E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	CANbus, LINbusSCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f561j6ta

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 DESCRIPTION

The ST72561 devices are members of the ST7 microcontroller family designed for mid-range applications with CAN (Controller Area Network) and LIN (Local Interconnect Network) interface.

All devices are based on a common industrystandard 8-bit core, featuring an enhanced instruction set and are available with Flash or ROM program memory. The ST7 family architecture offers both power and flexibility to software developers, enabling the design of highly efficient and compact application code. The on-chip peripherals include an A/D converter, a PWM Autoreload timer, 2 general purpose timers, 2 asynchronous serial interfaces, and an SPI interface.

For power economy, microcontroller can switch dynamically into WAIT, SLOW, Active-Halt, Auto Wake-up from HALT (AWU) or HALT mode when the application is in idle or stand-by state.

Typical applications are consumer, home, office and industrial products.

لرکا

Address	Block	Register Label	Register Name	Reset Status	Remarks		
000Fh	Port F	PFDR	Port F Data Register	00h ¹⁾	R/W ²⁾		
0010h		PFDDR	Port F Data Direction Register	00h	R/W ²⁾		
0011h		PFOR	Port F Option Register	00h	R/W ²⁾		
0012h to 0020h		Reserved Area (15 bytes)					
0021h	SPI	SPIDR	SPI Data I/O Register	xxh	R/W		
0022h		SPICR	SPI Control Register	0xh	R/W		
0023h		SPICSR	SPI Control/Status Register	00h	R/W		
0024h	FLASH	FCSR	Flash Control/Status Register	00h	R/W		
0025h 0026h 0027h 0028h 0029h 002Ah	ITC	ISPR0 ISPR1 ISPR2 ISPR3 EICR0 EICR1	Interrupt Software Priority Register 0 Interrupt Software Priority Register 1 Interrupt Software Priority Register 2 Interrupt Software Priority Register 3 External Interrupt Control Register 0 External Interrupt Control Register 1	FFh FFh FFh OOh OOh	R/W R/W R/W R/W R/W		
002Bh	AWU	AWUCSR	Auto Wake up f. Halt Control/Status Register	00h	R/W		
002Ch		AWUPR	Auto Wake Up From Halt Prescaler	FFh	R/W		
002Dh	CKCTRL	SICSR	System Integrity Control / Status Register	0xh	R/W		
002Eh		MCCSR	Main Clock Control / Status Register	00h	R/W		
002Fh	WWDG	WDGCR	Watchdog Control Register	7Fh	R/W		
0030h		WDGWR	Watchdog Window Register	7Fh	R/W		
0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 0039h 003Ah 003Bh	PWM ART	PWMDCR3 PWMDCR2 PWMDCR1 PWMDCR0 PWMCR ARTCSR ARTCAR ARTCAR ARTARR ARTICCSR ARTICR1 ARTICR2	Pulse Width Modulator Duty Cycle Register 3 PWM Duty Cycle Register 2 PWM Duty Cycle Register 1 PWM Duty Cycle Register 0 PWM Control register Auto-Reload Timer Control/Status Register Auto-Reload Timer Counter Access Register Auto-Reload Timer Auto-Reload Register Auto-Reload Timer Auto-Reload Register ART Input Capture Control/Status Register ART Input Capture Register 1 ART Input Capture register 2	00h 00h 00h 00h 00h 00h 00h 00h 00h 00h	R/W R/W R/W R/W R/W R/W R/W R/W R/W Read Only Read Only		
003Ch 003Dh 003Eh 003Fh 0040h 0041h 0042h 0043h 0044h	8-BIT TIMER	T8CR2 T8CR1 T8CSR T8IC1R T8OC1R T8CTR T8ACTR T8IC2R T8IC2R T8OC2R	Timer Control Register 2 Timer Control Register 1 Timer Control/Status Register Timer Input Capture 1 Register Timer Output Compare 1 Register Timer Counter Register Timer Alternate Counter Register Timer Input Capture 2 Register Timer Output Compare 2 Register	00h 00h xxh 00h FCh FCh xxh 00h	R/W R/W Read Only Read Only Read Only Read Only Read Only R/W		
0045h	ADC	ADCCSR	Control/Status Register	00h	R/W		
0046h		ADCDRH	Data High Register	00h	Read Only		
0047h		ADCDRL	Data Low Register	00h	Read Only		

SYSTEM INTEGRITY MANAGEMENT (Cont'd)

6.4.3 Low Power Modes

Mode	Description
WAIT	No effect on SI. AVD interrupts cause the device to exit from Wait mode.
HALT	The SICSR register is frozen.

6.4.3.1 Interrupts

Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt				11)
/D event	AVDF	AVDIE	Yes	No				000
					01059	olet	-	
	01	odu	oile	5)	0105	016		

INTERRUPTS (Cont'd)

7.3 INTERRUPTS AND LOW POWER MODES

All interrupts allow the processor to exit the WAIT low power mode. On the contrary, only external and other specified interrupts allow the processor to exit from the HALT modes (see column "Exit from HALT" in "Interrupt Mapping" table). When several pending interrupts are present while exiting HALT mode, the first one serviced can only be an interrupt with exit from HALT mode capability and it is selected through the same decision process shown in Figure 18.

