E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	CANbus, LINbusSCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f561j9ta

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

INTERRUPTS (Cont'd)

7.5 INTERRUPT REGISTER DESCRIPTION

CPU CC REGISTER INTERRUPT BITS

Read/Write

Reset Value: 111x 1010 (xAh)

7							0
1	1	11	н	10	Ν	Z	С

Bit 5, 3 = 11, 10 Software Interrupt Priority

These two bits indicate the current interrupt software priority.

Interrupt Software Priority	Level	11	10
Level 0 (main)	Low	1	0
Level 1		0	1
Level 2	★	0	0
Level 3 (= interrupt disable*)	High	1	1

These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (ISPRx).

They can be also set/cleared by software with the RIM, SIM, HALT, WFI, IRET and PUSH/POP instructions (see "Interrupt Dedicated Instruction Set" table).

*Note: TLI, TRAP and RESET events can interrupt a level 3 program.

INTERRUPT SOFTWARE PRIORITY REGIS-TERS (ISPRX)

Read/Write (bit 7:4 of **ISPR3** are read only) Reset Value: 1111 1111 (FFh)

	7							0
ISPR0	l1_3	10_3	11_2	10_2	11_1	10_1	l1_0	10_0
ISPR1	11_7	10_7	l1_6	10_6	l1_5	10_5	11_4	10_4
ISPR2	11_11	10_11	11_10	10_10	l1_9	10_9	11_8	10_8
ISPR3	1	1	1	1	11_13	10_13	11_12	10_12

These four registers contain the interrupt software priority of each interrupt vector.

 Each interrupt vector (except RESET and TRAP) has corresponding bits in these registers where its own software priority is stored. This correspondence is shown in the following table.

Vector address	ISPRx bits
FFFBh-FFFAh	11_0 and 10_0 bits*
FFF9h-FFF8h	I1_1 and I0_1 bits
FFE1h-FFE0h	I1_13 and I0_13 bits

Each I1_x and I0_x bit value in the ISPRx registers has the same meaning as the I1 and I0 bits in the CC register.

- Level 0 cannot be written (l1_x = 1, l0_x = 0). In this case, the previously stored value is kept (Example: previous = CFh, write = 64h, result = 44h)

The RESET, TRAP and TLI vectors have no software priorities. When one is serviced, the I1 and I0 bits of the CC register are both set.

*Note: Bits in the ISPRx registers which correspond to the TLI can be read and written but they are not significant in the interrupt process management.

Caution: If the $I1_x$ and $I0_x$ bits are modified while the interrupt x is executed the following behavior has to be considered: If the interrupt x is still pending (new interrupt or flag not cleared) and the new software priority is higher than the previous one, the interrupt x is re-entered. Otherwise, the software priority stays unchanged up to the next interrupt request (after the IRET of the interrupt x).

INTERRUPTS (Cont'd)

7.6 EXTERNAL INTERRUPTS

7.6.1 I/O Port Interrupt Sensitivity

The external interrupt sensitivity is controlled by the ISxx bits in the EICR register (Figure 21). This control allows up to four fully independent external interrupt source sensitivities.

Each external interrupt source can be generated on four (or five) different events on the pin:

- Falling edge
- Rising edge

لرکا

Figure 21. External Interrupt Control Bits

- Falling and rising edge
- Falling edge and low level

To guarantee correct functionality, the sensitivity bits in the EICR register can be modified only when the I1 and I0 bits of the CC register are both set to 1 (level 3). This means that interrupts must be disabled before changing sensitivity.

The pending interrupts are cleared by writing a different value in the ISx[1:0] of the EICR.

POWER SAVING MODES (Cont'd)

8.4 HALT MODE

The HALT mode is the lowest power consumption mode of the MCU. It is entered by executing the 'HALT' instruction when the OIE bit of the Main Clock Controller Status register (MCCSR) is cleared (see Section 10.2 on page 59 for more details on the MCCSR register) and when the AWUEN bit in the AWUCSR register is cleared.

