

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	CANbus, LINbusSCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f561j7tae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents —

10 ON-CHIP PERIPHERALS	53
10.1 WINDOW WATCHDOG (WWDG)	53
10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK MCC/RTC	59
10.3 PWM AUTO-RELOAD TIMER (ART)	62
10.4 16-BIT TIMER	72
10.5 8-BIT TIMER (TIM8)	91
10.6 SERIAL PERIPHERAL INTERFACE (SPI)	109
10.7 LINSCI SERIAL COMMUNICATION INTERFACE (LIN MASTER/SLAVE)	121
10.8 LINSCI SERIAL COMMUNICATION INTERFACE (LIN MASTER ONLY)	152
10.9 BECAN CONTROLLER (BECAN)	169
10.1010-BIT A/D CONVERTER (ADC)	208
11 INSTRUCTION SET	212
11.1 CPU ADDRESSING MODES	212
11.2 INSTRUCTION GROUPS	215
12 ELECTRICAL CHARACTERISTICS	218
12.1 PARAMETER CONDITIONS	218
12.2 ABSOLUTE MAXIMUM RATINGS	219
12.3 OPERATING CONDITIONS	220
12.4 SUPPLY CURRENT CHARACTERISTICS	222
12.5 CLOCK AND TIMING CHARACTERISTICS	225
12.6 AUTO WAKEUP FROM HALT OSCILLATOR (AWU)	228
12.7 MEMORY CHARACTERISTICS	229
12.8 EMC CHARACTERISTICS	230
12.9 I/O PORT PIN CHARACTERISTICS	233
12.10CONTROL PIN CHARACTERISTICS	238
12.11TIMER PERIPHERAL CHARACTERISTICS	241
12.12COMMUNICATION INTERFACE CHARACTERISTICS	242
12.1310-BIT ADC CHARACTERISTICS	244
13 PACKAGE CHARACTERISTICS	248
13.1 PACKAGE MECHANICAL DATA	248
13.2 THERMAL CHARACTERISTICS	250
13.3 SOLDERING AND GLUEABILITY INFORMATION	250
14 DEVICE CONFIGURATION AND ORDERING INFORMATION	251
14.1 FLASH OPTION BYTES	251
14.2 TRANSFER OF CUSTOMER CODE	253
15 DEVELOPMENT TOOLS	256
16 IMPORTANT NOTES	257
16.1 ALL DEVICES	257
16.2 FLASH/FASTROM DEVICES ONLY	260
16.3 ROM DEVICES ONLY	262
17 REVISION HISTORY	263

6.3 RESET SEQUENCE MANAGER (RSM)

6.3.1 Introduction

The reset sequence manager includes three RE-SET sources as shown in Figure 2:

- External RESET source pulse
- Internal LVD RESET (Low Voltage Detection)
- Internal WATCHDOG RESET

These sources act on the RESET pin and it is always kept low during the delay phase.

The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory map.

The basic RESET sequence consists of three phases as shown in Figure 1:

- Active Phase depending on the RESET source
- 256 or 4096 CPU clock cycle delay (selected by option byte)
- RESET vector fetch

<u>/</u>ک

The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilize and ensures that recovery has taken place from the Reset state. The shorter or longer clock cycle delay should be selected by option byte to correspond to the stabilization time of the external oscillator used in the application.

The RESET vector fetch phase duration is two clock cycles.

Figure 12. RESET Sequence Phases

Caution: When the ST7 is unprogrammed or fully erased, the Flash is blank and the RESET vector is not programmed. For this reason, it is recommended to keep the RESET pin in low state until programming mode is entered, in order to avoid unwanted behavior.

6.3.2 Asynchronous External RESET pin

The $\overline{\text{RESET}}$ pin is both an input and an open-drain output with integrated R_{ON} weak pull-up resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It can be pulled low by external circuitry to reset the device. See Electrical Characteristic section for more details.

A RESET signal originating from an external source must have a duration of at least $t_{h(RSTL)in}$ in order to be recognized (see Figure 3). This detection is asynchronous and therefore the MCU can enter reset state even in HALT mode.

