E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	LINbusSCI, SPI
Peripherals	LVD, Motor Control PWM, POR, PWM, WDT
Number of I/O	26
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st7fmc2s6tc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

57

Motor c	ontroller (MTC)	. 180
10.6.1	Introduction	180
10.6.2	Main features	183
10.6.3	Application example: PM BLDC motor drive	183
10.6.4	Application example: AC induction motor drive	186
10.6.5	Functional description	188
10.6.6	Input detection block	189
10.6.7	Delay manager	213
10.6.8	PWM manager	234
10.6.9	Channel manager	. 240
10.6.10	PWM generator block	252
10.6.11	Low power modes	259
10.6.12	Interrupts	259
10.6.13	MTC registers	260
Operati	onal amplifier (OA)	. 294
10.7.1	Introduction	294
10.7.2	Main features	294
10.7.3	General description	294
10.7.4	Input offset compensation	294
10.7.5	Op-amp programming	295
10.7.6	Low po ver modes	296
10.7.7	linte:rupts	296
10.7.8	Register description	296
10-bit A	/D converter (ADC)	. 297
10.8.1	Introduction	297
10.8.2	Main features	297
10.8.3	Functional description	297
10.8.4	Low power modes	300
10.8.5	Interrupts	300
10.8.6	Register description	300
ruction s	et	. 303
CPU ac	ddressing modes	. 303
11.1.1	Inherent	304
11.1.2	Immediate	305
11.1.3	Direct	305
11.1.4	Indexed (no offset, short, long)	305
	10.6.1 10.6.2 10.6.3 10.6.4 10.6.5 10.6.6 10.6.7 10.6.8 10.6.9 10.6.10 10.6.12 10.6.13 Operati 10.7.1 10.7.2 10.7.3 10.7.4 10.7.5 10.7.6 10.7.7 10.7.8 10.7.8 10.8.1 10.8.2 10.8.3 10.8.4 10.8.5 10.8.6	10.6.1 Introduction 10.6.2 Main features 10.6.3 Application example: PM BLDC motor drive 10.6.4 Application example: AC induction motor drive 10.6.5 Functional description 10.6.6 Input detection block 10.6.7 Delay manager 10.6.8 PWM manager 10.6.9 Channel manager 10.6.10 PWM generator block 10.6.11 Low power modes 10.6.12 Interrupts 10.6.13 MTC registers Operational amplifier (OA)

Figure 49.	Output compare timing diagram, $f_{TIMER} = f_{CPU}/4$	114
Figure 50.	One pulse mode sequence.	115
Figure 51.		116
Figure 52.	Pulse width modulation mode timing example	116
Figure 53.		11/
Figure 54.	Serial peripheral interface block diagram	128
Figure 55.	Single master/single slave application	129
Figure 56.	Generic SS timing diagram	129
Figure 57.	Hardware/software slave select management	130
Figure 58.	Data clock timing diagram	132
Figure 59.	Clearing the WCOL bit (write collision flag) software sequence	134
Figure 60.	Single master/multiple slave configuration	135
Figure 61.	SCI block diagram (in conventional baud rate generator mode).	142
Figure 62.	Word length programming	144
Figure 63.	SCI baud rate and extended prescaler block diagram	149
Figure 64.	LIN characters	159
Figure 65.	SCI block diagram in LIN slave mode	160
Figure 66.	LIN header	162
Figure 67.	LIN identifier	162
Figure 68.	LIN header	163
Figure 69.	LIN synch field measurement	165
Figure 70.	LDIV read/write operations when LDUM = 0	166
Figure 71.	LDIV read/write operations when LDUM = 1	167
Figure 72.	Bit sampling in reception mode.	168
Figure 73.	LSF bit set and clear	175
Figure 74.	Chronogram of events (in autoswitch. d node)	184
Figure 75.	Example of command sequence fc: 6-step mode (typical 3-phase PM BLDC motor	
	control)	185
Figure 76.	Complementary PWM gor eretion for three-phase induction motor	• • •
	(1 phase represented)	187
Figure 77.	Typical command signals of a three-phase induction motor.	188
Figure 78.	Simplified MTC block diagram	190
Figure 79.	Input state in censorless or sensor mode (bits TES[1:0] = 00)	191
Figure 80.	D wind w and event filter flowchart	193
Figure 81.	2 wordow and event filter flowchart.	195
Figure 82.	Devent generation mechanism	198
Figure 63.	Z event generation	201
Figure C4.	Protection of ZH event detection	202
igure 85.	Adding the delay to sample during ON time for Z detection	205
Figure 86.	Sampling out interrupt generation	205
Figure 87.	Sampling during ON time at f _{SCF}	206
Figure 88.	Functional diagram of Z detection after D event.	208
Figure 89.	Input stage in speed sensor mode (TES[1:0] bits = $01, 10, 11$)	209
Figure 90.	Tacho capture events configured by the TES[1:0] bits	210
Figure 91.	Incremental encoder output signals and derived information	210
Figure 92.	Overview of MTIM timer in switched and autoswitched mode	213
Figure 93.	Step ratio functional diagram	216
		o · -
Figure 94.	CH processor block	218
Figure 94. Figure 95.	CH processor block	218 220
Figure 94. Figure 95. Figure 96.	CH processor block	218 220 222
Figure 94. Figure 95. Figure 96. Figure 97.	CH processor block	218 220 222 223