The MCU can exit HALT mode on reception of either a specific interrupt (see Table 9, "Interrupt Mapping," on page 34) or a RESET. When exiting HALT mode by means of a RESET or an interrupt, the oscillator is immediately turned on and the 256 or 4096 CPU cycle delay is used to stabilize the oscillator. After the start up delay, the CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see Figure 26).

When entering HALT mode, the I[1:0] bits in the CC register are forced to '10b' to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.

In HALT mode, the main oscillator is turned off causing all internal processing to be stopped, including the operation of the on-chip peripherals. All peripherals are not clocked except the ones which get their clock supply from another clock generator (such as an external or auxiliary oscillator).

The compatibility of Watchdog operation with HALT mode is configured by the "WDGHALT" option bit of the option byte. The HALT instruction when executed while the Watchdog system is enabled, can generate a Watchdog RESET (see Section 10.1 on page 53 for more details).

Figure 26. HALT Mode Flow-chart

Notes:

1. WDGHALT is an option bit. See option byte section for more details.

2. Peripheral clocked with an external clock source can still be active.

3. Only some specific interrupts can exit the MCU from HALT mode (such as external interrupt). Refer to Table 9, "Interrupt Mapping," on page 34 for more details.

4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped.

MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK (Cont'd)

Bit 0 = **OIF** Oscillator interrupt flag This bit is set by hardware and cleared by software reading the CSR register. It indicates when set that the main oscillator has reached the selected elapsed time (TB1:0). 0: Timeout not reached 1: Timeout reached

57

CAUTION: The BRES and BSET instructions must not be used on the MCCSR register to avoid unintentionally clearing the OIF bit.

Table 16. Main Clock Controller Register Map and Reset Values

Addre (Hex	ss Regist .) Labe	ter 7	6	5	4	3	2	24	30
0021	h SICSR Reset Va	alue 0	AVDIE	AVDF	LVDRF	0	0	0	WDGRF x
0028	h MCCSR Reset Va	alue 0	CP1 0	CP0 0	SMS 0	TB1 0	ТВ0 0	OIE 0	OIF 0
0056	hete	<i>b.log1</i>	Jotle		050	ete			

61/265

ON-CHIP PERIPHERALS (Cont'd)

10.3 PWM AUTO-RELOAD TIMER (ART)

10.3.1 Introduction

The Pulse Width Modulated Auto-Reload Timer on-chip peripheral consists of an 8-bit auto reload counter with compare/capture capabilities and of a 7-bit prescaler clock source.

These resources allow five possible operating modes:

- Generation of up to four independent PWM signals
- Output compare and Time base interrupt
- Up to two input capture functions
- External event detector
- Up to two external interrupt sources

The three first modes can be used together with a single counter frequency.

The timer can be used to wake up the MCU from WAIT and HALT modes.

16-BIT TIMER (Cont'd)

لرکا

16-BIT TIMER (Cont'd) INPUT CAPTURE 1 HIGH REGISTER (IC1HR)

Read Only

Reset Value: Undefined

This is an 8-bit read only register that contains the high part of the counter value (transferred by the input capture 1 event).

7				0	
MSB				LSB	

INPUT CAPTURE 1 LOW REGISTER (IC1LR)

Read Only

Reset Value: Undefined

This is an 8-bit read only register that contains the low part of the counter value (transferred by the input capture 1 event).

	7						0	
	MSB						LSB	
							_	
						19		
					, _C			
			~	00				
			21					
		10						
	S	0,						
\bigcirc	0							

OUTPUT COMPARE 1 HIGH REGISTER (OC1HR)

Read/Write

_

Reset Value: 1000 0000 (80h)

This is an 8-bit register that contains the high part of the value to be compared to the CHR register.

7				0
MSB				LSB

OUTPUT COMPARE 1 LOW REGISTER (OC1LR)

Read/Write

Reset Value: 0000 0000 (00h)

This is an 8-bit register that contains the low part of the value to be compared to the CLR register.

<u>ل</u>رک

8-BIT TIMER (Cont'd) CONTROL/STATUS REGISTER (CSR)

Read Only (except bit 2 R/W)

Reset Value: 0000 0000 (00h)

7							0
ICF1	OCF1	TOF	ICF2	OCF2	TIMD	0	0

Bit 7 = ICF1 Input Capture Flag 1.