SYSTEM INTEGRITY MANAGEMENT (Cont'd)

6.4.4 Register Description

SYSTEM INTEGRITY (SI) CONTROL/STATUS REGISTER (SICSR)

Read/Write

Reset Value: 000x 000x (00h)

7							0
0	AVD IE	AVD F	LVD RF	0	0	0	WDG RF

Bit 7 = Reserved, must be kept cleared.

Bit 6 = **AVDIE** Voltage Detector interrupt enable This bit is set and cleared by software. It enables an interrupt to be generated when the AVDF flag changes (toggles). The pending interrupt information is automatically cleared when software enters the AVD interrupt routine. 0: AVD interrupt disabled

1: AVD interrupt enabled

Bit 5 = **AVDF** Voltage Detector flag

This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt request is generated when the AVDF bit changes value. Refer to Figure 16 and to Section 6.4.2.1 for additional details.

0: V_{DD} over $V_{IT+(AVD)}$ threshold 1: V_{DD} under $V_{IT-(AVD)}$ threshold

Bit 4 = LVDRF LVD reset flag

This bit indicates that the last Reset was generated by the LVD block. It is set by hardware (LVD reset) and cleared by software (writing zero). See WDGRF flag description for more details. When the LVD is disabled by OPTION BYTE, the LVDRF bit value is undefined. Bits 3:1 = Reserved, must be kept cleared.

Bit 0 = WDGRF Watchdog reset flag

This bit indicates that the last Reset was generated by the Watchdog peripheral. It is set by hardware (watchdog reset) and cleared by software (writing zero) or an LVD Reset (to ensure a stable cleared state of the WDGRF flag when CPU starts).

Combined with the LVDRF flag information, the flag description is given by the following table.

RESET Sources	LVDRF	WDGRF
External RESET pin	0	0
Watchdog	0	1
LVD	1	Х

Application notes

The LVDRF flag is not cleared when another RE-SET type occurs (external or watchdog), the LVDRF flag remains set to keep trace of the original failure.

In this case, a watchdog reset can be detected by software while an external reset can not.

CAUTION: When the LVD is not activated with the associated option byte, the WDGRF flag can not be used in the application.

INTERRUPTS (Cont'd)

7.6.2 Register Description

EXTERNAL INTERRUPT CONTROL REGISTER 0 (EICR0) Read/Write

Reset Value: 0000 0000 (00h)

7							0
IS31	IS30	IS21	IS20	IS11	IS10	IS01	IS00

Bits 7:6 = IS3[1:0] ei3 sensitivity

The interrupt sensitivity, defined using the IS3[1:0] bits, is applied to the ei3 external interrupts:

IS31	IS30	External Interrupt Sensitivity
0	0	Falling edge & low level
0	1	Rising edge only
1	0	Falling edge only
1	1	Rising and falling edge

These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).

Bits 5:4 = IS2[1:0] ei2 sensitivity

The interrupt sensitivity, defined using the IS2[1:0] bits, is applied to the ei2 external interrupts:

IS21	IS20	External Interrupt Sensitivity
0	0	Falling edge & low level
0	1	Rising edge only
1	0	Falling edge only
1	1	Rising and falling edge

These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).

Bits 3:2 = IS1[1:0] ei1 sensitivity

The interrupt sensitivity, defined using the IS1[1:0] bits, is applied to the ei1 external interrupts:

IS11	IS10	External Interrupt Sensitivity
0	0	Falling edge & low level
0	1	Rising edge only
1	0	Falling edge only
1	1	Rising and falling edge

These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).

Bits 1:0 = ISO[1:0] ei0 sensitivity

The interrupt sensitivity, defined using the ISO[1:0] bits, is applied to the ei0 external interrupts:

IS01	IS00	External Interrupt Sensitivity
0	0	Falling edge & low level
0	1	Rising edge only
1	0	Falling edge only
1	1	Rising and falling edge

These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).