Note: If an interrupt, that is not able to Exit from HALT mode, is pending with the highest priority when exiting HALT mode, this interrupt is serviced after the first one serviced.

7.4 CONCURRENT & NESTED MANAGEMENT

The following Figure 19 and Figure 20 show two different interrupt management modes. The first is called concurrent mode and does not allow an interrupt to be interrupted, unlike the nested mode in Figure 20. The interrupt hardware priority is given in this order from the lowest to the highest: MAIN, IT4, IT3, IT2, IT1, IT0, TLI. The software priority is given for each interrupt.

Warning: A stack overflow may occur without notifying the software of the failure.

Figure 20. Nested Interrupt Management

<u>ل</u>رک

INTERRUPTS (Cont'd)

7.5 INTERRUPT REGISTER DESCRIPTION

CPU CC REGISTER INTERRUPT BITS

Read/Write

Reset Value: 111x 1010 (xAh)

7							0
1	1	11	н	10	Ν	Z	С

Bit 5, 3 = 11, 10 Software Interrupt Priority

These two bits indicate the current interrupt software priority.

Interrupt Software Priority	Level	11	10
Level 0 (main)	Low	1	0
Level 1		0	1
Level 2	★	0	0
Level 3 (= interrupt disable*)	High	1	1

These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (ISPRx).

They can be also set/cleared by software with the RIM, SIM, HALT, WFI, IRET and PUSH/POP instructions (see "Interrupt Dedicated Instruction Set" table).

*Note: TLI, TRAP and RESET events can interrupt a level 3 program.

INTERRUPT SOFTWARE PRIORITY REGIS-TERS (ISPRX)

Read/Write (bit 7:4 of **ISPR3** are read only) Reset Value: 1111 1111 (FFh)

	7							0
ISPR0	l1_3	10_3	11_2	10_2	11_1	10_1	l1_0	10_0
ISPR1	11_7	10_7	l1_6	10_6	l1_5	10_5	11_4	10_4
ISPR2	11_11	10_11	11_10	10_10	l1_9	10_9	11_8	10_8
ISPR3	1	1	1	1	11_13	10_13	11_12	10_12

These four registers contain the interrupt software priority of each interrupt vector.

 Each interrupt vector (except RESET and TRAP) has corresponding bits in these registers where its own software priority is stored. This correspondence is shown in the following table.

Vector address	ISPRx bits
FFFBh-FFFAh	11_0 and 10_0 bits*
FFF9h-FFF8h	I1_1 and I0_1 bits
FFE1h-FFE0h	I1_13 and I0_13 bits

Each I1_x and I0_x bit value in the ISPRx registers has the same meaning as the I1 and I0 bits in the CC register.

- Level 0 cannot be written (l1_x = 1, l0_x = 0). In this case, the previously stored value is kept (Example: previous = CFh, write = 64h, result = 44h)

The RESET, TRAP and TLI vectors have no software priorities. When one is serviced, the I1 and I0 bits of the CC register are both set.

*Note: Bits in the ISPRx registers which correspond to the TLI can be read and written but they are not significant in the interrupt process management.

Caution: If the $I1_x$ and $I0_x$ bits are modified while the interrupt x is executed the following behavior has to be considered: If the interrupt x is still pending (new interrupt or flag not cleared) and the new software priority is higher than the previous one, the interrupt x is re-entered. Otherwise, the software priority stays unchanged up to the next interrupt request (after the IRET of the interrupt x).

INTERRUPTS (Cont'd)

7.6.2 Register Description

EXTERNAL INTERRUPT CONTROL REGISTER 0 (EICR0) Read/Write

Reset Value: 0000 0000 (00h)

7							0
IS31	IS30	IS21	IS20	IS11	IS10	IS01	IS00

Bits 7:6 = IS3[1:0] ei3 sensitivity

The interrupt sensitivity, defined using the IS3[1:0] bits, is applied to the ei3 external interrupts:

IS31	IS30	External Interrupt Sensitivity
0	0	Falling edge & low level
0	1	Rising edge only
1	0	Falling edge only
1	1	Rising and falling edge

These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).

Bits 5:4 = IS2[1:0] ei2 sensitivity

The interrupt sensitivity, defined using the IS2[1:0] bits, is applied to the ei2 external interrupts:

IS21	IS20	External Interrupt Sensitivity
0	0	Falling edge & low level
0	1	Rising edge only
1	0	Falling edge only
1	1	Rising and falling edge

These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).

Bits 3:2 = IS1[1:0] ei1 sensitivity

The interrupt sensitivity, defined using the IS1[1:0] bits, is applied to the ei1 external interrupts:

IS11	IS10	External Interrupt Sensitivity
0	0	Falling edge & low level
0	1	Rising edge only
1	0	Falling edge only
1	1	Rising and falling edge

These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).