0: No input capture (reset value).

1: An input capture has occurred on the ICAP1 pin or the counter has reached the OC2R value in PWM mode. To clear this bit, first read the SR register, then read or write the the IC1R register.

Bit 6 = **OCF1** *Output Compare Flag 1.*

0: No match (reset value).

1: The content of the free running counter has matched the content of the OC1R register. To clear this bit, first read the SR register, then read or write the OC1R register.

Bit 5 = **TOF** *Timer Overflow Flag.*

0: No timer overflow (reset value).

1: The free running counter rolled over from FFh to 00h. To clear this bit, first read the SR register, then read or write the CTR register. **Note:** Reading or writing the ACTR register does not clear TOF.

Bit 4 = ICF2 Input Capture Flag 2.

- 0: No input capture (reset value).
- 1: An input capture has occurred on the ICAP2 pin. To clear this bit, first read the SR register, then read or write the IC2R register.

Bit 3 = OCF2 Output Compare Flag 2.

- 0: No match (reset value).
- 1: The content of the free running counter has matched the content of the OC2R register. To clear this bit, first read the SR register, then read or write the OC2R register.

Bit 2 = TIMD Timer disable.

This bit is set and cleared by software. When set, it freezes the timer prescaler and counter and disabled the output functions (OCMP1 and OCMP2 pins) to reduce power consumption. Access to the timer registers is still available, allowing the timer configuration to be changed, or the counter reset, while it is disabled.

0: Timer enabled

1: Timer prescaler, counter and outputs disabled

Bits 1:0 = Reserved, must be kept cleared.

8-BIT TIMER (Cont'd) INPUT CAPTURE 1 REGISTER (IC1R)

Read Only

_

Reset Value: Undefined

This is an 8-bit read only register that contains the counter value (transferred by the input capture 1 event).

7				0	
MSB				LSB	

OUTPUT COMPARE 1 REGISTER (OC1R)

Read/Write

Reset Value: 0000 0000 (00h)

This is an 8-bit register that contains the value to be compared to the CTR register.

7				0	
MSB				LSB	

OUTPUT COMPARE 2 REGISTER (OC2R)

Read/Write

Reset Value: 0000 0000 (00h)

This is an 8-bit register that contains the value to be compared to the CTR register.

COUNTER REGISTER (CTR)

Read Only

Reset Value: 1111 1100 (FCh)

This is an 8-bit register that contains the counter value. A write to this register resets the counter. An access to this register after accessing the CSR register clears the TOF bit.

7				0
MSB				LSB

ALTERNATE COUNTER REGISTER (ACTR)

Read Only Reset Value: 1111 1100 (FCh)

This is an 8-bit register that contains the counter value. A write to this register resets the counter. An access to this register after an access to CSR register does not clear the TOF bit in the CSR register.

9				0
MSB				LSB

INPUT CAPTURE 2 REGISTER (IC2R)

Read Only

Reset Value: Undefined

This is an 8-bit read only register that contains the counter value (transferred by the Input Capture 2 event).

7				0
MSB				LSB

LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont'd)

10.7.9.4 LIN Error Detection

LIN Header Error Flag

The LIN Header Error Flag indicates that an invalid LIN Header has been detected.

When a LIN Header Error occurs:

- The LHE flag is set
- An interrupt is generated if the RIE bit is set and the I[1:0] bits are cleared in the CCR register.

If autosynchronization is enabled (LASE bit = 1), this can mean that the LIN Synch Field is corrupted, and that the SCI is in a blocked state (LSF bit is set). The only way to recover is to reset the LSF bit and then to clear the LHE bit.

- The LHE bit is reset by an access to the SCISR register followed by a read of the SCIDR register.

LHE/OVR Error Conditions

When Auto Resynchronization is disabled (LASE bit = 0), the LHE flag detects:

- That the received LIN Synch Field is not equal to 55h.
- That an overrun occurred (as in standard SCI mode)
- Furthermore, if LHDM is set it also detects that a LIN Header Reception Timeout occurred (only if LHDM is set).

