-emf is read is no longer excited but needs a demagnetization phase during which the BEMF cannot be read. A demagnetization current goes through the free-wheeling diodes and the winding voltage is stuck at the high voltage or to the ground terminal. For this reason an 'end of demagnetization event' D must be detected on the winding before the detector can sense a BEMF zero crossing.

For the end-of-demagnetization detection, no special PWM configuration is needed; the comparator sensing is done at a selectable frequency (f_{SCF}) (see *Table 166*).

So the three events C (commutation), D (demagnetization) and Z (BEMF zero crossing) must always occur in this order in autoswitched mode when hard commutation is selected.

Unar l

The comparator output is processed by a detector that automatically recognizes the D or Z event, depending on the CPB or ZVD edge and level configuration bits as described in *Table 88*.

To avoid wrong detection of D and Z events, a blanking window filter is implemented for spike filtering. In addition, by means of an event counter, software can filter several consecutive events up to a programmed limit before generating the D or Z event internally. This is shown in *Figure 80* and *Figure 81*.

D event detection

In sensorless mode, the D window filter becomes active after each C event. It blanks out the D event during the time window defined by the DWF[3:0] bits in the MDFR register (see *Table 84*). The reset value is 200µs.

This window filter becomes active after both hardware and software C events.

The D event filter becomes active after the D window filter. It counts the number of consecutive D events up to a limit defined by the DEF[3:0] bits in the MOFR register. The reset value is 1. The D bit is set when the counter limit is reached.

Sampling is done at a selectable frequency (f_{SCF}), see *Table 16*.

The D event filter is active only for a hardware D event (D₃). For a simulated (D_S) event, it is forced to 1.

When enabled by the SDM bit in the MCRB register, demagnetization can also be simulated by comparing the MTIM timer with the MDREG register. This kind of demagnetization is called simulated demagnetization D_S .

If the HDM and SDM bits are both set, the first event that occurs, triggers a demagnetization event. For this to work correctly, a D_S event must not precede a D_H event because the latter could be detected as a Z event.

Simulated demagnetization can also be always used if the HDM bit is reset and the SDM bit is set. This mode works as a programmable masking time between the C_H and Z events. To drive the motor securely, the masking time must be always greater than the real demagnetization time in order to avoid a spurious Z event.

When an event occurs, (either D_H or D_S) the DI bit in the MISR register is set and an interrupt request is generated if the DIM bit of register MIMR is set.

- **Caution:** 1: Due to the alternate automatic capture and compare of the MTIM timer with MDREG register by D_H and D_S events, the MDREG register should be manipulated with special care.
- **Caution:** 2: Due to the event generation protection in the MZREG, MCOMP and MDREG registers for Soft Event generation (see *Built-in checks and controls for simulated events on page 221*), the value written in the MDREG register in soft demagnetization and (SDM = 1) is checked by hardware after the C event. If this value is less than or equal to the MTIM counter value at this moment, the Software demagnetization event is generated immediately and the MTIM current value overwrites the value in the MDREG register to be able to re-use the right demagnetization time for another simulated event generation.

Figure 82. D event generation mechanism

 Preload bit, new value taken into account at the next C event (in normal mode) or when a value is written in the MPHST register when in direct access mode. For more details refer to the description of the DAC bit in *Control register A (MCRA)* on page 265. The use of a preload register allows all the registers to be updated at the same time

198/371

^{2.} Register updated on R event

On-chip peripherals

shifted left (multiplied by two). The RMI bit in the MISR register is set and an interrupt is generated if RIM is set.

- If the prescaler contents reach the value 0, it can no longer be automatically decremented, the MTC continues working with the same prescaler value, that is, with a lower accuracy. No RMI interrupt can be generated.
- If the prescaler contents reach the value 15, it can no longer be automatically incremented. When the timer reaches the value FFh, the prescaler and all the relevant registers remain unchanged and no interrupt is generated, the timer restarts counting from 0 x 00h and if the TES[1:0] bits = 00, the OI bit in the MCRC register is set at each overflow (it has to be reset by software). The RPI bit is no longer set. The PWM is still generated and the D and Z detection circuitry still work, enabling the capture of the maximum timer value.