Bits 1:0 = ISO[1:0] ei0 sensitivity

The interrupt sensitivity, defined using the ISO[1:0] bits, is applied to the ei0 external interrupts:

IS01	IS00	External Interrupt Sensitivity
0	0	Falling edge & low level
0	1	Rising edge only
1	0	Falling edge only
1	1	Rising and falling edge

These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).

EXTERNAL INTERUPT CONTROL REGISTER 1 (EICR1)

Read/Write Reset Value: 0000 0000 (00h)

7							0
0	0	0	0	0	0	TLIS	TLIE

Blts 7:2 = Reserved

Bit 1 = TLIS Top Level Interrupt sensitivity This bit configures the TLI edge sensitivity. It can be set and cleared by software only when TLIE bit is cleared.

- 0: Falling edge
- 1: Rising edge

Bit 0 =**TLIE** *Top Level Interrupt enable* This bit allows to enable or disable the TLI capability on the dedicated pin. It is set and cleared by software.

- 0: TLI disabled
- 1: TLI enabled

Notes:

- A parasitic interrupt can be generated when clearing the TLIE bit.
- In some packages, the TLI pin is not available. In this case, the TLIE bit must be kept low to avoid parasitic TLI interrupts.

10 ON-CHIP PERIPHERALS

10.1 WINDOW WATCHDOG (WWDG)

10.1.1 Introduction

The Window Watchdog is used to detect the occurrence of a software fault, usually generated by external interference or by unforeseen logical conditions, which causes the application program to abandon its normal sequence. The Watchdog circuit generates an MCU reset on expiry of a programmed time period, unless the program refreshes the contents of the downcounter before the T6 bit becomes cleared. An MCU reset is also generated if the 7-bit downcounter value (in the control register) is refreshed before the downcounter has reached the window register value. This implies that the counter must be refreshed in a limited window.

10.1.2 Main Features

- Programmable free-running downcounter
- Conditional reset

<u>ل</u>رک

- Reset (if watchdog activated) when the downcounter value becomes less than 40h
- Reset (if watchdog activated) if the down-

Figure 34. Watchdog Block Diagram

counter is reloaded outside the window (see Figure 4) $% \left({{{\rm{See}}}} \right)$

- Hardware/Software Watchdog activation (selectable by option byte)
- Optional reset on HALT instruction (configurable by option byte)

10.1.3 Functional Description

The counter value stored in the WDGCR register (bits T[6:0]), is decremented every 16384 f_{OSC2} cycles (approx.), and the length of the timeout period can be programmed by the user in 64 increments.

If the watchdog is activated (the WDGA bit is set) and when the 7-bit downcounter (T[6:0] bits) rolls over from 40h to 3Fh (T6 becomes cleared), it initiates a reset cycle pulling low the reset pin for typically 30μ s. If the software reloads the counter while the counter is greater than the value stored in the window register, then a reset is generated.

WINDOW WATCHDOG (Cont'd)

10.1.9 Interrupts

None.

10.1.10 Register Description CONTROL REGISTER (WDGCR)

Read/Write

Reset Value: 0111 1111 (7Fh)

7							0
WDGA	Т6	T5	T4	Т3	T2	T1	то

Bit 7 = WDGA Activation bit.

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset.

0: Watchdog disabled

1: Watchdog enabled

Note: This bit is not used if the hardware watchdog option is enabled by option byte.

Bits 6:0 = **T[6:0]** 7-bit counter (MSB to LSB). These bits contain the value of the watchdog counter. It is decremented every 16384 f_{OSC2} cycles (approx.). A reset is produced when it rolls over from 40h to 3Fh (T6 becomes cleared).

WINDOW REGISTER (WDGWR)

Read/Write

Reset Value: 0111 1111 (7Fh)

7							0
-	W6	W5	W4	WЗ	W2	W1	WO

Bit 7 = Reserved

Bits 6:0 = **W[6:0]** *7-bit window value* These bits contain the window value to be compared to the downcounter.

Figure 38. Watchdog Timer Register Map and Reset Values

	Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
	C2E	WDGCR	WDGA	Т6	T5	T4	Т3	T2	T1	TO
	0-21	Reset Value	0	1	1	1	1	1	1	1
\bigcirc	20	WDGWR	-	W6	W5	W4	W3	W2	W1	W0
	30	Reset Value	0	1	1	1	1	1	1	1

PWM AUTO-RELOAD TIMER (Cont'd)