When the LIN auto-resynchronization is enabled (LASE bit = 1), the LHE flag detects:

- That the deviation error on the Synch Field is outside the LIN specification which allows up to +/-15.5% of period deviation between the slave and master oscillators.
- A LIN Header Reception Timeout occurred.
 If T_{HEADER} > T_{HEADER_MAX} then the LHE flag is set. Refer to Figure 6. (only if LHDM is set to 1)
- An overflow during the Synch Field Measurement, which leads to an overflow of the divider registers. If LHE is set due to this error then the SCI goes into a blocked state (LSF bit is set).
- That an overrun occurred on Fields other than the Synch Field (as in standard SCI mode)

Deviation Error on the Synch Field

The deviation error is checking by comparing the current baud rate (relative to the slave oscillator) with the received LIN Synch Field (relative to the master oscillator). Two checks are performed in parallel:

 The first check is based on a measurement between the first falling edge and the last falling edge of the Synch Field. Let us refer to this period deviation as D:

If the LHE flag is set, it means that:

D > 15.625%

If LHE flag is not set, it means that:

D < 16.40625%

If $15.625\% \le D < 16.40625\%$, then the flag can be either set or reset depending on the dephasing between the signal on the RDI line and the CPU clock.

 The second check is based on the measurement of each bit time between both edges of the Synch Field: this checks that each of these bit times is large enough compared to the bit time of the current baud rate.

When LHE is set due to this error then the SCI goes into a blocked state (LSF bit is set).

LIN Header Time-out Error

When the LIN Identifier Field Detection Method is used (by configuring LHDM to 1) or when LIN auto-resynchronization is enabled (LASE bit = 1), the LINSCI automatically monitors the T_{HEADER_MAX} condition given by the LIN protocol.

If the entire Header (up to and including the STOP bit of the LIN Identifier Field) is not received within the maximum time limit of 57 bit times then a LIN Header Error is signalled and the LHE bit is set in the SCISR register.

Figure 82. LIN Header Reception Timeout

The time-out counter is enabled at each break detection. It is stopped in the following conditions:

- A LIN Identifier Field has been received

- An LHE error occurred (other than a timeout error).

- A software reset of LSF bit (transition from high to low) occurred during the analysis of the LIN Synch Field or

If LHE bit is set due to this error during the LIN Synchr Field (if LASE bit = 1) then the SCI goes into a blocked state (LSF bit is set).

10.9.4.2 Reception Handling

For the reception of CAN messages, three mailboxes organized as a FIFO are provided. In order to save CPU load, simplify the software and guarantee data consistency, the FIFO is managed completely by hardware. The application accesses the messages stored in the FIFO through the FIFO output mailbox.

A received message is considered as valid when it has been received correctly according to the CAN protocol (no error until the last but one bit of the EOF field) and It passed through the identifier filtering successfully, see Section 0.1.4.3 Identifier Filterina.

Valid Message

Figure 101. Receive FIFO states

FIFO Management

Starting from the **empty** state, the first valid message received is stored in the FIFO which becomes **pending_1**. The hardware signals the event setting the FMP[1:0] bits in the CRFR register to the value 01b. The message is available in the FIFO output mailbox. The software reads out the mailbox content and releases it by setting the RFOM bit in the CRFR register. The FIFO becomes **empty** again. If a new valid message has been received in the meantime, the FIFO stays in **pending_1** state and the new message is available in the output mailbox.

If the application does not release the mailbox, the next valid message will be stored in the FIFO which enters **pending_2** state (FMP[1:0] = 10b). The storage process is repeated for the next valid message putting the FIFO into **pending_3** state (FMP[1:0] = 11b). At this point, the software must release the output mailbox by setting the RFOM bit, so that a mailbox is free to store the next valid message. Otherwise the next valid message received will cause a loss of message.

Refer also to Section 0.1.4.4 Message Storage.

Overrun

Once the FIFO is in **pending_3** state (that is, the three mailboxes are full) the next valid message reception will lead to an **overrun** and a message will be lost. The hardware signals the overrun condition by setting the FOVR bit in the CRFR register. Which message is lost depends on the configuration of the FIFO:

 If the FIFO lock function is disabled (RFLM bit in the CMCR register cleared) the last message stored in the FIFO will be overwritten by the new incoming message. In this case the latest messages will be always available to the application.