EXTERNAL INTERUPT CONTROL REGISTER 1 (EICR1)

Read/Write Reset Value: 0000 0000 (00h)

7							0
0	0	0	0	0	0	TLIS	TLIE

Blts 7:2 = Reserved

Bit 1 = TLIS Top Level Interrupt sensitivity This bit configures the TLI edge sensitivity. It can be set and cleared by software only when TLIE bit is cleared.

- 0: Falling edge
- 1: Rising edge

Bit 0 =**TLIE** *Top Level Interrupt enable* This bit allows to enable or disable the TLI capability on the dedicated pin. It is set and cleared by software.

- 0: TLI disabled
- 1: TLI enabled

Notes:

- A parasitic interrupt can be generated when clearing the TLIE bit.
- In some packages, the TLI pin is not available. In this case, the TLIE bit must be kept low to avoid parasitic TLI interrupts.

INTERRUPTS (Cont'd)

Table 10. Nested Interrupts Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0	
		ei1		е	ei0		KM	TLI		
0025h	ISPR0 Reset Value	l1_3 1	10_3 1	l1_2 1	10_2 1	l1_1 1	I0_1 1	1	1	
		CAN TX	(/ER/SC	CAN	I RX	е	i3	e	i2	
0026h	ISPR1 Reset Value	l1_7 1	10_7 1	l1_6 1	10_6 1	l1_5 1	10_5 1	l1_4 1	10_4 1	
		LINS	SCI 2	TIME	R 16	TIM	ER 8	S	PI	
0027h	ISPR2 Reset Value	11_11 1	I0_11 1	l1_10 1	l0_10 1	l1_9 1	10_9 1	l1_8 1	10 <u>8</u> 1	
						A	RT Τ	LINS	SCI 1	
0028h	ISPR3 Reset Value	1	1	1	1	l1_13 1	10_13 1	11_12 I1_12	10_12 1	
0029h	EICR0 Reset Value	IS31 0	IS30 0	IS21 0	IS20 0	IS11 0	IS10 0	IS01 0	IS00 0	
002Ah	EICR1 Reset Value	0	0	0	0	0	0	TLIS 0	TLIE 0	
obsol	obsolete Product(s)									

WINDOW WATCHDOG (Cont'd)

10.1.9 Interrupts

None.

10.1.10 Register Description CONTROL REGISTER (WDGCR)

Read/Write

Reset Value: 0111 1111 (7Fh)

7							0
WDGA	Т6	T5	T4	Т3	T2	T1	то

Bit 7 = WDGA Activation bit.

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset.

0: Watchdog disabled

1: Watchdog enabled

Note: This bit is not used if the hardware watchdog option is enabled by option byte.

Bits 6:0 = **T[6:0]** 7-bit counter (MSB to LSB). These bits contain the value of the watchdog counter. It is decremented every 16384 f_{OSC2} cycles (approx.). A reset is produced when it rolls over from 40h to 3Fh (T6 becomes cleared).

WINDOW REGISTER (WDGWR)

Read/Write

Reset Value: 0111 1111 (7Fh)

7							0
-	W6	W5	W4	WЗ	W2	W1	WO

Bit 7 = Reserved

Bits 6:0 = **W[6:0]** *7-bit window value* These bits contain the window value to be compared to the downcounter.

Figure 38. Watchdog Timer Register Map and Reset Values

	Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
	C2E	WDGCR	WDGA	Т6	T5	T4	Т3	T2	T1	TO
	0-21	Reset Value	0	1	1	1	1	1	1	1
\bigcirc	20	WDGWR	-	W6	W5	W4	W3	W2	W1	W0
	30	Reset Value	0	1	1	1	1	1	1	1

MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK (Cont'd)

Bit 0 = **OIF** Oscillator interrupt flag This bit is set by hardware and cleared by software reading the CSR register. It indicates when set that the main oscillator has reached the selected elapsed time (TB1:0). 0: Timeout not reached 1: Timeout reached

57

CAUTION: The BRES and BSET instructions must not be used on the MCCSR register to avoid unintentionally clearing the OIF bit.