Table 17. PWM Auto-Reload Timer Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0031h	PWMDCR3	DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC0
	Reset Value	0	0	0	0	0	0	0	0
0032h	PWMDCR2	DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC0
	Reset Value	0	0	0	0	0	0	0	0
0033h	PWMDCR1	DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC0
	Reset Value	0	0	0	0	0	0	0	0
0034h	PWMDCR0	DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC0
	Reset Value	0	0	0	0	0	0	0	0
0035h	PWMCR	OE3	OE2	OE1	OE0	OP3	OP2	OP1	OP0
	Reset Value	0	0	0	0	0	0	0	0
0036h	ARTCSR	EXCL	CC2	CC1	CC0	TCE	FCRL	RIE	OVF
	Reset Value	0	0	0	0	0	0	0	0
0037h	ARTCAR	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
	Reset Value	0	0	0	0	0	0	0	0
0038h	ARTARR	AR7	AR6	AR5	AR4	AR3	AR2	AR1	AR0
	Reset Value	0	0	0	0	0	0	0	0
0039h	ARTICCSR Reset Value	0	60	CE2 0	CE1 0	CS2 0	CS1 0	CF2 0	CF1 0
003Ah	ARTICR1	IC7	IC6	IC5	IC4	IC3	IC2	IC1	IC0
	Reset Value	0	0	0	0	0	0	0	0
003Bh	ARTICR2	IC7	IC6	IC5	IC4	IC3	IC2	IC1	IC0
	Reset Value	0	0	0	0	0	0	0	0
psolf	2								

8-BIT TIMER (Cont'd)

57

Figure 59. Timer Block Diagram

8-BIT TIMER (Cont'd)

10.5.3.5 Pulse Width Modulation Mode

Pulse Width Modulation (PWM) mode enables the generation of a signal with a frequency and pulse length determined by the value of the OC1R and OC2R registers.

Pulse Width Modulation mode uses the complete Output Compare 1 function plus the OC2R register, and so this functionality can not be used when PWM mode is activated.

In PWM mode, double buffering is implemented on the output compare registers. Any new values written in the OC1R and OC2R registers are taken into account only at the end of the PWM period (OC2) to avoid spikes on the PWM output pin (OCMP1).

Procedure

To use pulse width modulation mode:

- 1. Load the OC2R register with the value corresponding to the period of the signal using the formula in the opposite column.
- 2. Load the OC1R register with the value corresponding to the period of the pulse if (OLVL1 = 0 and OLVL2 = 1) using the formula in the opposite column.
- 3. Select the following in the CR1 register:
 - Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after a successful comparison with the OC1R register.
 - Using the OLVL2 bit, select the level to be applied to the OCMP1 pin after a successful comparison with the OC2R register.
- 4. Select the following in the CR2 register:
 - Set OC1E bit: the OCMP1 pin is then dedicated to the output compare 1 function.
 - Set the PWM bit.
 - Select the timer clock (CC[1:0]) (see Table 19 Clock Control Bits).

If OLVL1 = 1 and OLVL2 = 0 the length of the positive pulse is the difference between the OC2R and OC1R registers.

If OLVL1 = OLVL2 a continuous signal will be seen on the OCMP1 pin.

The OC*i*R register value required for a specific timing application can be calculated using the following formula:

$$OC_{i}R Value = \frac{t \cdot f_{CPU}}{PBESC} - 5$$

Where:

t = Signal or pulse period (in seconds)

f_{CPU} = PLL output x2 clock frequency in hertz (or f_{OSC}/2 if PLL is not enabled)

PRESC = Timer prescaler factor (2, 4, 8 or 8000 depending on CC[1:0] bits, see Table 19 Clock Control Bits)

The Output Compare 2 event causes the counter to be initialized to FCh (See Figure 69)

Notes:

- 1. The OCF1 and OCF2 bits cannot be set by hardware in PWM mode therefore the Output Compare interrupt is inhibited.
- 2. The ICF1 bit is set by hardware when the counter reaches the OC2R value and can produce a timer interrupt if the ICIE bit is set and the I bit is cleared.
- 3. In PWM mode the ICAP1 pin can not be used to perform input capture because it is disconnected to the timer. The ICAP2 pin can be used to perform input capture (ICF2 can be set and IC2R can be loaded) but the user must take care that the counter is reset each period and ICF1 can also generates interrupt if ICIE is set.
- 4. When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set, the PWM mode is the only active one.

<u>ل</u>رک

8-BIT TIMER (Cont'd) CONTROL/STATUS REGISTER (CSR)

Read Only (except bit 2 R/W)

Reset Value: 0000 0000 (00h)

1							0
ICF1	OCF1	TOF	ICF2	OCF2	TIMD	0	0

Bit 7 = **ICF1** Input Capture Flag 1.

0: No input capture (reset value).

1: An input capture has occurred on the ICAP1 pin or the counter has reached the OC2R value in PWM mode. To clear this bit, first read the SR register, then read or write the the IC1R register.

Bit 6 = **OCF1** *Output Compare Flag 1.*

0: No match (reset value).

1: The content of the free running counter has matched the content of the OC1R register. To clear this bit, first read the SR register, then read or write the OC1R register.

Bit 5 = **TOF** *Timer Overflow Flag.*

0: No timer overflow (reset value).

1: The free running counter rolled over from FFh to 00h. To clear this bit, first read the SR register, then read or write the CTR register. **Note:** Reading or writing the ACTR register does not clear TOF.