Figure 1. **Device block diagram**

6.5 System integrity management (SI)

The system integrity management block contains the low voltage detector (LVD), auxiliary voltage detector (AVD) and clock security system (CSS) functions. It is managed by the SICSR register.

Note: A reset can also be triggered following the detection of an illegal opcode or prebyte code. Refer to Section 11.2.2 on page 309 for further details.

6.5.1 Low voltage detector (LVD)

The low voltage detector function (LVD) generates a static reset when the V_{DD} supply voltage is below a V_{IT} reference value. This means that it secures the power-up as well as the power-down keeping the ST7 in reset.

The V_{IT-} reference value for a voltage drop is lower than the V_{IT+} reference value for poweron in order to avoid a parasitic reset when the MCU starts running and sinks current on the supply (hysteresis).

The LVD reset circuitry generates a reset when V_{DD} is below:

- V_{IT+} when V_{DD} is rising
- V_{IT-} when V_{DD} is falling

The LVD function is illustrated in Figure 13.

Provided the minimum V_{DD} value (guarantee $\pm i \sigma$: the oscillator frequency) is above V_{IT-} , the MCU can only be in two modes:

- under full software control
- in static safe reset

In these conditions, secure operation is always ensured for the application without the need for external reset hard ware.

During a low voluge detector reset, the RESET pin is held low, thus permitting the MCU to reset other devices.

Note: 1 The LVC allows the device to be used without any external reset circuitry.

2 The LVD is an optional function which can be selected by option byte.

it is recommended to make sure that the V_{DD} supply voltage rises monotonously when the device is exiting from reset, to ensure the application functions properly.

5

6.5.2 Auxiliary voltage detector (AVD)

The voltage detector function (AVD) is based on an analog comparison between a V_{IT-(AVD)} and V_{IT+(AVD)} reference value and the V_{DD} main supply. The V_{IT-} reference value for falling voltage is lower than the V_{IT+} reference value for rising voltage in order to avoid parasitic detection (hysteresis).

The output of the AVD comparator is directly readable by the application software through a real time status bit (AVDF) in the SICSR register. This bit is read only.

Caution: The AVD function is active only if the LVD is enabled through the option byte (see Section 14.1 on page 356).

Monitoring the V_{DD} main supply

If the AVD interrupt is enabled, an interrupt is generated when the voltage crosses $r_{P} = V_{IT+(AVD)}$ or $V_{IT-(AVD)}$ threshold (AVDF bit toggles).

In the case of a drop in voltage, the AVD interrupt acts as an early warring, allowing software to shut down safely before the LVD resets the microcontroller See Figure 14.

The interrupt on the rising edge is used to inform the application that the V_{DD} warning state is over.

If the voltage rise time t_{rv} is less than 256 or 4096 CPU cycles (depending on the reset delay selected by option byte), no AVD interrupt is generated when $V_{IT+(AVD)}$ is reached.

If t_{rv} is greater than 256 or 4096 cycles then

- If the AVD interrupt is enabled before the V_{IT+(AVD)} threshold is reached, then two AVD interrupts are received: the first when the AVDIE bit is set, and the second when the threshold is reached.
- If the AVD interrupt is enabled after the V_{IT+(AVD)} threshold is reached then only one AVD interrupt occurs

Analog alternate function

When the pin is used as an ADC input, the I/O must be configured as floating input. The analog multiplexer (controlled by the ADC registers) switches the analog voltage present on the selected pin to the common analog rail which is connected to the ADC input.

