
STMicroelectronics - ST72F561K9TCTR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ST7

Core Size 8-Bit

Speed 8MHz

Connectivity CANbus, LINbusSCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 24

Program Memory Size 60KB (60K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3.8V ~ 5.5V

Data Converters A/D 6x10b

Oscillator Type External

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 32-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/st72f561k9tctr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/st72f561k9tctr-4431177
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ST72561

 O
POWER SAVING MODES (Cont’d)

8.4 HALT MODE

The HALT mode is the lowest power consumption
mode of the MCU. It is entered by executing the
‘HALT’ instruction when the OIE bit of the Main
Clock Controller Status register (MCCSR) is
cleared (see Section 10.2 on page 59 for more de-
tails on the MCCSR register) and when the
AWUEN bit in the AWUCSR register is cleared.

The MCU can exit HALT mode on reception of ei-
ther a specific interrupt (see Table 9, “Interrupt
Mapping,” on page 34) or a RESET. When exiting
HALT mode by means of a RESET or an interrupt,
the oscillator is immediately turned on and the 256
or 4096 CPU cycle delay is used to stabilize the
oscillator. After the start up delay, the CPU
resumes operation by servicing the interrupt or by
fetching the reset vector which woke it up (see Fig-
ure 26).
When entering HALT mode, the I[1:0] bits in the
CC register are forced to ‘10b’ to enable interrupts.
Therefore, if an interrupt is pending, the MCU
wakes up immediately.

In HALT mode, the main oscillator is turned off
causing all internal processing to be stopped, in-
cluding the operation of the on-chip peripherals.
All peripherals are not clocked except the ones
which get their clock supply from another clock
generator (such as an external or auxiliary oscilla-
tor).

The compatibility of Watchdog operation with
HALT mode is configured by the “WDGHALT” op-
tion bit of the option byte. The HALT instruction
when executed while the Watchdog system is en-
abled, can generate a Watchdog RESET (see
Section 10.1 on page 53 for more details).

Figure 25. HALT Timing Overview

Figure 26. HALT Mode Flow-chart

Notes:
1. WDGHALT is an option bit. See option byte sec-
tion for more details.
2. Peripheral clocked with an external clock source
can still be active.
3. Only some specific interrupts can exit the MCU
from HALT mode (such as external interrupt). Re-
fer to Table 9, “Interrupt Mapping,” on page 34 for
more details.
4. Before servicing an interrupt, the CC register is
pushed on the stack. The I[1:0] bits of the CC reg-
ister are set to the current software priority level of
the interrupt routine and recovered when the CC
register is popped.

HALTRUN RUN
256 OR 4096 CPU

CYCLE DELAY

RESET
OR

INTERRUPTHALT
INSTRUCTION FETCH

VECTOR[MCCSR.OIE=0]

RESET

INTERRUPT 3)

Y

N

N

Y

CPU

OSCILLATOR
PERIPHERALS 2)

I[1:0] BITS

OFF
OFF

10
OFF

FETCH RESET VECTOR
OR SERVICE INTERRUPT

CPU

OSCILLATOR
PERIPHERALS

I[1:0] BITS

ON
OFF

XX 4)
ON

CPU

OSCILLATOR
PERIPHERALS

I[1:0] BITS

ON
ON

XX 4)
ON

256 OR 4096 CPU CLOCK
DELAY

WATCHDOGENABLE

DISABLEWDGHALT 1) 0

WATCHDOG
RESET

1

CYCLE

HALT INSTRUCTION
(MCCSR.OIE=0)

(AWUCSR.AWUEN=0)

bso
lete Product(

s)
- O

bso
lete Product(

s)
40/265

ST72561

 O
MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK (Cont’d)

10.2.4 Low Power Modes

10.2.5 Interrupts
The MCC/RTC interrupt event generates an inter-
rupt if the OIE bit of the MCCSR register is set and
the interrupt mask in the CC register is not active
(RIM instruction).

Note:
The MCC/RTC interrupt wakes up the MCU from
ACTIVE HALT mode, not from HALT or AWUF
HALT mode.
10.2.6 Register Description
MCC CONTROL/STATUS REGISTER (MCCSR)
Read / Write

Reset Value: 0000 0000 (00h)

Bit 7 = MCO Main clock out selection
This bit enables the MCO alternate function on the
corresponding I/O port. It is set and cleared by
software.
0: MCO alternate function disabled (I/O pin free for

general-purpose I/O)
1: MCO alternate function enabled (fOSC2 on I/O

port)

Bits 6:5 = CP[1:0] CPU clock prescaler
These bits select the CPU clock prescaler which is
applied in the different slow modes. Their action is
conditioned by the setting of the SMS bit. These
two bits are set and cleared by software

Bit 4 = SMS Slow mode select
This bit is set and cleared by software.
0: Normal mode. fCPU = fOSC2
1: Slow mode. fCPU is given by CP1, CP0
See Section 8.2 "SLOW MODE" and Section 10.2
"MAIN CLOCK CONTROLLER WITH REAL TIME
CLOCK MCC/RTC" for more details.