Bit 4 = ICF2 Input Capture Flag 2.

0: No input capture (reset value).

1: An input capture has occurred on the ICAP2 pin. To clear this bit, first read the SR register, then read or write the IC2R register.

Bit 3 = OCF2 Output Compare Flag 2.

- 0: No match (reset value).
- 1: The content of the free running counter has matched the content of the OC2R register. To clear this bit, first read the SR register, then read or write the OC2R register.

Bit 2 = TIMD Timer disable.

This bit is set and cleared by software. When set, it freezes the timer prescaler and counter and disabled the output functions (OCMP1 and OCMP2 pins) to reduce power consumption. Access to the timer registers is still available, allowing the timer configuration to be changed, or the counter reset, while it is disabled.

0: Timer enabled

1: Timer prescaler, counter and outputs disabled

Bits 1:0 = Reserved, must be kept cleared.

<u>ل ۲</u>۲

LINSCITM SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont'd)

10.7.5.3 Receiver

The SCI can receive data words of either 8 or 9 bits. When the M bit is set, word length is 9 bits and the MSB is stored in the R8 bit in the SCICR1 register.

Character reception

During a SCI reception, data shifts in least significant bit first through the RDI pin. In this mode, the SCIDR register consists or a buffer (RDR) between the internal bus and the received shift register (see Figure 1).

Procedure

- Select the M bit to define the word length.
- Select the desired baud rate using the SCIBRR and the SCIERPR registers.
- Set the RE bit, this enables the receiver which begins searching for a start bit.

When a character is received:

- The RDRF bit is set. It indicates that the content of the shift register is transferred to the RDR.
- An interrupt is generated if the RIE bit is set and the I[1:0] bits are cleared in the CCR register.
- The error flags can be set if a frame error, noise or an overrun error has been detected during reception.

Clearing the RDRF bit is performed by the following software sequence done by:

- 1. An access to the SCISR register
- 2. A read to the SCIDR register.

The RDRF bit must be cleared before the end of the reception of the next character to avoid an overrun error.

Idle Line

When an idle line is detected, there is the same procedure as a data received character plus an interrupt if the ILIE bit is set and the I[I1:0] bits are cleared in the CCR register.

Overrun Error

An overrun error occurs when a character is received when RDRF has not been reset. Data can not be transferred from the shift register to the TDR register as long as the RDRF bit is not cleared.

When an overrun error occurs:

- The OR bit is set.
- The RDR content will not be lost.
- The shift register will be overwritten.
- An interrupt is generated if the RIE bit is set and the I[I1:0] bits are cleared in the CCR register.

The OR bit is reset by an access to the SCISR register followed by a SCIDR register read operation.

Noise Error

Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise.

When noise is detected in a character:

- The NF bit is set at the rising edge of the RDRF bit.
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.
- The NF bit is reset by a SCISR register read operation followed by a SCIDR register read operation.

Framing Error

A framing error is detected when:

- The stop bit is not recognized on reception at the expected time, following either a desynchronization or excessive noise.
- A break is received.

When the framing error is detected:

- the FE bit is set by hardware
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.

The FE bit is reset by a SCISR register read operation followed by a SCIDR register read operation.

Break Character

 When a break character is received, the SCI handles it as a framing error. To differentiate a break character from a framing error, it is necessary to read the SCIDR. If the received value is 00h, it is a break character. Otherwise it is a framing error.

<u>/</u>ک

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont'd)

10.7.9.3 LIN Reception

In LIN mode the reception of a byte is the same as in SCI mode but the LINSCI has features for handling the LIN Header automatically (identifier detection) or semiautomatically (Synch Break detection) depending on the LIN Header detection mode. The detection mode is selected by the LHDM bit in the SCICR3.

Additionally, an automatic resynchronization feature can be activated to compensate for any clock deviation, for more details please refer to Section 0.1.9.5 LIN Baud Rate.

LIN Header Handling by a Slave

Depending on the LIN Header detection method the LINSCI will signal the detection of a LIN Header after the LIN Synch Break or after the Identifier has been successfully received.

Note:

It is recommended to combine the Header detection function with Mute mode. Putting the LINSCI in Mute mode allows the detection of Headers only and prevents the reception of any other characters.

This mode can be used to wait for the next Header without being interrupted by the data bytes of the current message in case this message is not relevant for the application.

Synch Break Detection (LHDM = 0):

When a LIN Synch Break is received:

- The RDRF bit in the SCISR register is set. It indicates that the content of the shift register is transferred to the SCIDR register, a value of 0x00 is expected for a Break.
- The LHDF flag in the SCICR3 register indicates that a LIN Synch Break Field has been detected.

 An interrupt is generated if the LHIE bit in the SCICR3 register is set and the I[1:0] bits are cleared in the CCR register.

- Then the LIN Synch Field is received and measured.
 - If automatic resynchronization is enabled (LA-SE bit = 1), the LIN Synch Field is not transferred to the shift register: There is no need to clear the RDRF bit.
 - If automatic resynchronization is disabled (LA-SE bit = 0), the LIN Synch Field is received as a normal character and transferred to the SCIDR register and RDRF is set.