It is recommended not to change the voltage level or loading on any port pin while conversion is in progress. Furthermore it is recommended not to have clocking pins located close to a selected analog pin.

Warning: The analog input voltage level must be within the limits stated in the absolute maximum ratings.

9.3 I/O port implementation

The hardware implementation on each I/O port depends on the settings in the DDR and OR registers and specific feature of the I/O port such as ADC Input or true open drain.

Switching these I/O ports from one state to another should be done in a sequence that prevents unwanted side effects. Recommended safe irransitions are illustrated in *Figure 29*. Other transitions are potentially risky and should be avoided, since they are likely to present unwanted side-effects such as spurious interrurt generation.

O'DE^C

Low power modes

Table 27. Effect of low power modes on I/O ports

Mode	Description
Wait	No effect on I/O ports. External interrupts cause the device to exit from Wait mode.
Halt	No effect on I/O ports. External interrupts cause the device to exit from Halt mode.

Bit	Name	Function
4	MSTR	 Master mode This bit is set and cleared by software. It is also cleared by hardware when, in master mode, SS = 0 (see <i>Master mode fault (MODF) on page 133</i>). 0: Slave mode 1: Master mode. The function of the SCK pin changes from an input to an output and the functions of the MISO and MOSI pins are reversed.
3	CPOL	Clock polarity This bit is set and cleared by software. This bit determines the idle state of the serial clock. The CPOL bit affects both the master and slave modes. 0: SCK pin has a low level idle state 1: SCK pin has a high level idle state <i>Note: If CPOL is changed at the communication byte boundaries, the Srif must be</i> <i>disabled by resetting the SPE bit.</i>
2	СРНА	Clock phase This bit is set and cleared by software. 0: The first clock transition is the first data capture ruge 1: The second clock transition is the first capture eage Note: The slave must have the same CPOL and CPHA settings as the master.
1:0	SPR[1:0]	Serial clock frequency These bits are set and cleared by contware. Used with the SPR2 bit, they select the baud rate of the SPI serial code. SCK output by the SPI in master mode. Note: These 2 bits have no effect in slave mode.

Table 56. **SPICR** register description (continued)

SPI control/status registor (SPICSR)

SPICSR Reset value: 0000 0000 (00h) 7 6 2 5 3 1 0 Λ WCOL SFF OVR MODF Reserved SOD SSM SSI

fable 57. **SPICSR** register description

	48	90	RO C RO	RO	-	R/W	R/W	R/W
	ſab	le 57.	SPICSR register d	escription				
absu	Bit	Name			Function			
Obsolf	7	SPIF	Serial peripheral data This bit is set by har generated if SPIE = access to the SPICS 0: Data transfer is in 1: Data transfer betw Note: While the SPI SPICSR register is i	transfer flag dware when a t 1 in the SPICR SR register follo progress or the veen the device F bit is set, all w read.	ransfer has register. It i wed by a wi e flag has bu and an ext writes to the	been complet is cleared by a rite or a read t een cleared ernal device h <i>SPIDR regist</i>	ted. An interr a software se to the SPIDR has been com er are inhibite	rupt is equence (an register). npleted ed until the
	6	WCOL	Write collision status This bit is set by har transmit sequence. I 0: No write collision 1: A write collision h	dware when a v It is cleared by a occurred as been detecte	write to the s a software s ed	SPIDR registe sequence (see	er is done du e <i>Figure 59</i>).	ring a

Bit	Name	Function
3	LHDM	 LIN header detection method This bit is set and cleared by software. It is only usable in LIN slave mode. It enables the header detection method. In addition if the RWU bit in the SCICR2 register is set, the LHDM bit selects the wake-up method (replacing the WAKE bit). 0: LIN synch break detection method 1: LIN identifier field detection method
2	LHIE	LIN header interrupt enable This bit is set and cleared by software. It is only usable in LIN slave mode. 0: LIN header interrupt is inhibited 1: An SCI interrupt is generated whenever LHDF = 1
1	LHDF	LIN header detection flag This bit is set by hardware when a LIN header is detected and cleared by a software sequence (an access to the SCISR register followed by a read of the SCICR3 register). It is only usable in LIN slave mode. 0: No LIN header detected 1: LIN header detected Note: The header detection method decords on the LHDM bit: - If LHDM = 0, a header is detected as a LIN synch break - If LHDM = 1, a header is detected as a LIN Identifier, meaning that a LIN synch break field + a LIN synch field - a LIN identifier field have been consecutively received.
0	LSF	LIN synch field state This bit indicates that the LIN synch field is being analyzed. It is only used in LIN slave mode. In auto synchronization mode (LASE bit = 1), when the SCI is in the LIN synch field state it waits or counts the falling edges on the RDI line. It is control by hardware as soon as a LIN synch break is detected and cleared by hardware when the LIN synch field analysis is finished (see <i>Figure 73</i>). This bit can also be cleared by software to exit LIN Synch state and return to idle mode. 0: The current character is not the LIN synch field 1: LIN synch field state (LIN synch field undergoing analysis)