Table 16. Main Clock Controller Register Map and Reset Values

Addre (Hex	ss Register) Label	7	6	5	4	3	2	14	30
002[h SICSR Reset Value	0	AVDIE	AVDF	LVDRF	0	0	0	WDGRF x
0028	h Reset Value	MCO 0	CP1 0	CP0 0	SMS 0	TB1 0	ТВ0 0	OIE 0	OIF 0
0056	lete P	,0 ^{du}	cils		0501	ete			

61/265

PWM AUTO-RELOAD TIMER (Cont'd)

10.3.2 Functional Description

Counter

The free running 8-bit counter is fed by the output of the prescaler, and is incremented on every rising edge of the clock signal.

It is possible to read or write the contents of the counter on the fly by reading or writing the Counter Access register (ARTCAR).

When a counter overflow occurs, the counter is automatically reloaded with the contents of the ARTARR register (the prescaler is not affected).

Counter clock and prescaler

The counter clock frequency is given by:

 $f_{COUNTER} = f_{INPUT} / 2^{CC[2:0]}$

The timer counter's input clock (f_{INPUT}) feeds the 7-bit programmable prescaler, which selects one of the eight available taps of the prescaler, as defined by CC[2:0] bits in the Control/Status Register (ARTCSR). Thus the division factor of the prescaler can be set to 2ⁿ (where n = 0, 1,..7).

This f_{INPUT} frequency source is selected through the EXCL bit of the ARTCSR register and can be either the f_{CPU} or an external input frequency f_{FXT} .

The clock input to the counter is enabled by the TCE (Timer Counter Enable) bit in the ARTCSR register. When TCE is reset, the counter is stopped and the prescaler and counter contents are frozen. When TCE is set, the counter runs at the rate of the selected clock source.

Counter and Prescaler Initialization

After RESET, the counter and the prescaler are cleared and $f_{INPUT} = f_{CPU}$.

The counter can be initialized by:

- Writing to the ARTARR register and then setting the FCRL (Force Counter Re-Load) and the TCE (Timer Counter Enable) bits in the ARTCSR register.
- Writing to the ARTCAR counter access register,

In both cases the 7-bit prescaler is also cleared, whereupon counting will start from a known value.

Direct access to the prescaler is not possible.

Output compare control

The timer compare function is based on four different comparisons with the counter (one for each PWMx output). Each comparison is made between the counter value and an output compare register (OCRx) value. This OCRx register can not be accessed directly, it is loaded from the duty cycle register (PWMDCRx) at each overflow of the counter.

This double buffering method avoids glitch generation when changing the duty cycle on the fly.

Figure 41. Output Compare Control

/۲۸

ON-CHIP PERIPHERALS (Cont'd)

PWM CONTROL REGISTER (PWMCR)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
OE3	OE2	OE1	OE0	OP3	OP2	OP1	OP0

Bit 7:4 = **OE[3:0]** *PWM Output Enable*

These bits are set and cleared by software. They enable or disable the PWM output channels independently acting on the corresponding I/O pin. 0: PWM output disabled.

1: PWM output enabled.

Bit 3:0 = OP[3:0] PWM Output Polarity

These bits are set and cleared by software. They independently select the polarity of the four PWM output signals.

PWMx ou	OPy	
Counter <= OCRx		
1	0	0
0	1	1

Note: When an OPx bit is modified, the PWMx output signal polarity is immediately reversed.

DUTY CYCLE REGISTERS (PWMDCRx)

Read/Write

Reset Value: 0000 0000 (00h)

7									
DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC0		

Bit 7:0 = DC[7:0] Duty Cycle Data

These bits are set and cleared by software.

A PWMDCRx register is associated with the OCRx register of each PWM channel to determine the second edge location of the PWM signal (the first edge location is common to all channels and given by the ARTARR register). These PWMDCR registers allow the duty cycle to be set independently for each PWM channel.