Note:

In LIN slave mode, the FE bit detects all frame error which does not correspond to a break.

Identifier Detection (LHDM = 1):

This case is the same as the previous one except that the LHDF and the RDRF flags are set only after the entire header has been received (this is true whether automatic resynchronization is enabled or not). This indicates that the LIN Identifier is available in the SCIDR register.

Notes:

During LIN Synch Field measurement, the SCI state machine is switched off: No characters are transferred to the data register.

LIN Slave parity

In LIN Slave mode (LINE and LSLV bits are set) LIN parity checking can be enabled by setting the PCE bit.

In this case, the parity bits of the LIN Identifier Field are checked. The identifier character is recognized as the third received character after a break character (included):

The bits involved are the two MSB positions (7th and 8th bits if M = 0; 8th and 9th bits if M = 1) of the identifier character. The check is performed as specified by the LIN specification:

LINSCITM SERIAL COMMUNICATION INTERFACE (LIN Master Only) (Cont'd)

10.8.4.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status. When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the T8 bit in the SCICR1 register.

When the transmit enable bit (TE) is set, the data in the transmit shift register is output on the TDO pin and the corresponding clock pulses are output on the SCLK pin.

Character Transmission

During an SCI transmission, data shifts out least significant bit first on the TDO pin. In this mode, the SCIDR register consists of a buffer (TDR) between the internal bus and the transmit shift register (see Figure 89).

Procedure

- Select the M bit to define the word length.
- Select the desired baud rate using the SCIBRR and the SCIETPR registers.
- Set the TE bit to send an idle frame as first transmission.
- Access the SCISR register and write the data to send in the SCIDR register (this sequence clears the TDRE bit). Repeat this sequence for each data to be transmitted.

Clearing the TDRE bit is always performed by the following software sequence:

1. An access to the SCISR register

2. A write to the SCIDR register

The TDRE bit is set by hardware and it indicates:

- The TDR register is empty.
- The data transfer is beginning.
- The next data can be written in the SCIDR register without overwriting the previous data.

This flag generates an interrupt if the TIE bit is set and the I bit is cleared in the CCR register.

When a transmission is taking place, a write instruction to the SCIDR register stores the data in the TDR register and which is copied in the shift register at the end of the current transmission.

When no transmission is taking place, a write instruction to the SCIDR register places the data directly in the shift register, the data transmission starts, and the TDRE bit is immediately set. When a frame transmission is complete (after the stop bit or after the break frame) the TC bit is set and an interrupt is generated if the TCIE is set and the I bit is cleared in the CCR register.

Clearing the TC bit is performed by the following software sequence:

1. An access to the SCISR register

2. A write to the SCIDR register

Note: The TDRE and TC bits are cleared by the same software sequence.

Break Characters

Setting the SBK bit loads the shift register with a break character. The break frame length depends on the M bit (see Figure 89).

As long as the SBK bit is set, the SCI send break frames to the TDO pin. After clearing this bit by software the SCI insert a logic 1 bit at the end of the last break frame to guarantee the recognition of the start bit of the next frame.

Idle Characters

Setting the TE bit drives the SCI to send an idle frame before the first data frame.

Clearing and then setting the TE bit during a transmission sends an idle frame after the current word.

Note: Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore the best time to toggle the TE bit is when the TDRE bit is set, that is, before writing the next byte in the SCIDR.

LIN Transmission

The same procedure has to be applied for LIN Master transmission with the following differences:

- Clear the M bit to configure 8-bit word length.
- Set the LINE bit to enter LIN master mode. In this case, setting the SBK bit sends 13 low bits.

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Master Only) (Cont'd)

10.8.4.3 Receiver

The SCI can receive data words of either 8 or 9 bits. When the M bit is set, word length is 9 bits and the MSB is stored in the R8 bit in the SCICR1 register.

Character reception

During a SCI reception, data shifts in least significant bit first through the RDI pin. In this mode, the SCIDR register consists or a buffer (RDR) between the internal bus and the received shift register (see Figure 88 on page 153).

Procedure

- Select the M bit to define the word length.
- Select the desired baud rate using the SCIBRR and the SCIERPR registers.
- Set the RE bit, this enables the receiver which begins searching for a start bit.

When a character is received:

- The RDRF bit is set. It indicates that the content of the shift register is transferred to the RDR.
- An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.
- The error flags can be set if a frame error, noise or an overrun error has been detected during reception.

Clearing the RDRF bit is performed by the following software sequence done by:

- 1. An access to the SCISR register
- 2. A read to the SCIDR register.

The RDRF bit must be cleared before the end of the reception of the next character to avoid an overrun error.

Break Character

When a break character is received, the SCI handles it as a framing error.

Idle Character

When an idle frame is detected, there is the same procedure as a data received character plus an interrupt if the ILIE bit is set and the I bit is cleared in the CCR register.