Bits 3:2 = TB[1:0] Time base control

These bits select the programmable divider time
base. They are set and cleared by software.

A modification of the time base is taken into ac-
count at the end of the current period (previously
set) to avoid an unwanted time shift. This allows to
use this time base as a real time clock.

Bit 1 = OIE Oscillator interrupt enable
This bit set and cleared by software.
0: Oscillator interrupt disabled
1: Oscillator interrupt enabled
This interrupt can be used to exit from ACTIVE
HALT mode.
When this bit is set, calling the ST7 software HALT
instruction enters the ACTIVE HALT power saving
mode.

Mode Description

WAIT
No effect on MCC/RTC peripheral.
MCC/RTC interrupt cause the device to
exit from WAIT mode.

ACTIVE HALT

No effect on MCC/RTC counter (OIE bit
is set), the registers are frozen.
MCC/RTC interrupt cause the device to
exit from ACTIVE HALT mode.

HALT

and

AWUF HALT

MCC/RTC counter and registers are fro-
zen.
MCC/RTC operation resumes when the
MCU is woken up by an interrupt with
“exit from HALT” capability.

Interrupt Event
Event
Flag

Enable
Control

Bit

Exit
from
Wait

Exit
from
Halt

Time base overflow
event

OIF OIE Yes No1)

7 0

MCO CP1 CP0 SMS TB1 TB0 OIE OIF

fCPU in SLOW mode CP1 CP0

fOSC2 / 2 0 0

fOSC2 / 4 0 1

fOSC2/ 8 1 0

fOSC2 / 16 1 1

Counter
Prescaler

Time Base
TB1 TB0

fOSC2 =4 MHz fOSC2=8 MHz

16000 4ms 2ms 0 0

32000 8ms 4ms 0 1

80000 20ms 10ms 1 0

200000 50ms 25ms 1 1

bso
lete Product(

s)
- O

bso
lete Product(

s)
60/265

ST72561

 O
PWM AUTO-RELOAD TIMER (Cont’d)

Figure 46. input Capture Timing Diagram, fCOUNTER = fCPU / 4

04hCOUNTER

t

fCOUNTER

xxh

03h

04h

ARTICx PIN

CFx FLAG

ICRx REGISTER

INTERRUPT

fCPU

ICAP SAMPLED

05h

04hCOUNTER

t

fCOUNTER

xxh

03h

05h

ARTICx PIN

CFx FLAG

ICRx REGISTER

INTERRUPT

fCPU

ICAP SAMPLED

05h

bso
lete Product(

s)
- O

bso
lete Product(

s)
67/265

ST72561

 O
16-BIT TIMER (Cont’d)

Figure 49. Counter Timing Diagram, Internal Clock Divided by 2

Figure 50. Counter Timing Diagram, Internal Clock Divided by 4

Figure 51. Counter Timing Diagram, Internal Clock Divided By 8

Note: The MCU is in reset state when the internal reset signal is high, when it is low the MCU is running.

CPU CLOCK

FFFD FFFE FFFF 0000 0001 0002 0003

INTERNAL RESET

 TIMER CLOCK

COUNTER REGISTER

TIMER OVERFLOW FLAG (TOF)

FFFC FFFD 0000 0001

CPU CLOCK

INTERNAL RESET

 TIMER CLOCK

COUNTER REGISTER

TIMER OVERFLOW FLAG (TOF)

CPU CLOCK

INTERNAL RESET

 TIMER CLOCK

COUNTER REGISTER

TIMER OVERFLOW FLAG (TOF)

FFFC FFFD 0000

bso
lete Product(

s)
- O

bso
lete Product(

s)
76/265

ST72561

 O
8-BIT TIMER (Cont’d)

10.5.3.2 Input Capture
In this section, the index, i, may be 1 or 2 because
there are two input capture functions in the 8-bit
timer.

The two 8-bit input capture registers (IC1R and
IC2R) are used to latch the value of the free run-
ning counter after a transition is detected on the
ICAPi pin (see Figure 63).

ICiR register is a read-only register.

The active transition is software programmable
through the IEDGi bit of Control Registers (CRi).

Timing resolution is one count of the free running
counter (see Table 19 Clock Control Bits).

Procedure:
To use the input capture function select the follow-
ing in the CR2 register:

– Select the timer clock (CC[1:0]) (see Table 19
Clock Control Bits).

– Select the edge of the active transition on the
ICAP2 pin with the IEDG2 bit (the ICAP2 pin
must be configured as floating input or input with
pull-up without interrupt if this configuration is
available).

And select the following in the CR1 register:

– Set the ICIE bit to generate an interrupt after an
input capture coming from either the ICAP1 pin
or the ICAP2 pin

– Select the edge of the active transition on the
ICAP1 pin with the IEDG1 bit (the ICAP1 pin
must be configured as floating input or input with
pull-up without interrupt if this configuration is
available).