The automatically updated registers are: MTIM, MZREG, MZPRV, MCOMP and MDREG. Access to these registers is summarized in Table 99.

Debug option

In both switched mode and autoswitched mode, setting the bit DC in MPWME register enables the debug option. This option consists of outputting the C, D and Z signals in real time on pins MCZEM and MCDEM. This is very useful during the debug phase of the application. Figure 95 shows the signals output on pins V. DEM and MCZEM with the debug option.

When the delay coefficient equals 1/256 (C event immediately after Z event), a Note: 1 glitch appears on MCZEM per to be able to see the event even in this case.

This option is also available in speed measurement mode with different signal outputs (see Figure 95):

- MCDEM toggles when a capture event is generated.
- MCZEM toggles every time a U event is generated.

These signals are only available if the TES[1:0] bits = 10, 01 or 11.

obsolete produt In sensor mode, the MCDEM output pin toggles at each C event. The MCZEM pin outputs the Z event.

SA3	SA2	SA1	SA0	Sampling frequency
1	1	0	1	961 Hz
1	1	1	0	625 Hz
1	1	1	1	390 Hz

Table 105. Sampling frequency selection⁽¹⁾ (continued)

1. Times are indicated for 4 MHz f_{PERIPH}.

Warning: If the off time value set is superior than the period of the PWM signal (for example 40µs off time for a 50 kHz (25µs period) PWM frequency), then the signal output on MCOx pins selected is a 100% duty cycle signal (always at 1).

Table 106. Off time table⁽¹⁾

Table 106	. Off time	e table ⁽¹⁾			ducils
ОТЗ	OT2	OT1	ОТО	OFF time sensorless morie (SR = 0) (DS[3:0] = ບຸ	Sensor mode (SR = 1) or sampling during ON time in sensorless mode (SPLG = 1 and/or DS[3:0] bits)
0	0	0	0	2.5 ; ; s	00
0	0	0	1	ό μs	X
0	0	1	0	7.5 µs	
0	0	1	1 C	10 µs	
0	1	0	6	12.5 µs	
0	1	0	1	15 µs	
0	1	<u>, (</u>)	0	17.5 µs	
0	1	1	1	20 µs	No minimum off time
1	XO	0	0	22.5 µs	No minimum on ume
1	0	0	1	25 µs	
S	0	D(P	0	27.5 µs	
	0	1	1	30 µs	
1	0,1	0	0	32.5 µs	
10	1	0	1	35 µs	1
107	1	1	0	37.5 µs	1
1	1	1	1	40 µs	1

1. Times are indicated for 4 MHz f_{PERIPH}.

57

DTG5	DTG4	T _{dtg}	Deadtime expression	Deadtime value	T _{dtg} @ 16 MHz f _{mtc}	Deadtime range @ 16 MHz f _{mtc}
0	Х	$2 \mathrm{xT}_{\mathrm{mtc}}$	(DTG[40]+1) x T _{dtg}	From 1 to 32 T _{dtg}	125ns	0.125µs to 4µs
1	0	4xT _{mtc}		From 17 to 22 T	250ns	4.25µs to 8µs
1	1 1 8xT,	8xT _{mtc}			500ns	8.5µs to 16µs

 Table 110.
 Deadtime programming and example

The deadtime delay is the same for each of the channels and is programmable with the DTG[5..0] bits in the MDTG register.

The resolution is variable and depends on the DTG5 and DTG4 bits. *Table 110* summarizes the set-up of the deadtime generator.

 IT_{mtc} is the period of the deadtime generator input clock (F_{mtc} = 16 MHz in most cases, not affected by the XT16:XT8 prescaler bits in the MCONF register).

For safety reasons, and since the deadtime depends only on external component characteristics (level-shifter delay, power components switching ourration, etc.), the register used to set-up deadtime duration can be written only once after the MCU reset. This prevents a corrupted program counter modifying this system critical set-up, which may cause excessive power dissipation or destructive chock-through in the power stage half bridges.

When using the three independent U, V and WPWM signals (PCN bit set) (see *Figure 115*) to drive the MCOx outputs, deadtime is a local as shown in *Figure 112*.

The deadtime generator is enabled/disabled using the DTE bit.

The effect of the DTE bit depends on the PCN bit value.