16-BIT TIMER (Cont'd)

Notes:

- 1. After a processor write cycle to the OC*i*HR register, the output compare function is inhibited until the OCILR register is also written.
- 2. If the OCIE bit is not set, the OCMPi pin is a general I/O port and the OLVLi bit will not appear when a match is found but an interrupt could be generated if the OCIE bit is set.
- 3. In both internal and external clock modes, OCFi and OCMPi are set while the counter value equals the OCiR register value (see Figure 55 on page 80 for an example with f_{CPU}/2 and Figure 56 on page 80 for an example with f_{CPU}/4). This behavior is the same in OPM or PWM mode.
- 4. The output compare functions can be used both for generating external events on the OCMPi pins even if the input capture mode is also used.
- 5. The value in the 16-bit OCiR register and the OLVi bit should be changed after each successful comparison in order to control an output waveform or establish a new elapsed timeout.

Forced Compare Output capability

When the FOLV*i* bit is set by software, the OLVL*i* bit is copied to the OCMPi pin. The OLVi bit has to be toggled in order to toggle the OCMP*i* pin when it is enabled (OCiE bit = 1). The OCFi bit is then not set by hardware, and thus no interrupt request is generated.

The FOLVLi bits have no effect in both One Pulse mode and PWM mode.

8-BIT TIMER (Cont'd)

Whatever the timer mode used (input capture, output compare, one pulse mode or PWM mode) an overflow occurs when the counter rolls over from FFh to 00h then:

- The TOF bit of the SR register is set.
- A timer interrupt is generated if:
 - TOIE bit of the CR1 register is set and
 - I bit of the CC register is cleared.

If one of these conditions is false, the interrupt revyan .vakenedi obsolete Production mains pending to be issued as soon as they are

Notes: The TOF bit is not cleared by accesses to ACTR register. The advantage of accessing the ACTR register rather than the CTR register is that it allows simultaneous use of the overflow function and reading the free running counter at random times (for example, to measure elapsed time) without the risk of clearing the TOF bit erroneously.

The timer is not affected by WAIT mode.

In HALT mode, the counter stops counting until the mode is exited. Counting then resumes from the previous count (MCU awakened by an interrupt) or from the reset count (MCU awakened by a Reset).

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont'd)

10.7.9.5 LIN Baud Rate

Baud rate programming is done by writing a value in the LPR prescaler or performing an automatic resynchronization as described below.

Automatic Resynchronization

To automatically adjust the baud rate based on measurement of the LIN Synch Field:

- Write the nominal LIN Prescaler value (usually depending on the nominal baud rate) in the LPFR / LPR registers.
- Set the LASE bit to enable the Auto Synchronization Unit.

When Auto Synchronization is enabled, after each LIN Synch Break, the time duration between five falling edges on RDI is sampled on f_{CPU} and the result of this measurement is stored in an internal 15-bit register called SM (not user accessible) (see Figure 7). Then the LDIV value (and its associated LPFR and LPR registers) are automatically updated at the end of the fifth falling edge. During LIN Synch field measurement, the SCI state machine is stopped and no data is transferred to the data register.

10.7.9.6 LIN Slave Baud Rate Generation

In LIN mode, transmission and reception are driven by the LIN baud rate generator

Note: LIN Master mode uses the Extended or Conventional prescaler register to generate the baud rate.

If LINE bit = 1 and LSLV bit = 1 then the Conventional and Extended Baud Rate Generators are disabled: the baud rate for the receiver and trans-

لركا

mitter are both set to the same value, depending on the LIN Slave baud rate generator:

$$Tx = Rx = \frac{f_{CPU}}{(16 \cdot LDIV)}$$

with:

LDIV is an unsigned fixed point number. The mantissa is coded on 8 bits in the LPR register and the fraction is coded on 4 bits in the LPFR register.

If LASE bit = 1 then LDIV is automatically updated at the end of each LIN Synch Field.

Three registers are used internally to manage the auto-update of the LIN divider (LDIV):

- LDIV_NOM (nominal value written by software at LPR/LPFR addresses)

- LDIV_MEAS (results of the Field Synch measurement)

- LDIV (used to generate the local baud rate)

The control and interactions of these registers, explained in Figure 8 and Figure 9, depend on the LDUM bit setting (LIN Divider Update Method).