If the FIFO lock function is enabled (RFLM bit in the CMCR register set) the most recent message will be discarded and the software will have the three oldest messages in the FIFO available.

Reception Related Interrupts

On the storage of the first message in the FIFO -FMP[1:0] bits change from 00b to 01b - an interrupt is generated if the FMPIE bit in the CIER register is set.

When the FIFO becomes full (that is, a third message is stored) the FULL bit in the CRFR register is set and an interrupt is generated if the FFIE bit in the CIER register is set. On overrun condition, the FOVR bit is set and an interrupt is generated if the FOVIE bit in the CIER register is set.

10.9.4.3 Identifier Filtering

In the CAN protocol the identifier of a message is not associated with the address of a node but related to the content of the message. Consequently a transmitter broadcasts its message to all receivers. On message reception a receiver node decides - depending on the identifier value - whether the software needs the message or not. If the message is needed, it is copied into the RAM. If not, the message must be discarded without intervention by the software.

To fulfil this requirement, the beCAN Controller provides six configurable and scalable filter banks (0-5) in order to receive only the messages the software needs. This hardware filtering saves CPU resources which would be otherwise needed to perform filtering by software. Each filter bank consists of eight 8-bit registers, CFxR[0:7].

Scalable Width

To optimize and adapt the filters to the application needs, each filter bank can be scaled independently. Depending on the filter scale a filter bank provides:

- One 32-bit filter for the STDID[10:0], IDE, EX-TID[17:0] and RTR bits.
- Two 16-bit filters for the STDID[10:0], RTR and IDE bits.
- Four 8-bit filters for the STDID[10:3] bits. The other bits are considered as "don't care".
- One 16-bit filter and two 8-bit filters for filtering the same set of bits as the 16 and 8-bit filters described above.

Refer to Figure 9. Filter Bank Scale Configuration - Register Organisation.

Furthermore, the filters can be configured in mask mode or in identifier list mode.

Mask mode

In **mask** mode the identifier registers are associated with mask registers specifying which bits of the identifier are handled as "must match" or as "don't care".

Identifier List mode

In **identifier list** mode, the mask registers are used as identifier registers. Thus instead of defining an identifier and a mask, two identifiers are specified, doubling the number of single identifiers. All bits of the incoming identifier must match the bits specified in the filter registers.

Figure 104. CAN Error State Diagram

10.9.4.5 Error Management

The error management as described in the CAN protocol is handled entirely by hardware using a Transmit Error Counter (TECR register) and a Receive Error Counter (RECR register), which get incremented or decremented according to the error condition. For detailed information about TEC and REC management, please refer to the CAN standard.

Both of them may be read by software to determine the stability of the network. Furthermore, the CAN hardware provides detailed information on the current error status in CESR register. By means of CEIER register and ERRIE bit in CIER register, the software can configure the interrupt generation on error detection in a very flexible way.

Bus-Off Recovery

The Bus-Off state is reached when TECR is greater then 255, this state is indicated by BOFF bit in CESR register. In Bus-Off state, the beCAN acts as disconnected from the CAN bus, hence it is no longer able to transmit and receive messages.

Depending on the ABOM bit in the CMCR register beCAN will recover from Bus-Off (become error active again) either automatically or on software request. But in both cases the beCAN has to wait at least for the recovery sequence specified in the CAN standard (128 x 11 consecutive recessive bits monitored on CANRX).

If ABOM is set, the beCAN will start the recovering sequence automatically after it has entered Bus-Off state.

If ABOM is cleared, the software must initiate the recovering sequence by requesting beCAN to enter initialization mode. Then beCAN starts monitoring the recovery sequence when the beCAN is requested to leave the initialisation mode.

Note: In initialization mode, beCAN does not monitor the CANRX signal, therefore it cannot complete the recovery sequence. **To recover, beCAN must be in normal mode**.

Side-effect of Workround 1

Because the while loop lasts 10 CPU cycles, at high baud rate, it is possible to miss a dominant state on the bus if it lasts just one CAN bit time and the bus speed is high enough (see Table 1).