Table 71. SCICR3 register description (continued)

The shape of the output voltage (voltage, frequency, sinewave, trapezoid, ...) is completely managed by the application software, in charge of computing the compare values to be loaded for a given PWM duty-cycle (refer to *Figure 77*).

Finally, the PWM modulated voltage generated by the power stage is smoothed by the motor inductance to get sinusoidal currents in the stator windings.

The induction motor being asynchronous, there is no need to synchronize the rotor position to the sinewave generation phase in most of the applications.

Part of the MTC dedicated to delay computation and event sampling can thus be reconfigured to perform speed acquisition of the most common speed sensor, without the need of an additional standard timer.

This speed measurement timer with clear-on-capture and clock prescaler auto-setting allows to keep the CPU load to a minimum level while taking benefit of the embedded input comparator and edge detector.

Figure 76. Complementary PWM generation for three-phase induction motor (1 phase represented)

187/371

Specific applications can require sampling for the Z event detection only during the ON time of the PWM signal. This can happen when the PWM signal is applied only on the low side switches for Z event detection. In this case, during the OFF time of the PWM signal, the phase voltage is tied to the application voltage V and no back-EMF signal can be seen. During the ON time of the PWM signal, the phase voltage can be compared to the neutral point voltage and the Z event can be detected. Therefore, it is possible to add a programmable delay before sampling (which is normally done when the PWM signal is switched ON) to perform the sampling during the ON time of the PWM signal. This delay is set with the DS [3:0] bits in the MCONF register.

	Delay length	belore samp	, ing · ·	
DS3	DS2	DS1	DS0	Delay added to sample at T _{ON}
0	0	0	0	No delay added. Sample during T _{UFF}
0	0	0	1	2.5 µs
0	0	1	0	eu 3
0	0	1	1	07.5 µs
0	1	0	0	10 µs
0	1	0	1	12.5 µs
0	1	1	0	15 µs
0	1	1	S	17.5 µs
1	0	0	0	20 µs
1	0	0	1	22.5 µs
1	0	G 1	00	25 µs
1	0	1		27.5 µs
1		0	0	30 µs
1		0	1	32.5 µs
	1	51	0	35 µs
	1 (C	1	1	37.5 µs

Table 91.	Delay length	before	sampling ⁽¹)
-----------	--------------	--------	------------------------	---

7. Times are indicated for 4 MHz fPERIPH.

As soon as a delay is set in the DS[3:0] bits, the minimum OFF time for the PWM signal is no longer required and it is automatically set to 0µs in current mode in the internal sampling clock and a true 100% duty cycle can be set in the 12-bit PWM generator compare U register if needed.

Depending on the frequency and the duty cycle of the PWM signal, the delay inserted before sampling could cause it sample the signal OFF time instead of the ON time. In this case an interrupt can be generated and the sample is not taken into account. When a sample occurs outside the PWM signal ON time, the SOI bit in the MCONF register is set and an interrupt request is generated if the SOM bit is set in the MCONF register. This interrupt is enabled only if a delay value has been set in the DS[3:0] bits. In this case, the sampling is done at the PWM frequency but only during the ON time of the PWM signal. *Figure 85* and *Figure 86* show in detail the generation of the sampling order when the delay is added.

Figure 103. Overview of MTIM timer in speed measurement mode

1. Register set-up described in Speed sensor mode on page 208.

2. Register updated on R event.

Warning: As the MCRB register contains preload bits with, it has to be written as a complete byte. A bit set or bit reset instruction on a non-preload bit resets has the effect of resetting all the preload bits.