When an input capture occurs:

– ICFi bit is set.

– The ICiR register contains the value of the free
running counter on the active transition on the
ICAPi pin (see Figure 64).

– A timer interrupt is generated if the ICIE bit is set
and the interrrupt mask is cleared in the CC reg-
ister. Otherwise, the interrupt remains pending
until both conditions become true.

Clearing the Input Capture interrupt request (that
is, clearing the ICFi bit) is done in two steps:

1. Reading the SR register while the ICFi bit is set.

2. An access (read or write) to the ICiR register.

Notes:
1. The ICiR register contains the free running
counter value which corresponds to the most re-
cent input capture.
2. The two input capture functions can be used to-
gether even if the timer also uses the two output
compare functions.
3. Once the ICIE bit is set both input capture fea-
tures may trigger interrupt requests. If only one is
needed in the application, the interrupt routine
software needs to discard the unwanted capture
interrupt. This can be done by checking the ICF1
and ICF2 flags and resetting them both.
4. In One pulse Mode and PWM mode only Input
Capture 2 can be used.
5. The alternate inputs (ICAP1 and ICAP2) are al-
ways directly connected to the timer. So any tran-
sitions on these pins activates the input capture
function.
Moreover if one of the ICAPi pins is configured as
an input and the second one as an output, an inter-
rupt can be generated if the user toggles the output
pin and if the ICIE bit is set.
6. The TOF bit can be used with interrupt genera-
tion in order to measure events that go beyond the
timer range (FFh).

bso
lete Product(

s)
- O

bso
lete Product(

s)
96/265

ST72561

 O
8-BIT TIMER (Cont’d)

CONTROL/STATUS REGISTER (CSR)
Read Only (except bit 2 R/W)

Reset Value: 0000 0000 (00h)

Bit 7 = ICF1 Input Capture Flag 1.
0: No input capture (reset value).
1: An input capture has occurred on the ICAP1 pin

or the counter has reached the OC2R value in
PWM mode. To clear this bit, first read the SR
register, then read or write the the IC1R register.

Bit 6 = OCF1 Output Compare Flag 1.
0: No match (reset value).
1: The content of the free running counter has

matched the content of the OC1R register. To
clear this bit, first read the SR register, then read
or write the OC1R register.

Bit 5 = TOF Timer Overflow Flag.
0: No timer overflow (reset value).
1: The free running counter rolled over from FFh to

00h. To clear this bit, first read the SR register,
then read or write the CTR register.

Note: Reading or writing the ACTR register does
not clear TOF.

Bit 4 = ICF2 Input Capture Flag 2.
0: No input capture (reset value).
1: An input capture has occurred on the ICAP2

pin. To clear this bit, first read the SR register,
then read or write the IC2R register.

Bit 3 = OCF2 Output Compare Flag 2.
0: No match (reset value).
1: The content of the free running counter has

matched the content of the OC2R register. To
clear this bit, first read the SR register, then read
or write the OC2R register.

Bit 2 = TIMD Timer disable.
This bit is set and cleared by software. When set, it
freezes the timer prescaler and counter and disa-
bled the output functions (OCMP1 and OCMP2
pins) to reduce power consumption. Access to the
timer registers is still available, allowing the timer
configuration to be changed, or the counter reset,
while it is disabled.
0: Timer enabled
1: Timer prescaler, counter and outputs disabled

Bits 1:0 = Reserved, must be kept cleared.

7 0

ICF1 OCF1 TOF ICF2 OCF2 TIMD 0 0

bso
lete Product(

s)
- O

bso
lete Product(

s)
107/265

ST72561

 O
SERIAL PERIPHERAL INTERFACE (cont’d)

10.6.3.3 Master Mode Operation
In master mode, the serial clock is output on the
SCK pin. The clock frequency, polarity and phase
are configured by software (refer to the description
of the SPICSR register).

Note: The idle state of SCK must correspond to
the polarity selected in the SPICSR register (by
pulling up SCK if CPOL = 1 or pulling down SCK if
CPOL = 0).

How to operate the SPI in master mode
To operate the SPI in master mode, perform the
following steps in order:

1. Write to the SPICR register:
– Select the clock frequency by configuring the

SPR[2:0] bits.
– Select the clock polarity and clock phase by

configuring the CPOL and CPHA bits. Figure
74 shows the four possible configurations.
Note: The slave must have the same CPOL
and CPHA settings as the master.

2. Write to the SPICSR register:
– Either set the SSM bit and set the SSI bit or

clear the SSM bit and tie the SS pin high for
the complete byte transmit sequence.

3. Write to the SPICR register:
– Set the MSTR and SPE bits

Note: MSTR and SPE bits remain set only if
SS is high).

Important note: if the SPICSR register is not writ-
ten first, the SPICR register setting (MSTR bit)
may be not taken into account.