Table 29. While Loop Timing

f _{CPU}	Software timing: While loop	Minimum baud rate for possible missed dominant bit
8 MHz	1.25 µs	800 Kbaud
4 MHz	2.5 µs	400 Kbaud
f _{CPU}	10/f _{CPU}	f _{CPU} /10

If this happens, we will continue waiting in the while loop instead of releasing the FIFO immediately. The workaround is still valid because we will not release the FIFO during the critical period. But the application may lose additional time waiting in the while loop as we are no longer able to guarantee a maximum of 6 CAN bit times spent in the workaround.

In this particular case the time the application can spend in the workaround may increase up to a full CAN frame, depending of the frame contents. This

Figure 113. Reception at Maximum CAN Baud Rate

case is very rare but happens when a specific sequence is present on in the CAN frame.

The example in Figure 20 shows reception at maximum CAN baud rate: In this case t_{CAN} is $8/f_{CPU}$ and the sampling time is $10/f_{CPU}$.

If the application is using the maximum baud rate and the possible delay caused by the workaround is not acceptable, there is another workaround which reduces the Rx pin sampling time.

Workaround 2 (see Figure 21) first tests that FMP = 2 and the CAN cell is receiving, if not the FIFO can be released immediately. If yes, the program goes through a sequence of test instructions on the RX pin that last longer than the time between the acknowledge dominant bit and the critical time slot. If the Rx pin is in recessive state for more than 8 CAN bit times, it means we are now after the acknowledge and the critical slot. If a dominant bit is read on the bus, we can release the FIFO immediately. This workaround has to be written in assembly language to avoid the compiler optimizing the test sequence.

The implementation shown here is for the CAN bus maximum speed (1 Mbaud @ 8 MHz CPU clock).

12.2 ABSOLUTE MAXIMUM RATINGS

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these condi-

12.2.1 Voltage Characteristics

tions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
V _{DD} - V _{SS}	Supply voltage	6.5	
V _{PP} - V _{SS}	Programming Voltage	13	V
V _{IN}	Input voltage on any pin ¹⁾²⁾	$V_{\rm SS}$ - 0.3 to $V_{\rm DD}$ + 0.3	
$ \Delta V_{DDx} $ and $ \Delta V_{SSx} $	Variations between different digital power pins	50	m
IV _{SSA} - V _{SSx} I	Variations between digital and analog ground pins	50	
V _{ESD(HBM)}	Electro-static discharge voltage (Human Body Model)	son Section 12.8.3 on n	200 233
V _{ESD(MM)}	Electro-static discharge voltage (Machine Model)	366 060001 12.0.3 01 p	aye 200

12.2.2 Current Characteristics

Symbol	Ratings	Maximum value	Unit
I _{VDD}	Total current into V _{DD} power lines (source) ³⁾	150	
I _{VSS}	Total current out of V _{SS} ground lines (sink) ³⁾	150	
	Output current sunk by any standard I/O and control pin	25	
I _{IO}	Output current sunk by any high sink I/O pin	50	
	Output current source by any I/Os and control pin	- 25	
	Injected current on V _{PP} pin		mA
	Injected current on RESET pin ± 5		
I _{INJ(PIN)} 2)4)	Injected current on OSC1 and OSC2 pins		
	Injected current on PB3 (on Flash devices)	+5	
	Injected current on any other pin ⁵⁾	± 5	
$\Sigma I_{\rm INJ(PIN)}^{(2)}$	Total injected current (sum of all I/O and control pins) ⁵⁾	± 25	

12.2.3 Thermal Characteristics

Symbol	Ratings	Value	Unit		
T _{STG}	Storage temperature range	-65 to +150	°C		
T _J Maximum junction temperature (see Section 13.2 "THERMAL CHARACTERISTICS")					

Notes:

1. Directly connecting the RESET and I/O pins to V_{DD} or V_{SS} could damage the device if an unintentional internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: $4.7k\Omega$ for RESET, $10k\Omega$ for I/Os). Unused I/O pins must be tied in the same way to V_{DD} or V_{SS} according to their reset configuration. 2. $I_{INJ(PIN)}$ must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by $V_{IN} < V_{SS}$. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected.