If the PCN bit is set:

- DTE is read only. To reset it, first reset the PCN bit, then reset DTE and set PCN to 1 again.
- If D? E = 0, the high and low side outputs are simply complemented (no deadtime insertion, DTG[5:0] bits are not significant); this is to allow the use of an external deadtime generator.

The reset value of the MDTG register is FFh so when configuring the deadtime, it is mandatory to follow one the two following sequences:

- To use deadtimes while the PCN bit is set; from reset state write the MDTG value at once. The DTE bit is read back as 1 whatever the programming value (read only if PCN = 1)
- 2. To use deadtimes while the PCN bit is reset, write first the deadtime value in DTG[5:0], then reset the PCN bit, or do both actions at the same time.

Vote

On-chip peripherals

Interrupt mask register (MIMR)

MIMR Reset value: 0000 0000 (00h									
	7	6	5	4	3	2	1	0	
	PUM	SEM	RIM	CLIM	EIM	ZIM	DIM	CIM	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Table 124. MIMR register description

[Bit	Name	Function		
	7	PUM	PWM update mask bit 0: PWM update interrupt disabled 1: PWM update interrupt enabled		
	6	SEM	Speed error mask bit 0: Speed error interrupt disabled 1: Speed error interrupt enabled		
-	5	RIM	Ratio update interrupt mask bit 0: Ratio update interrupts (R+ and R-) disabled 1: Ratio update interrupts (R+ and R-) enah!co		
	4	CLIM	Current limitation interrupt mask bit 0: Current limitation interrupt disab.cu 1: Current limitation interrupt criab ed This interrupt is available crity in voltage mode (VOC1 bit = 0 in MCRA register) and occurs when the motor current feedback reaches the external current limitation value.		
-	3	EIM	Emergency stop interrupt mask bit 0: Emergency stop interrupt disabled 1: Fmeigency stop interrupt enabled		
-	2	ZIM	Bool E /IF zero-crossing interrupt mask bit 0: BEMF Zero-crossing Interrupt disabled 1: BEMF Zero-crossing Interrupt enabled		
5018	1	DIM	 End of demagnetization interrupt mask bit 0: End of demagnetization interrupt disabled 1: End of demagnetization interrupt enabled if the HDM or SDM bit in the MCRB register is set 		
0,0	0	СІМ	Commutation/capture interrupt mask bit 0: Commutation/capture interrupt disabled 1: Commutation/capture interrupt enabled		
0050.					

Figure 139. Two typical applications with unused I/O pin

1. I/O can be left unconnected if it is configured as output (0 or 1) by the software. This has the advantage of greater EMC robustness and lower cost.

14.2 Device ordering information and transfer of customer code

The FASTROM or ROM contents are to be sent on diskette, or by electronic means, with the hexadecimal file in .S19 format generated by the development tool. All unused bytes must be set to FFh.

The selected options are communicated to STMicroelectronics using the correctly completed option list appended.

Refer to application note AN1635 for information on the counter listing returned by ST after code has been transferred.

The STMicroelectronics sales organization provides detailed information on contractual points.

Part number	Program memory (bytes)	RAM (bytes)	Temp. range	Fackage
ST7FMC1K2TC	8K Flash	384	00	
ST7FMC1K6TC	32K Flash	1024	0	LGIT 52
ST7FMC2S4TC	16K Flash	768	Ċ	
ST7FMC2S6TC	32K Flash	1024	AV.	LQFF44
ST7MC1K2TC/xxx ⁽¹⁾	8K ROM	384	40°C + 125°C	LQFP32
ST7MC2S4TC/xxx ⁽¹⁾	16K ROM	768	-40 C +125 C	LQFP44
ST7PMC1K2TC/xxx ⁽¹⁾	8K FASTROM	384		
ST7PMC1K6TC/xxx ⁽¹⁾	32K FASTROM	1024		LQFFJZ
ST7PMC2S4TC/xxx ⁽¹⁾	16K FASTROM	768		
ST7PMC2S6TC/xxx ⁽¹⁾	32K FASTROM	1024		

Table 229. Supported part numbers

1. /xxx stands for he ROM or FASTROM code assigned by STMicrolectronics.

...ds for he ROM or FASTR