Overrun Error

An overrun error occurs when a character is received when RDRF has not been reset. Data cannot be transferred from the shift register to the RDR register until the RDRF bit is cleared.

When a overrun error occurs:

- The OR bit is set.
- The RDR content is not lost.
- The shift register is overwritten.
- An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.

The OR bit is reset by an access to the SCISR register followed by a SCIDR register read operation.

Noise Error

Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise.

When noise is detected in a frame:

- The NF is set at the rising edge of the RDRF bit.
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.

The NF bit is reset by a SCISR register read operation followed by a SCIDR register read operation.

Framing Error

A framing error is detected when:

- The stop bit is not recognized on reception at the expected time, following either a de-synchronization or excessive noise.
- A break is received.
- When the framing error is detected:
- the FE bit is set by hardware
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.

The FE bit is reset by a SCISR register read operation followed by a SCIDR register read operation.

57

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Master Only) (Cont'd)

10.8.4.4 Conventional Baud Rate Generation

The baud rates for the receiver and transmitter (Rx and Tx) are set independently and calculated as follows

:

$$Tx = \frac{f_{CPU}}{(16*PR)*TR} \qquad Rx = \frac{f_{CPU}}{(16*PR)*RR}$$

with:

67/

PR = 1, 3, 4 or 13 (see SCP[1:0] bits)

TR = 1, 2, 4, 8, 16, 32, 64, 128

(see SCT[2:0] bits)

RR = 1, 2, 4, 8, 16, 32, 64, 128

(see SCR[2:0] bits)

All these bits are in the SCIBRR register.

Example: If f_{CPU} is 8 MHz (normal mode) and if PR = 13 and TR = RR = 1, the transmit and receive baud rates are 38400 baud.

Note: The baud rate registers MUST NOT be changed while the transmitter or the receiver is enabled.

10.8.4.5 Extended Baud Rate Generation

The extended prescaler option gives a very fine tuning on the baud rate, using a 255 value prescaler, whereas the conventional Baud Rate Generator retains industry standard software compatibility.

The extended baud rate generator block diagram is described in the Figure 90.

The output clock rate sent to the transmitter or to the receiver is the output from the 16 divider divided by a factor ranging from 1 to 255 set in the SCI-ERPR or the SCIETPR register.

Note: The extended prescaler is activated by setting the SCIETPR or SCIERPR register to a value

other than zero. The baud rates are calculated as follows:

$$Tx = \frac{f_{CPU}}{16 \cdot ETPR^{*}(PR^{*}TR)} Rx = \frac{f_{CPU}}{16 \cdot ERPR^{*}(PR^{*}RR)}$$

with:

ETPR = 1, ..., 255 (see SCIETPR register)

ERPR = 1, ..., 255 (see SCIERPR register)

10.8.4.6 Receiver Muting and Wake-up Feature

In multiprocessor configurations it is often desirable that only the intended message recipient should actively receive the full message contents, thus reducing redundant SCI service overhead for all non addressed receivers.

The non addressed devices may be placed in sleep mode by means of the muting function.

Setting the RWU bit by software puts the SCI in sleep mode:

All the reception status bits cannot be set.

All the receive interrupts are inhibited.

A muted receiver may be awakened by one of the following two ways:

- by Idle Line detection if the WAKE bit is reset,

- by Address Mark detection if the WAKE bit is set.

Receiver wakes-up by Idle Line detection when the Receive line has recognized an Idle Frame. Then the RWU bit is reset by hardware but the IDLE bit is not set.

Receiver wakes-up by Address Mark detection when it received a "1" as the most significant bit of a word, thus indicating that the message is an address. The reception of this particular word wakes up the receiver, resets the RWU bit and sets the RDRF bit, which allows the receiver to receive this word normally and to use it as an address word.

159/265

INSTRUCTION SET OVERVIEW (Cont'd)