Control register C (MCRC)

MCRB					Rese	et value: 000	0 0000 (00h)
7	6	5	4	3	2	1	0
SEI/OI	EDIR/HZ	SZ	SC	SPLG		VR[2:0]	151
R/W	RO	R/W	R/W	R/W		R/W	

Table 136. MCRC register description

	Bit	Name	Function
	7	SEI/OI	Speed error interrupt flag/MTIM overflow flac Position sensor or sensorless mode TES[1:0] bits = 00): OI: MTIM overflow flag This flag signals an overflow of the with timer. It has to be cleared by software. 0: No MTIM timer overflow 1: MTIM timer overflow Note: No interrupt is associated with this flag. Speed sense: mode (TES[1:0] bits = 01, 10, 11): SEI: Speed error interrupt flag 0: No tache error interrupt pending 1: Tacho error interrupt pending
obsole obsole	6	EDIR/HZ	 Fincoder Direction bit/ Hardware zero-crossing event bit Position sensor or sensorless mode (TES[1:0] bits = 00): HZ: Hardware zero-crossing event bit This read/write bit selects if the Z event is hardware or not. 0: No hardware zero-crossing event 1: Hardware zero-crossing event Speed sensor mode (TES[1:0] bits = 01, 10, 11): EDIR: Encoder direction bit This bit is read-only. As the rotation direction depends on encoder outputs and motor phase connections, this bit cannot indicate absolute direction. It therefore gives the relative phase-shift (that is, advance/delay) between the two signals in quadrature output by the encoder (see <i>Figure 91</i>). 0: MCIA input delayed compared to MCIB input 1: MCIA input in advance compared to MCIB input
	5	SZ	Simulated zero-crossing event bit 0: No simulated zero-crossing event 1: Simulated zero-crossing event

- Warning: Access to preload registers: Special care has to be taken with preload registers, especially when using the ST7 BSET and BRES instructions on MTC registers. For instance, while writing to the MPHST register, the value in the preload register is written. However, while reading at the same address, the current value in the register and not the value of the preload register is obtained. Excepted for three-phase PWM generator's registers, all preload registers are loaded in the active registers at the same time. In normal mode this is done automatically when a C event occurs, however in direct access mode (DAC bit = 1) the preload registers are loaded as soon as a value is written in the MPHST register.
- Caution: Access to write-once bits: Special care has to be taken with write-or ce bits in MPOL and MDTG registers; these bits have to be first accessed during the sate up. Any access to the other bits (not write-once) through a BRES or a BSET instruction locks the content of writeonce bits (no possibility for the core to distinguish individual bit access: Read/write internal signal acts on a whole register only). This protection is then only unlocked after a processor hardware reset.

MDTG Reset value: 1111 1111 (FFh) 7 6 2 0 1 PCN DTE DTG[5:0] (1) In the once-only bit if F Write once only

Wrife o Ice-only bit if PCN bit is set, read/write if PCN bit is reset.

Deadtime generator register (MDTC

Mnemo	Description	Function/example	Dst	Src		11	н	10	Ν	Z	
JRUGT	Jump if $(C + Z = 0)$	Unsigned >									
JRULE	Jump if $(C + Z = 1)$	Unsigned <=									
LD	Load	dst <= src	reg, M	M, reg					Ν	Z	
MUL	Multiply	X,A = X * A	A, X, Y	X, Y, A			0				Ī
NEG	Negate (2's compl)	neg \$10	reg, M						Ν	Z	Ī
NOP	No operation										
OR	OR operation	A = A + M	А	М					Ν	Ζ	
Dan	Den from the steel	pop reg	reg	М						G	Ţ
Ρυρ	Pop from the stack	pop CC	СС	М		11	Н	10		2	
Push	Push onto the stack	Push Y	М	reg, CC							
RCF	Reset carry flag	C = 0					5				
RET	Subroutine return									S	١
RIM	Enable interrupts	11:0 = 10 (level 0)		×C	1	1		0	<u>S</u>		
RLC	Rotate left true C	C <= A <= C	reg, M	10				Y	Ν	Z	
RRC	Rotate right true C	C => A => C	reg M			20	0		Ν	Z	
RSP	Reset stack pointer	S = Max allowed	10								Ī
SBC	Substract with carry	A = A - M - C	A	M	1				Ν	Z	
SCF	Set carry flag	C = 1	~	No							
SIM	Disable interrupts	11:0 = 11 (level 3)	5			1		1			
SLA	Shift left arithmetic	C <= A <= 0	reg, M						Ν	Z	Ī
SLL	Shift left logic	C <= A <= 0	reg, M						Ν	Z	
SRL	Shift right ruic	0 => A => C	reg, M						0	Z	
SRA	Shift right arithmetic	A7 => A => C	reg, M						Ν	Z	
SUB	Substraction	A = A - M	А	М					Ν	Z	
SVIAP	SWAP nibbles	A7-A4 <=> A3-A0	reg, M						Ν	Z	Ī
τNZ	Test for neg and zero	tnz lbl1							Ν	Z	Ī
TRAP	S/W trap	S/W interrupt				1		1			Ī
WFI	Wait for interrupt				1	1		0			ſ
XOR	Exclusive OR	A = A XOR M	А	М	1				Ν	Z	T