Note:

As explained in Figure 8 and Figure 9, LDIV can be updated by two concurrent actions: a transfer from LDIV_MEAS at the end of the LIN Sync Field and a transfer from LDIV_NOM due to a software write of LPR. If both operations occur at the same time, the transfer from LDIV_NOM has priority.

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Master Only) (Cont'd)

10.8.4.3 Receiver

The SCI can receive data words of either 8 or 9 bits. When the M bit is set, word length is 9 bits and the MSB is stored in the R8 bit in the SCICR1 register.

Character reception

During a SCI reception, data shifts in least significant bit first through the RDI pin. In this mode, the SCIDR register consists or a buffer (RDR) between the internal bus and the received shift register (see Figure 88 on page 153).

Procedure

- Select the M bit to define the word length.
- Select the desired baud rate using the SCIBRR and the SCIERPR registers.
- Set the RE bit, this enables the receiver which begins searching for a start bit.

When a character is received:

- The RDRF bit is set. It indicates that the content of the shift register is transferred to the RDR.
- An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.
- The error flags can be set if a frame error, noise or an overrun error has been detected during reception.

Clearing the RDRF bit is performed by the following software sequence done by:

- 1. An access to the SCISR register
- 2. A read to the SCIDR register.

The RDRF bit must be cleared before the end of the reception of the next character to avoid an overrun error.

Break Character

When a break character is received, the SCI handles it as a framing error.

Idle Character

When an idle frame is detected, there is the same procedure as a data received character plus an interrupt if the ILIE bit is set and the I bit is cleared in the CCR register.

Overrun Error

An overrun error occurs when a character is received when RDRF has not been reset. Data cannot be transferred from the shift register to the RDR register until the RDRF bit is cleared.

When a overrun error occurs:

- The OR bit is set.
- The RDR content is not lost.
- The shift register is overwritten.
- An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.

The OR bit is reset by an access to the SCISR register followed by a SCIDR register read operation.

Noise Error

Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise.

When noise is detected in a frame:

- The NF is set at the rising edge of the RDRF bit.
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.

The NF bit is reset by a SCISR register read operation followed by a SCIDR register read operation.

Framing Error

A framing error is detected when:

- The stop bit is not recognized on reception at the expected time, following either a de-synchronization or excessive noise.
- A break is received.
- When the framing error is detected:
- the FE bit is set by hardware
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.

The FE bit is reset by a SCISR register read operation followed by a SCIDR register read operation.

57

beCAN CONTROLLER (Cont'd)

10.9.3 Operating Modes

The beCAN has three main operating modes: Initialization, Normal and Sleep. After a hardware reset, beCAN is in Sleep mode to reduce power consumption. The software requests beCAN to enter Initialization or Sleep mode by setting the INRQ or SLEEP bits in the CMCR register. Once the mode has been entered, beCAN confirms it by setting the INAK or SLAK bits in the CMSR register. When neither INAK nor SLAK are set, beCAN is in Normal mode. Before entering Normal mode beCAN always has to **synchronize** on the CAN bus. To synchronize, beCAN waits until the CAN bus is idle, this means 11 consecutive recessive bits have been monitored on CANRX.

10.9.3.1 Initialization Mode

The software initialization can be done while the hardware is in Initialization mode. To enter this mode the software sets the INRQ bit in the CMCR register and waits until the hardware has confirmed the request by setting the INAK bit in the CMSR register.

To leave Initialization mode, the software clears the INQR bit. beCAN has left Initialization mode once the INAK bit has been cleared by hardware.

While in Initialization mode, all message transfers to and from the CAN bus are stopped and the status of the CAN bus output CANTX is recessive (high).

Entering Initialization Mode does not change any of the configuration registers.

To initialize the CAN Controller, software has to set up the Bit Timing registers and the filter banks. If a filter bank is not used, it is recommended to leave it non active (leave the corresponding FACT bit cleared).

10.9.3.2 Normal Mode

Once the initialization has been done, the software must request the hardware to enter Normal mode, to synchronize on the CAN bus and start reception and transmission. Entering Normal mode is done by clearing the INRQ bit in the CMCR register and waiting until the hardware has confirmed the request by clearing the INAK bit in the CMSR register. Afterwards, the beCAN synchronizes with the data transfer on the CAN bus by waiting for the occurrence of a sequence of 11 consecutive recessive bits (≡ Bus Idle) before it can take part in bus activities and start message transfer.