3. All power (V_{DD}) and ground (V_{SS}) lines must always be connected to the external supply.

4. Negative injection disturbs the analog performance of the device. See note in "10-BIT ADC CHARACTERISTICS" on page 245.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with $\Sigma I_{INJ(PIN)}$ maximum current injection on four I/O port pins of the device.

12.3 OPERATING CONDITIONS

12.3.1 General Operating Conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{CPU}	Internal clock frequency		0	8	MHz
	Extended Operating voltage	No Flash Write/Erase. Analog parameters not guaranteed.	3.8	4.5	V
V _{DD}	Standard Operating Voltage		4.5	5.5	
	Operating Voltage for Flash Write/Erase	V _{PP} = 11.4 to 12.6V	4.5	5.5	
		1 Suffix Version		70	
		5 Suffix Version	-10 85		
Τ _Α	Ambient temperature range	6 Suffix Version		85	D ⁰C
		7 Suffix Version	-40	105	le -
		3 Suffix Version		125	
F '			COV.	•	•

Figure 119. f_{CPU} Maximum vs V_{DD}

Note: It is mandatory to connect all available V_{DD} and V_{DDA} pins to the supply voltage and all V_{SS} and V_{SSA} pins to ground.

12.8 EMC CHARACTERISTICS

Susceptibility tests are performed on a sample basis during product characterization.

12.8.1 Functional EMS (Electro Magnetic Susceptibility)

Based on a simple running application on the product (toggling two LEDs through I/O ports), the product is stressed by two electro magnetic events until a failure occurs (indicated by the LEDs).

- ESD: Electro-Static Discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

12.8.1.1 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical applica-

لركا

tion environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations:

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials:

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RE-SET pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions	Level/ Class
V	Voltage limits to be applied on any I/O pin to induce a	LQFP64, $V_{DD} = 5V$, $T_A = +25^{\circ}C$, $f_{OSC} = 8$ MHz, conforms to IEC 1000-4-2	3B
♥ FESD	functional disturbance	LQFP44, $V_{DD} = 5V$, $T_A = +25^{\circ}C$, $f_{OSC} = 8$ MHz, conforms to IEC 1000-4-2	2B
V	Fast transient voltage burst limits to be applied	LQFP64, $V_{DD} = 5V$, $T_A = +25^{\circ}C$, $f_{OSC} = 8$ MHz, conforms to IEC 1000-4-4	3B
V FFTB	tional disturbance	LQFP44, $V_{DD} = 5V$, $T_A = +25^{\circ}C$, $f_{OSC} = 8$ MHz, conforms to IEC 1000-4-4	2B

EMC CHARACTERISTICS (Cont'd)

12.8.3 Absolute Maximum Ratings (Electrical Sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity (see Table 39 and Table 40 below). For more details, refer to application note AN1181.

12.8.3.1 Electro-Static Discharge (ESD)

Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the

number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: Human Body Model and Machine Model. This test conforms to the JESD22-A114A/A115A standard.

12.8.3.2 Static Latch-Up

■ LU: Two complementary static tests are required on 6 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/ O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard.

Table 39. Absolute Maximum Ratings

.

Table 39.	n. The sample size depends on the standard		oducils	1
Symbol	Ratings	Conditions	Maximum value ¹⁾	Unit
V _{ESD(HBM)}	Electro-static discharge voltage (Human Body Model)	20,	2000	
V _{ESD(MM)}	Electro-static discharge voltage (Machine Model)	T₄ = +25°C	200	v
V _{ESD(CDM)}	Electro-static discharge voltage (Charge Device Model)		750 on corner pins, 500 on others	

Notes:

لرکا

1. Data based on characterization results, not tested in production.

... ...

lable	40. EI	ectrical Se	nsitiviti	es		
-					1	

	Symbol	Parameter	Conditions	Class
	LU	Static latch-up class	T _A =+125°C conforming to JESD 78	II level A
		tePie		
	SOlt			
\bigcirc	Ŷ			

IMPORTANT NOTES (Cont'd)

software sequence is given for both cases (global interrupt disabled/enabled).