Mnemo	Description	Function/Example	Dst	Src] [11	Н	10	Ν	Ζ	С
ADC	Add with Carry	A=A+M+C	А	М			н		Ν	Ζ	С
ADD	Addition	A = A + M	А	М			н		Ν	Ζ	С
AND	Logical And	A = A . M	А	М					Ν	Ζ	
BCP	Bit compare A, Memory	tst (A . M)	А	М					Ν	Ζ	
BRES	Bit Reset	bres Byte, #3	М								
BSET	Bit Set	bset Byte, #3	М								
BTJF	Jump if bit is false (0)	btjf Byte, #3, Jmp1	М							2	С
BTJT	Jump if bit is true (1)	btjt Byte, #3, Jmp1	М						12	5	С
CALL	Call subroutine							(3		
CALLR	Call subroutine relative							Ś			
CLR	Clear		reg, M			1	5		0	1	
СР	Arithmetic Compare	tst(Reg - M)	reg	М					Ν	Ζ	С
CPL	One Complement	A = FFH-A	reg, M	×0					Ν	Ζ	1
DEC	Decrement	dec Y	reg, M	6					Ν	Ζ	
HALT	Halt		SU			1		0			
IRET	Interrupt routine return	Pop CC, A, X, PC	0-			11	н	10	Ν	Ζ	С
INC	Increment	inc X	reg, M						Ν	Ζ	
JP	Absolute Jump	jp [TBL.w]									
JRA	Jump relative always	X									
JRT	Jump relative										
JRF	Never jump	jrf *									
JRIH	Jump if ext. INT pin = 1	(ext. INT pin high)									
JRIL	Jump if ext. INT pin = 0	(ext. INT pin low)									
JRH	Jump if H = 1	H = 1 ?									
JRNH	Jump if H = 0	H = 0 ?									
JRM	Jump if I1:0 = 11	l1:0 = 11 ?									
JRNM	Jump if I1:0 <> 11	11:0 <> 11 ?									
JRMI	Jump if N = 1 (minus)	N = 1 ?									
JRPL	Jump if N = 0 (plus)	N = 0 ?									
JREQ	Jump if Z = 1 (equal)	Z = 1 ?									
JRNE	Jump if Z = 0 (not equal)	Z = 0 ?									
JRC	Jump if C = 1	C = 1 ?									
JRNC	Jump if C = 0	C = 0 ?									
JRULT	Jump if C = 1	Unsigned <			1						
JRUGE	Jump if C = 0	Jmp if unsigned >=			1						
JRUGT	Jump if $(C + Z = 0)$	Unsigned >									

12.9 I/O PORT PIN CHARACTERISTICS

12.9.1 General Characteristics

Subject to general operating conditions for V_{DD} , f_{OSC} , and T_A unless otherwise specified.

Symbol	Parameter	Cor	nditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage ¹⁾					$0.3 \times V_{DD}$	
V _{IH}	Input high level voltage ¹⁾	CMOS por	ts	$0.7 \mathrm{~x~V_{DD}}$			
V _{hys}	Schmitt trigger voltage hysteresis ²⁾				1		V
V _{IL}	Input low level voltage ¹⁾					0.8	
V _{IH}	Input high level voltage ¹⁾	TTL ports		2			
V _{hys}	Schmitt trigger voltage hysteresis ²⁾				400		mV
	Injected Current on PB3		Flash devices	0		+4	5
I _{INJ(PIN)}		$V_{DD} = 5V$	ROM devices			±4	
	Injected Current on any other I/O pin		$V_{DD} = 5V$			2	±4
$\Sigma I_{\rm INJ(PIN)}^{3)}$	Total injected current (sum of all I/O and control pins) ⁷⁾				,00	±25	
L.	Input leakage current on robust pins	See "10-B	IT ADC CHARA	CTERISTIC	CS" on pag	e 245	
'lkg	Input leakage current ⁴⁾	$V_{SS} \leq V_{IN}$	$\leq V_{DD}$	20		±1	
۱ _S	Static current consumption ⁵⁾	Floating in	put mode	5	200		μΑ
R _{PU}	Weak pull-up equivalent resistor ⁶⁾	$V_{IN} = V_{SS}$	$V_{DD} = 5V$	50	90	250	kΩ
C _{IO}	I/O pin capacitance				5		pF
t _{f(IO)out}	Output high to low level fall time	$C_L = 50 pF$			25		ne
t _{r(IO)out}	Output low to high level rise time	Between 1	0% and 90%		20		115
t _{w(IT)in}	External interrupt pulse time ⁷⁾			1			t _{CPU}

Notes:

1. Data based on characterization results, not tested in production.

2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.

3. When the current limitation is not possible, the V_{IN} absolute maximum rating must be respected, otherwise refer to $I_{INJ(PIN)}$ specification. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. Refer to Section 12.2 on page 220 for more details.

4. Leakage could be higher than max. if negative current is injected on adjacent pins.

5. Configuration not recommended, all unused pins must be kept at a fixed voltage: Using the output mode of the I/O, for example, or an external pull-up or pull-down resistor (see Figure 125). Data based on design simulation and/or technology characteristics, not tested in production.

6. The R_{PU} pull-up equivalent resistor is based on a resistive transistor (corresponding I_{PU} current characteristics described in Figure 126).

7. To generate an external interrupt, a minimum pulse width must be applied on an I/O port pin configured as an external interrupt source.

47/

COMMUNICATION INTERFACE CHARACTERISTICS (Cont'd)

Figure 139. SPI Slave Timing Diagram with CPHA = 1¹⁾

Notes:

MISO INPUT

MOSI OUTPUT

1. Measurement points are done at CMOS levels: 0.3 x V_{DD} and 0.7 x $V_{\text{DD}}.$

1

L 1 Í

I.

MSB OUT

t_{h(MI)}

MSB IN

t_{h(MO)}

t_{su(MI)}

t_{v(MO)}

See note 2

2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its alternate function capability released. In this case, the pin status depends on the I/O port configuration.

BIT6 IN

BIT6 OUT

ХΧ

See note 2

LSB IN

LSB OUT