The transmit sequence begins when software
writes a byte in the SPIDR register.

10.6.3.4 Master Mode Transmit Sequence
When software writes to the SPIDR register, the
data byte is loaded into the 8-bit shift register and
then shifted out serially to the MOSI pin most sig-
nificant bit first.

When data transfer is complete:

– The SPIF bit is set by hardware.

– An interrupt request is generated if the SPIE
bit is set and the interrupt mask in the CCR
register is cleared.

Clearing the SPIF bit is performed by the following
software sequence:

1. An access to the SPICSR register while the
SPIF bit is set

2. A read to the SPIDR register

Note: While the SPIF bit is set, all writes to the
SPIDR register are inhibited until the SPICSR reg-
ister is read.

10.6.3.5 Slave Mode Operation
In slave mode, the serial clock is received on the
SCK pin from the master device.

To operate the SPI in slave mode:

1. Write to the SPICSR register to perform the fol-
lowing actions:
– Select the clock polarity and clock phase by

configuring the CPOL and CPHA bits (see
Figure 74).
Note: The slave must have the same CPOL
and CPHA settings as the master.

– Manage the SS pin as described in Section
10.6.3.2 and Figure 72. If CPHA = 1 SS must
be held low continuously. If CPHA = 0 SS
must be held low during byte transmission and
pulled up between each byte to let the slave
write in the shift register.

2. Write to the SPICR register to clear the MSTR
bit and set the SPE bit to enable the SPI I/O
functions.

10.6.3.6 Slave Mode Transmit Sequence
When software writes to the SPIDR register, the
data byte is loaded into the 8-bit shift register and
then shifted out serially to the MISO pin most sig-
nificant bit first.

The transmit sequence begins when the slave de-
vice receives the clock signal and the most signifi-
cant bit of the data on its MOSI pin.

When data transfer is complete:

– The SPIF bit is set by hardware.

– An interrupt request is generated if SPIE bit is
set and interrupt mask in the CCR register is
cleared.

Clearing the SPIF bit is performed by the following
software sequence:

1. An access to the SPICSR register while the
SPIF bit is set

2. A write or a read to the SPIDR register

Notes: While the SPIF bit is set, all writes to the
SPIDR register are inhibited until the SPICSR reg-
ister is read.

The SPIF bit can be cleared during a second
transmission; however, it must be cleared before
the second SPIF bit in order to prevent an Overrun
condition (see Section 10.6.5.2).

bso
lete Product(

s)
- O

bso
lete Product(

s)
114/265

ST72561

 O
SERIAL PERIPHERAL INTERFACE (cont’d)

10.6.5 Error Flags
10.6.5.1 Master Mode Fault (MODF)
Master mode fault occurs when the master de-
vice’s SS pin is pulled low.

When a Master mode fault occurs:

– The MODF bit is set and an SPI interrupt re-
quest is generated if the SPIE bit is set.

– The SPE bit is reset. This blocks all output
from the device and disables the SPI periph-
eral.

– The MSTR bit is reset, thus forcing the device
into slave mode.

Clearing the MODF bit is done through a software
sequence:

1. A read access to the SPICSR register while the
MODF bit is set.

2. A write to the SPICR register.

Notes: To avoid any conflicts in an application
with multiple slaves, the SS pin must be pulled
high during the MODF bit clearing sequence. The
SPE and MSTR bits may be restored to their orig-
inal state during or after this clearing sequence.

Hardware does not allow the user to set the SPE
and MSTR bits while the MODF bit is set except in
the MODF bit clearing sequence.

In a slave device, the MODF bit can not be set, but
in a multimaster configuration the device can be in
slave mode with the MODF bit set.

The MODF bit indicates that there might have
been a multimaster conflict and allows software to
handle this using an interrupt routine and either
perform a reset or return to an application default
state.

10.6.5.2 Overrun Condition (OVR)
An overrun condition occurs when the master de-
vice has sent a data byte and the slave device has
not cleared the SPIF bit issued from the previously
transmitted byte.

When an Overrun occurs:

– The OVR bit is set and an interrupt request is
generated if the SPIE bit is set.

In this case, the receiver buffer contains the byte
sent after the SPIF bit was last cleared. A read to
the SPIDR register returns this byte. All other
bytes are lost.

The OVR bit is cleared by reading the SPICSR
register.

10.6.5.3 Write Collision Error (WCOL)
A write collision occurs when the software tries to
write to the SPIDR register while a data transfer is
taking place with an external device. When this
happens, the transfer continues uninterrupted and
the software write will be unsuccessful.

Write collisions can occur both in master and slave
mode. See also Section 10.6.3.2 "Slave Select
Management".

Note: A "read collision" will never occur since the
received data byte is placed in a buffer in which
access is always synchronous with the CPU oper-
ation.

The WCOL bit in the SPICSR register is set if a
write collision occurs.

No SPI interrupt is generated when the WCOL bit
is set (the WCOL bit is a status flag only).