Table 185. Instruction set overview (continued)

Figure 130. Pin input voltage

12.2 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

12.2.1 Voltage characteristics

12.2.1 Voltage characteristics Table 186. Voltage characteristics						
Symbol	Symbol Ratings		Unit			
V _{DD} - V _{SS}	Supply voltage	6.5				
V _{PP} - V _{SS}	Programming voltage	13	V			
V _{IN}	Input voltage on any pin ⁽¹⁾⁽²⁾	V_{SS} -0.3 to V_{DD} +0.3]			
$ \Delta V_{DDx} $ and $ \Delta V_{SSx} $	Variations between different digital power pins	50	mV			
V _{SSA} - V _{SSx}	Variations betwee: cigital and analog ground pins	50				
V _{ESD(HBM)}	Electro-static discharge voltage (Human body model)	See Section 12.7.3: Absolu maximum ratings (electrica sensitivity) on page 327				
V _{ESD(MM)}	Electro-static discharge voltage (Machine model)					

Table 186. Voltage characteristics

Directly connecting we RESET and I/O pins to V_{DD} or V_{SS} could damage the device if an unintentional internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee syfe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 4.7kΩ for RESET, 10kΩ for I'Os, For the same reason, unused I/O pins must not be directly tied to V_{DD} or V_{SS}.

 $I_{INJ/PIN}$ must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be rcsi ec ad, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by $V_{IN} > V_{DD}$ will be a negative injection is induced by $V_{IN} < V_{SS}$.

2050lete

12.12 **Motor control characteristics**

Subject to general operating conditions for V_{DD} , f_{OSC} , and T_A unless otherwise specified.

12.12.1 Internal reference voltage

Table 216. Internal reference voltage

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit	
	Veltage threshold (V/D [2:0] 000)	VR [2:0] = 000		V _{DD} *0.04			
		Example: $V_{DD} - V_{SSA} = 5V$		0.2			
	Voltage threshold (V/D [2:0] 001)	VR [2:0] = 001		V _{DD} *0.12			
		Example: $V_{DD} - V_{SSA} = 5V$		0.6		1	
	Voltage threshold (VR [2:0] = 010)	VR [2:0] = 010		י.0* _{נ`ז} *0.			
		Example: $V_{DD} - V_{SSA} = 5V$		1.3			
V _{REF}	Voltage threshold (VR [2:0] = 011)	VR [2:0] = 011		V _{DD} *0.3	19	v	
		Example: $V_{DD} - V_{SSA} = 5V$		1.5			
	Voltage threshold (V/R [2:0] - 100)	VR [2:0] = 100		V _{DD} *0.4			
		Example: $V_{D'J} - V_{C'JA} = 5V$	05	2.0			
	Voltage threshold (VR [2:0] = 101)	VR [2:0] = 1(1		V _{DD} *0.5			
		Example: V _{DD} - V _{SSA} = 5V	0	2.5			
	Voltage threshold (VR [2:0] = 110)	VR [2:0] = 110		V _{DD} *0.7			
		Example: $V_{DD} - V_{SSA} = 5V$		3.5			
$\Delta {\rm V}_{\rm REF} / {\rm V}_{\rm REF}$	Tolerance on V _{RF}	0		2.5	10	%	
	nd are not to tech	117 _A = 25 C and v _{DD} - v _{SS} = 5v	. They are (jiven only as	uesigii		

13.2.2 LQFP32 package

Figure 164. 32-pin low profile quad flat packag outline

Table 223.	32-pin low profile quad flat package mechanical data).
-------------------	--	----