The initialization of the filter values is independent from Initialization mode but must be done while the filter bank is not active (corresponding FACTx bit cleared). The filter bank scale and mode configuration must be configured in initialization mode.

beCAN CONTROLLER (Cont'd)

Figure 102. Filter Bank Scale Configuration - Register Organisation

	Filter Bank Scale	Configuration	Filter Bank Scale Co	nfig. Bits ¹
	One 32-Bit Filter		FSCx = 3	
Identifier	CFxR0	CFxR1	CFxR2	CFxR3
Mask/Ident.	CFxR4	CFxR5	CFxR6	CFxR7
Bit Mapping	STID10:3	STID2:0 RTR DE EXID17:15	EXID14:7	EXID6:0
	Two 16-Bit Filters			
Identifier	CFxR0	CFxR1		15
Mask/Ident.	CFxR2	CFxR3	500 0	
Identifier	CFxB4	CExB5	FSCx = 2	2020
Mask/Ident.	CFxR6	CFxR7		γO
Bit Mapping	STID10:3	STID2:0 RTR DE EXID17:15	01	
	One 16-Bit / Two	8-Bit Filters	ete	
Identifier	CFxR0	CFxR1		
Mask/Ident.	CFxR2	CFxR3	6	
ldentifier Mask/Ident.	CFxR4 CFxR5	00	FSCx = 1	
ldentifier Mask/Ident.	CFxR6 CFxR7	(5)		
	Four 8-Bit Filters			
ldentifier Mask/Ident.	CFxR0 CFxR1]		
ldentifier Mask/Ident.	CFxR2 CFxR3]		
Identifier Mask/Ident.	CFxR4 CFxR5]	FSCx = 0	
Identifier	CFxR6]	k = filter bank number	
Bit Mapping	CFxR7 STID10:3] 1	These bits are locate	d in the CFCR register

57

beCAN CONTROLLER (Cont'd)

57

Table 32. beCAN Control and Status Page - Register Map and Reset Values

Address (Hex.)	Register Name	7	6	5	4	3	2	1	0
COL	CMCR		ABOM	AWUM	NART	RFLM	TXFP	SLEEP	INRQ
680	Reset Value	0	0	0	0	0	0	1	0
coh	CMSR			REC	TRAN	WKUI	ERRI	SLAK	INAK
690	Reset Value	0	0	0	0	0	0	1	0
CAb	CTSR			TXOK1	TXOK0			RQCP1	RQCP0
6A0	Reset Value	0	0	0	0	0	0	0	C O
CDh	CTPR		LOW1	LOW0		TME1	TME0	C.V	CODE0
6BN	Reset Value	0	0	0	1	1	1	0	0
cOh	CRFR			RFOM	FOVR	FULL	0	FMP1	FMP0
6CN	Reset Value	0	0	0	0	0	0	0	0
CDh	CIER	WKUIE	0	0	0	FOVIE0	FFIE0	FMPIE0	TMEIE
6DN	Reset Value	0	0	0	0	0	0	0	0
	CDGR					RX	SAMP	SILM	LBKM
6EN	Reset Value	0	0	0	0	1	1	0	0
0.E.h	CFPSR			C	N.		FPS2	FPS1	FPS0
650	Reset Value	0	0	0	0	0	0	0	0