Clearing the WCOL bit is done through a software
sequence (see Figure 75).

Figure 75. Clearing the WCOL Bit (Write Collision Flag) Software Sequence
Clearing sequence after SPIF = 1 (end of a data byte transfer)

1st Step
Read SPICSR

Read SPIDR2nd Step SPIF = 0
WCOL = 0

Clearing sequence before SPIF = 1 (during a data byte transfer)

1st Step

2nd Step WCOL = 0

Read SPICSR

Read SPIDR
Note: Writing to the SPIDR register in-
stead of reading it does not reset the
WCOL bit.

RESULT

RESULT

bso
lete Product(

s)
- O

bso
lete Product(

s)
116/265

ST72561

 O
LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d)

Figure 79. SCI Baud Rate and Extended Prescaler Block Diagram

TRANSMITTER

RECEIVER

SCIETPR

SCIERPR

EXTENDED PRESCALER RECEIVER RATE CONTROL

EXTENDED PRESCALER TRANSMITTER RATE CONTROL

EXTENDED PRESCALER

 CLOCK

CLOCK

RECEIVER RATE

TRANSMITTER RATE

SCIBRR

SCP1

fCPU

 CONTROL

CONTROL

SCP0 SCT2 SCT1 SCT0 SCR2 SCR1SCR0

/PR/16

CONVENTIONAL BAUD RATE GENERATOR

EXTENDED RECEIVER PRESCALER REGISTER

EXTENDED TRANSMITTER PRESCALER REGISTER

bso
lete Product(

s)
- O

bso
lete Product(

s)
129/265

ST72561

 O
LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Mode) (cont’d)

If LHE bit is set due to this error during Fields other
than LIN Synch Field or if LASE bit is reset then
the current received Header is discarded and the
SCI searches for a new Break Field.

Note on LIN Header Time-out Limit
According to the LIN specification, the maximum
length of a LIN Header which does not cause a
timeout is equal to 1.4 * (34 + 1) = 49
TBIT_MASTER.

TBIT_MASTER refers to the master baud rate.

When checking this timeout, the slave node is de-
synchronized for the reception of the LIN Break
and Synch fields. Consequently, a margin must be
allowed, taking into account the worst case: This
occurs when the LIN identifier lasts exactly 10
TBIT_MASTER periods. In this case, the LIN Break
and Synch fields last 49 - 10 = 39TBIT_MASTER pe-
riods.

Assuming the slave measures these first 39 bits
with a desynchronized clock of 15.5%. This leads
to a maximum allowed Header Length of:

39 x (1/0.845) TBIT_MASTER + 10TBIT_MASTER

= 56.15 TBIT_SLAVE

A margin is provided so that the time-out occurs
when the header length is greater than 57
TBIT_SLAVE periods. If it is less than or equal to 57
TBIT_SLAVE periods, then no timeout occurs.

LIN Header Length
Even if no timeout occurs on the LIN Header, it is
possible to have access to the effective LIN head-
er Length (THEADER) through the LHL register.
This allows monitoring at software level the
TFRAME_MAX condition given by the LIN protocol.

This feature is only available when LHDM bit = 1
or when LASE bit = 1.

Mute Mode and Errors
In mute mode when LHDM bit = 1, if an LHE error
occurs during the analysis of the LIN Synch Field
or if a LIN Header Time-out occurs then the LHE
bit is set but it does not wake up from mute mode.
In this case, the current header analysis is discard-
ed. If needed, the software has to reset LSF bit.
Then the SCI searches for a new LIN header.

In mute mode, if a framing error occurs on a data
(which is not a break), it is discarded and the FE bit
is not set.

When LHDM bit = 1, any LIN header which re-
spects the following conditions causes a wake-up
from mute mode:

- A valid LIN Break Field (at least 11 dominant bits
followed by a recessive bit)

- A valid LIN Synch Field (without deviation error)

- A LIN Identifier Field without framing error. Note
that a LIN parity error on the LIN Identifier Field
does not prevent wake-up from mute mode.

- No LIN Header Time-out should occur during
Header reception.

Figure 83. LIN Synch Field Measurement

LIN Synch Break
Extra

‘1’ Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit Stop

Bit

Next
Start
Bit

LIN Synch Field

Measurement = 8.TBR = SM.TCPU

LPR(n) LPR(n+1)

LPR = TBR / (16.TCPU) = Rounding (SM / 128)

TCPU = CPU period
TBR = Baud Rate period

TBR

TBR = 16.LPR.TCPU

SM = Synch Measurement Register (15 bits)bso
lete Product(

s)
- O

bso
lete Product(

s)
142/265

ST72561

 O
LINSCI™ SERIAL COMMUNICATION INTERFACE (LIN Master Only) (Cont’d)

10.8.7 SCI Synchronous Transmission
The SCI transmitter allows the user to control a
one way synchronous serial transmission. The
SCLK pin is the output of the SCI transmitter clock.
No clock pulses are sent to the SCLK pin during
start bit and stop bit. Depending on the state of the
LBCL bit in the SCICR3 register, clock pulses are
or are not be generated during the last valid data
bit (address mark). The CPOL bit in the SCICR3
register allows the user to select the clock polarity,
and the CPHA bit in the SCICR3 register allows
the user to select the phase of the external clock
(see Figure 91, Figure 92 and Figure 93).