Case 1: Writing to PxOR or PxDDR with Global Interrupts Enabled:

LD A,#01 LD sema.A ; set the semaphore to '1' LD A, PFDR AND A,#02 LD X,A ; store the level before writing to PxOR/PxDDR LD A,#\$90 LD PFDDR,A ; Write to PFDDR LD A,#\$ff LD PFOR,A : Write to PFOR LD A, PFDR AND A,#02 LD Y,A ; store the level after writing to PxOR/PxDDR LD A,X ; check for falling edge cp A,#02 jrne OUT TNZ Y jrne OUT ; check the semaphore status if LD A,sema edge is detected CP A,#01 jrne OUT call call routine; call the interrupt routine OUT:LD A,#00 LD sema,A .call_routine ; entry to call_routine PUSH A PUSH X PUSH CC .ext1_rt ; entry to interrupt routine

Case 2: Writing to PxOR or PxDDR with Global In-

; set the interrupt mask

LD X,A ; store the level before writing to PxOR/PxDDR LD A,#\$90 LD PFDDR,A; Write into PFDDR LD A,#\$ff LD PFOR,A ; Write to PFOR LD A, PFDR AND A,#\$02 LD Y,A ; store the level after writing to PxOR/ PxDDR ; check for falling edge LD A,X cp A.#\$02 rodi jrne OUT TNZ Y irne OUT LD A,#\$01 LD sema, A ; set the semaphore to '1' if edge is detected RIM ; reset the interrupt mask LD A,sema ; check the semaphore status CP A,#\$01 irne OUT call call_routine; call the interrupt routine RIM OUT: RIM JP while_loop .call_routine ; entry to call_routine PUSH A PUSH X PUSH CC .ext1 rt ; entry to interrupt routine LD A,#\$00 LD sema,A IRET **16.1.4 Unexpected Reset Fetch** If an interrupt request occurs while a "POP CC" instruction is executed, the interrupt controller does not recognise the source of the interrupt and, by default, passes the RESET vector address to the CPU.

Workaround

To solve this issue, a "POP CC" instruction must always be preceded by a "SIM" instruction.

LD A,#00

IRET

SIM

LD sema,A

LD A, PFDR

AND A,#\$02

terrupts Disabled:

17 REVISION HISTORY

Date	Revision	Main changes
24-Oct-2005	4	Added standard version 16K ROM/Flash devices Modified data retention in Section 12.7 Added "6" and "3" standard version device type coding to Figure 152 and Figure 150 on page 254 Modified power consumption Section 12.4 Added CDM in Section 12.8.3.1 Added "External interrupt missed" Section 16.1.3
26-Sep-2006	5	Replaced TQFP with LQFP packages throughout document Changed device summary on page 1 Changed Section 9.2.1 on page 46 Changed title of Section 9.6 on page 50 from "I/O Port Implementation" to "I/O Port Register Configurations" Changed Section 10.6.3.3 on page 114 Corrected name of bit 5 in SPICSR register in Table 22 on page 121 Changed Section 12.5.4 on page 228 Added links to Table 39 and Table 40 in Section 12.8.3 on page 233 Removed EMC protection circuitry in Figure 135 on page 240 (device works correctly with- out these components) Changed Section 12.12.1 on page 243 Changed title of Figure 146 on page 249 Changed title of Figure 146 on page 251 Changed AFI mapping for "OPTION BYTE 1" on page 253 Changed Figure 150 on page 254, Figure 151 on page 255 and Figure 152 on page 255 Changed "ST72561 MICROCONTROLLER OPTION LIST" on page 256 Deleted Section 15.1.5 "Clearing active interrupts outside interrupt routine" (text already ex ists in Section 16.1.2 on page 258) Added Section 16.1.5 on page 260 Removed automotive part numbers, see separate ST72561-auto datasheet
19-Jun-2007	6	Added EMI characteristics for LQFP44 in Section 12.8. Updated ADC accuracy characteristics in Section 12.13.
02-Oct-2008	07	Updated static latchup Section 12.8.3.2 on page 233 Updated Flash data retention characteristics in Section 12.7.2.