Table 33. beCAN Mailbox Pages - Register Map and Reset Values

1C

Address (Hex.)	Register Name	,00 <i>1</i>	6	5	4	3	2	1	0
70h	MFMI	FMI7	FMI6	FMI5	FMI4	FMI3	FMI2	FMI1	FMI0
Receive	Reset Value	0	0	0	0	0	0	0	0
70h	MCSR			TERR	ALST	ТХОК	RQCP	ABRQ	TXRQ
Transmit	Reset Value	0	0	0	0	0	0	0	0
071h	MDLC	0				DLC3	DLC2	DLC1	DLC0
7 111	Reset Value	х	х	х	х	x	х	х	х
706	MIDR0		IDE	RTR	STID10	STID9	STID8	STID7	STID6
720	Reset Value	х	х	х	х	х	х	х	x
704	MIDR1	STID5	STID4	STID3	STID2	STID1	STID0	EXID17	EXID16
73N	Reset Value	х	х	х	х	х	х	х	x
74b	MIDR2	EXID15	EXID14	EXID13	EXID12	EXID11	EXID10	EXID9	EXID8
7411	Reset Value	х	х	х	х	x	х	х	х
756	MIDR3	EXID7	EXID6	EXID5	EXID4	EXID3	EXID2	EXID1	EXID0
750	Reset Value	х	х	х	х	х	х	х	x
704.704	MDAR[0:7]	MDAR7	MDAR6	MDAR5	MDAR4	MDAR3	MDAR2	MDAR1	MDAR0
76n:7Dn	Reset Value	х	х	х	х	х	х	х	x

207/265

ADC CHARACTERISTICS (Cont'd)

Figure 143. Typical Application with ADC

Notes:

1. $C_{PARASITIC}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (3pF). A high $C_{PARASITIC}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than 10k Ω). Data based on characterization results, not tested in production.

3. This graph shows that depending on the input signal variation (f_{AIN}), C_{AIN} can be increased for stabilization time and reduced to allow the use of a larger serial resistor (R_{AIN}). It is valid for all f_{ADC} frequencies ≤ 4 MHz.

Figure 149. 32-Pin Low Profile Quad Flat Package (7x7)

13.2 THERMAL CHARACTERISTICS

Symbol	Ratings	Value	Unit
R _{thJA}	Package thermal resistance (junction to ambient) LQFP64 LQFP44 LQFP32	60 52 70	°C/W
PD	Power dissipation ¹⁾	500	mW
T _{Jmax}	Maximum junction temperature ²⁾	150	°C

Notes:

1. The maximum power dissipation is obtained from the formula $P_D = (T_J - T_A) / R_{thJA}$. The power dissipation of an application can be defined by the user with the formula: $P_D = P_{INT} + P_{PORT}$ where P_{INT} is the chip internal power ($I_{DD} \times V_{DD}$) and P_{PORT} is the port power dissipation depending on the ports used in the application. 2. The maximum chip-junction temperature is based on technology characteristics.

13.3 SOLDERING AND GLUEABILITY INFORMATION

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard

JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK® specifications are available at www.st.com.

57

IMPORTANT NOTES (Cont'd)

16.1.5 Header Time-out Does Not Prevent Wake-up from Mute Mode

Normally, when LINSCI is configured in LIN slave mode, if a header time-out occurs during a LIN header reception (that is, header length > 57 bits), the LIN Header Error bit (LHE) is set, an interrupt occurs to inform the application but the LINSCI should stay in mute mode, waiting for the next header reception.

Problem Description

The LINSCI sampling period is Tbit / 16. If a LIN Header time-out occurs between the 9th and the 15th sample of the Identifier Field Stop Bit (refer to Figure 153), the LINSCI wakes up from mute mode. Nevertheless, LHE is set and LIN Header Detection Flag (LHDF) is kept cleared.

In addition, if LHE is reset by software before this 15th sample (by accessing the SCISR register and

Figure 153. Header Reception Event Sequence

reading the SCIDR register in the LINSCI interrupt routine), the LINSCI will generate another LINSCI interrupt (due to the RDRF flag setting).

Impact on application

Software may execute the interrupt routine twice after header reception.

Moreover, in reception mode, as the receiver is no longer in mute mode, an interrupt will be generated on each data byte reception.

Workaround

The problem can be detected in the LINSCI interrupt routine. In case of timeout error (LHE is set and LHLR is loaded with 00h), the software can check the RWU bit in the SCICR2 register. If RWU is cleared, it can be set by software. Refer to Figure 154 on page 261. Workaround is shown in bold characters.

Ĺ**Ţ**

uctls

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

57