During idle, preamble and send break, the external
SCLK clock is not activated.

These options allow the user to serially control pe-
ripherals which consist of shift registers, without
losing any functions of the SCI transmitter which
can still talk to other SCI receivers. These options
do not affect the SCI receiver which is independ-
ent from the transmitter.

Note: The SCLK pin works in conjunction with the
TDO pin. When the SCI transmitter is disabled (TE
and RE = 0), the SCLK and TDO pins go into high
impedance state.

Note: The LBCL, CPOL and CPHA bits have to be
selected before enabling the transmitter to ensure
that the clock pulses function correctly. These bits
should not be changed while the transmitter is en-
abled.

Figure 91. SCI Example of Synchronous and Asynchronous Transmission

Asynchronous

Synchronous

(e.g. modem)

(e.g. shift register)

RDI
TDO

SCLK
Output port Enable

Clock
Data in

Data in
Data out

SCI

bso
lete Product(

s)
- O

bso
lete Product(

s)
161/265

ST72561

 O
beCAN CONTROLLER (Cont’d)

Figure 96. beCAN Operating Modes

10.9.3 Operating Modes
The beCAN has three main operating modes: Ini-
tialization, Normal and Sleep. After a hardware re-
set, beCAN is in Sleep mode to reduce power con-
sumption. The software requests beCAN to enter
Initialization or Sleep mode by setting the INRQ or
SLEEP bits in the CMCR register. Once the mode
has been entered, beCAN confirms it by setting
the INAK or SLAK bits in the CMSR register. When
neither INAK nor SLAK are set, beCAN is in Nor-
mal mode. Before entering Normal mode beCAN
always has to synchronize on the CAN bus. To
synchronize, beCAN waits until the CAN bus is
idle, this means 11 consecutive recessive bits
have been monitored on CANRX.

10.9.3.1 Initialization Mode
The software initialization can be done while the
hardware is in Initialization mode. To enter this
mode the software sets the INRQ bit in the CMCR
register and waits until the hardware has con-
firmed the request by setting the INAK bit in the
CMSR register.

To leave Initialization mode, the software clears
the INQR bit. beCAN has left Initialization mode
once the INAK bit has been cleared by hardware.

While in Initialization mode, all message transfers
to and from the CAN bus are stopped and the sta-

tus of the CAN bus output CANTX is recessive
(high).

Entering Initialization Mode does not change any
of the configuration registers.

To initialize the CAN Controller, software has to
set up the Bit Timing registers and the filter banks.
If a filter bank is not used, it is recommended to
leave it non active (leave the corresponding FACT
bit cleared).

10.9.3.2 Normal Mode
Once the initialization has been done, the software
must request the hardware to enter Normal mode,
to synchronize on the CAN bus and start reception
and transmission. Entering Normal mode is done
by clearing the INRQ bit in the CMCR register and
waiting until the hardware has confirmed the re-
quest by clearing the INAK bit in the CMSR regis-
ter. Afterwards, the beCAN synchronizes with the
data transfer on the CAN bus by waiting for the oc-
currence of a sequence of 11 consecutive reces-
sive bits (≡ Bus Idle) before it can take part in bus
activities and start message transfer.

The initialization of the filter values is independent
from Initialization mode but must be done while the
filter bank is not active (corresponding FACTx bit
cleared). The filter bank scale and mode configu-
ration must be configured in initialization mode.

SLEEP

SYNC

INITIALIZATIONNORMAL

S
L E

E
P

SLEEP * IN
RQ

INRQ

INRQ

RESET

SLAK= 1
INAK = 0

SLAK= X
INAK = X

SLAK= 0
INAK = 1

SLEEP

SLEEP

SLAK= 0
INAK = 0

INRQ

bso
lete Product(

s)
- O

bso
lete Product(

s)
172/265

ST72561

 O
beCAN CONTROLLER (Cont’d)

Figure 100. Transmit Mailbox States

EMPTY

TXRQ=1

RQCP=X
TXOK=X

PENDING
RQCP=0
TXOK=0

SCHEDULED
RQCP=0
TXOK=0

Mailbox has

TRANSMIT
RQCP=0
TXOK=0

CAN Bus = IDLE

Transmit failed * NART

Transmit succeeded

Mailbox does notEMPTY

RQCP=1
TXOK=0

highest priority

have highest priority

EMPTY
RQCP=1
TXOK=1

ABRQ=1

ABRQ=1

Transmit failed * NART

TME = 1

TME = 0

TME = 0

TME = 0

TME = 1

TME = 1

bso
lete Product(

s)
- O

bso
lete Product(

s)
175/265

ST72561

 O
beCAN CONTROLLER (Cont’d)

Figure 103. Filtering Mechanism - example

The example above shows the filtering principle of
the beCAN. On reception of a message, the iden-
tifier is compared first with the filters configured in
identifier list mode. If there is a match, the mes-
sage is stored in the FIFO and the index of the
matching filter is stored in the Filter Match Index.
As shown in the example, the identifier matches
with Identifier #2 thus the message content and
MFMI 2 is stored in the FIFO.