	Dimension		mm	ws.	Q	inches ⁽¹⁾	
	Dimension	Minimum	Typical	Maximum	Minimum	Typical	Maximum
	A			1.60	0		0.063
	A1	0.05	3	0.15	0.002		0.006
	A2	1.3,5	1.40	1.45	0.053	0.055	0.057
	b	(.30	0.37	0.45	0.012	0.015	0.018
		0.09	S	0.20	0.004		0.008
	D	, CÌ	9.00			0.354	
10	D1	200	7.00			0.276	
c01	E	00	9.00			0.354	
05	E1		7.00			0.276	
0.	e		0.80			0.031	
dk	θ	0°	3.5°	7°	0°	3.5°	7°
-50	L	0.45	0.60	0.75	0.018	0.024	0.030
Ob	L1		1.00			0.039	
	Number of pins						
N 32							

1. Values in inches are converted from mm and rounded to 3 decimal digits.

Occurrence

The occurrence of the problem is random and proportional to the baudrate. With a transmit frequency of 19200 baud ($f_{CPU} = 8$ MHz and SCIBRR = 0xC9), the wrong break duration occurrence is around 1%.

Analysis

The LIN protocol specifies a minimum of 13 bits for the break duration, but there is no maximum value. Nevertheless, the maximum length of the header is specified as $(14 + 10 + 10 + 1) \times 1.4 = 49$ bits. This is composed of:

- The synch break field (14 bits).
- The synch field (10 bits).
- the identifier field (10 bits).

Every LIN frame starts with a break character. Adding an idle character increases the ength of each header by 10 bits. When the problem occurs, the header length is increased by 11 bits and becomes ((14 + 11) + 10 + 10 + 1) = 45 bits.

To conclude, the problem is not always critical for LIN communication in the software keeps the time between the sync field and the ID smaller than 4 bits, that is, 208µs at 19200 baud.

Workaround

The workaround is the same as for SCI mode but considering the low probability of occurrence (1%), it may be preferable to keep the meak generation sequence as it is.

15.4.2 Header time-out does not prevent wake-up from mute mode

Normally, when LINSCI is configured in LIN slave mode, if a header time-out occurs during a LIN header reception (that is, header length > 57 bits), the LIN Header Error bit (LHE) is set, an interrupt occurs to inform the application but the LINSCI should stay in mute mode, waiting for the next header reception.

Problem description

The L!NSC' sampling period is Tbit/16. If a LIN Header time-out occurs between the 9th and the 15th sample of the Identifier Field Stop Bit (refer to *Figure 165*), the LINSCI wakes up from mute mode. Nevertheless, LHE is set and LIN header detection flag (LHDF) is kept cleared.

In addition, if LHE is reset by software before this 15th sample (by accessing the SCISR register and reading the SCIDR register in the LINSCI interrupt routine), the LINSCI generates another LINSCI interrupt (due to the RDRF flag setting).

semaphore. If it is '1' this means that the last interrupt was missed and the interrupt routine is invoked with the call instruction.

To implement the workaround, the following software sequence is to be followed for writing into the PxOR/PxDDR registers. The example is for Port PF1 with falling edge interrupt sensitivity. The software sequence is given for both cases (global interrupt disabled/enabled).

Case 1: Writing to PxOR or PxDDR with global interrupts enabled:

```
LD A,#01
LD sema, A; set the semaphore to '1'
LD A, PFDR
AND A,#02
LD X,A; store the level before writing to PxOR/PxDDR
LD A,#$90
                                                     ouver
LD PFDDR, A; Write to PFDDR
LD A,#$ff
LD PFOR, A ; Write to PFOR
LD A, PFDR
AND A,#02
LD Y,A; store the level after writing to PKOR/PxDDR
LD A,X; check for falling edge
cp A,#02
jrne OUT
TNZ Y
jrne OUT
LD A, sema; check the semaphone status if
                                          edge is detected
CP A,#01
jrne OUT
call call routine;
                   call the interrupt routine
OUT:LD A,#00
LD sema,A
.call routine; entry to call routine
Push A
Puch X
ru.71. CC
lext1 rt; entry to interrupt routine
LD A,#00
LD sema,A
IRET
Case 2: Writing to PxOR or PxDDR with global interrupts disabled:
SIM; set the interrupt mask
LD A, PFDR
AND A,#$02
LD X,A; store the level before writing to PxOR/PxDDR
LD A,#$90
LD PFDDR, A; Write into PFDDR
LD A,#$ff
LD PFOR, A
                    ; Write to PFOR
LD A, PFDR
AND A,#$02
LD Y,A; store the level after writing to PxOR/PxDDR
```