If there is no match, the incoming identifier is then
compared with the filters configured in mask
mode.

If the identifier does not match any of the identifi-
ers configured in the filters, the message is dis-
carded by hardware without software intervention.

Id
en

tif
ie

r
Li

st

Message Discarded

Id
en

tif
ie

r
&

 M
as

k

Identifier 0
Identifier 1
Identifier 2

Identifier n

Identifier n+1
Mask

Identifier n+m
Mask

Identifier

Message Received

Ctrl Data

Identifier #2 Match
Message
Stored

Receive FIFO

No Match
Found n: number of single identifiers to receive

m: number of identifier groups to receive
n and m values depend on the configuration of the filters

bso
lete Product(

s)
- O

bso
lete Product(

s)
180/265

ST72561

 O
10-BIT A/D CONVERTER (ADC) (Cont’d)

10.10.3.2 A/D Conversion
The analog input ports must be configured as in-
put, no pull-up, no interrupt. Refer to the “I/O ports”
chapter. Using these pins as analog inputs does
not affect the ability of the port to be read as a logic
input.

In the ADCCSR register:

– Select the CS[3:0] bits to assign the analog
channel to convert.

ADC Conversion mode
In the ADCCSR register:

– Set the ADON bit to enable the A/D converter
and to start the conversion. From this time on,
the ADC performs a continuous conversion of
the selected channel.

When a conversion is complete:

– The EOC bit is set by hardware.
– The result is in the ADCDR registers.

A read to the ADCDRH resets the EOC bit.

To read the 10 bits, perform the following steps:

1. Poll EOC bit

2. Read the ADCDRL register

3. Read the ADCDRH register. This clears EOC
automatically.

To read only 8 bits, perform the following steps:

1. Poll EOC bit

2. Read the ADCDRH register. This clears EOC
automatically.

10.10.3.3 Changing the conversion channel
The application can change channels during con-
version. When software modifies the CH[3:0] bits

in the ADCCSR register, the current conversion is
stopped, the EOC bit is cleared, and the A/D con-
verter starts converting the newly selected chan-
nel.

10.10.3.4 ADCDR consistency
If an End Of Conversion event occurs after soft-
ware has read the ADCDRLSB but before it has
read the ADCDRMSB, there would be a risk that
the two values read would belong to different sam-
ples.

To guarantee consistency:

– The ADCDRL and the ADCDRH registers are
locked when the ADCCRL is read

– The ADCDRL and the ADCDRH registers are
unlocked when the ADCDRH register is read
or when ADON is reset.

This is important, as the ADCDR register will not
be updated until the ADCDRH register is read.

10.10.4 Low Power Modes
Note: The A/D converter may be disabled by re-
setting the ADON bit. This feature allows reduced
power consumption when no conversion is need-
ed and between single shot conversions.

10.10.5 Interrupts
None.

Mode Description
WAIT No effect on A/D Converter

HALT

A/D Converter disabled.

After wakeup from Halt mode, the A/D
Converter requires a stabilization time
tSTAB (see Electrical Characteristics)
before accurate conversions can be
performed.

bso
lete Product(

s)
- O

bso
lete Product(

s)
210/265

ST72561

 O
INSTRUCTION SET OVERVIEW (Cont’d)

Mnemo Description Function/Example Dst Src I1 H I0 N Z C

ADC Add with Carry A = A + M + C A M H N Z C

ADD Addition A = A + M A M H N Z C

AND Logical And A = A . M A M N Z

BCP Bit compare A, Memory tst (A . M) A M N Z

BRES Bit Reset bres Byte, #3 M

BSET Bit Set bset Byte, #3 M

BTJF Jump if bit is false (0) btjf Byte, #3, Jmp1 M C

BTJT Jump if bit is true (1) btjt Byte, #3, Jmp1 M C

CALL Call subroutine

CALLR Call subroutine relative

CLR Clear reg, M 0 1

CP Arithmetic Compare tst(Reg - M) reg M N Z C

CPL One Complement A = FFH-A reg, M N Z 1

DEC Decrement dec Y reg, M N Z

HALT Halt 1 0

IRET Interrupt routine return Pop CC, A, X, PC I1 H I0 N Z C

INC Increment inc X reg, M N Z

JP Absolute Jump jp [TBL.w]

JRA Jump relative always

JRT Jump relative

JRF Never jump jrf *

JRIH Jump if ext. INT pin = 1 (ext. INT pin high)

JRIL Jump if ext. INT pin = 0 (ext. INT pin low)

JRH Jump if H = 1 H = 1 ?

JRNH Jump if H = 0 H = 0 ?

JRM Jump if I1:0 = 11 I1:0 = 11 ?

JRNM Jump if I1:0 <> 11 I1:0 <> 11 ?

JRMI Jump if N = 1 (minus) N = 1 ?

JRPL Jump if N = 0 (plus) N = 0 ?

JREQ Jump if Z = 1 (equal) Z = 1 ?

JRNE Jump if Z = 0 (not equal) Z = 0 ?

JRC Jump if C = 1 C = 1 ?

JRNC Jump if C = 0 C = 0 ?

JRULT Jump if C = 1 Unsigned <

JRUGE Jump if C = 0 Jmp if unsigned >=

JRUGT Jump if (C + Z = 0) Unsigned >

bso
lete Product(

s)
- O

bso
lete Product(

s)
217/265

ST72561

 O
SUPPLY CURRENT CHARACTERISTICS (Cont’d)

12.4.1 Supply and Clock Managers
The previous current consumption specified for
the ST7 functional operating modes over tempera-
ture range does not take into account the clock

source current consumption. To obtain the total
device consumption, the two current values must
be added (except for HALT mode).

Notes:
1. Data based on characterization results, not tested in production.
2. Data based on characterization results done with the external components specified in Section 12.5.3, not tested in
production.
3. As the oscillator is based on a current source, the consumption does not depend on the voltage.

Symbol Parameter Conditions Typ Max1) Unit

IDD(RES) Supply current of resonator oscillator2)3) See Section 12.5.3 on page 227

μAIDD(PLL) PLL supply current VDD = 5V 360

IDD(LVD) LVD supply current HALT mode, VDD = 5V 150 300

bso
lete Product(

s)
- O

bso
lete Product(

s)
224/265

ST72561

 O
CLOCK AND TIMING CHARACTERISTICS (Cont’d)

12.5.3 Crystal and Ceramic Resonator Oscillators
The ST7 internal clock can be supplied with four
different Crystal/Ceramic resonator oscillators. All
the information given in this paragraph is based on
characterization results with specified typical ex-
ternal components. In the application, the resona-
tor and the load capacitors have to be placed as

close as possible to the oscillator pins in order to
minimize output distortion and start-up stabiliza-
tion time. Refer to the crystal/ceramic resonator
manufacturer for more details (frequency, pack-
age, accuracy...). 1)2)

Figure 122. Typical Application with a Crystal or Ceramic Resonator

Notes:
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. tSU(OSC) is the typical oscillator start-up time measured between VDD = 2.8V and the fetch of the first instruction (with
a quick VDD ramp-up from 0 to 5V (< 50μs).
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value.
Refer to crystal/ceramic resonator manufacturer for more details.

Symbol Parameter Conditions Min Max Unit

fOSC Oscillator Frequency3)

LP: Low power oscillator
MP: Medium power oscillator
MS: Medium speed oscillator
HS: High speed oscillator

1
>2
>4
>8

2
4
8
16

MHz

RF Feedback resistor 20 40 kΩ

CL1

CL2

Recommended load capacitance ver-
sus equivalent serial resistance of the
crystal or ceramic resonator (RS)

RS = 200Ω LP oscillator
RS = 200Ω MP oscillator
RS = 200Ω MS oscillator
RS = 100Ω HS oscillator

22
22
18
15

56
46
33
33

pF

Symbol Parameter Conditions Typ Max Unit

i2 OSC2 driving current

VDD = 5V LP oscillator
VIN = VSS MP oscillator

MS oscillator
HS oscillator

80
160
310
610

150
250
460
910

μA

OSC2

OSC1
fOSC

CL1

CL2

i2

RF

ST72XXX

RESONATOR

WHEN RESONATOR WITH
INTEGRATED CAPACITORS

bso
lete Product(

s)
- O

bso
lete Product(

s)
227/265

ST72561

 O
12.11 TIMER PERIPHERAL CHARACTERISTICS

Subject to general operating conditions for VDD,
fOSC, and TA unless otherwise specified.

Refer to I/O port characteristics for more details on
the input/output alternate function characteristics
(output compare, input capture, external clock,
PWM output...).

12.11.1 8-Bit PWM-ART Autoreload Timer

12.11.2 8-Bit Timer

12.11.3 16-Bit Timer

Symbol Parameter Conditions Min Typ Max Unit

tres(PWM) PWM resolution time
1 tCPU

fCPU = 8 MHz 125 ns

fEXT ART external clock frequency
0 fCPU/2 MHz

fPWM PWM repetition rate

ResPWM PWM resolution 8 bit

VOS PWM/DAC output step voltage VDD = 5V, Res = 8-bits 20 mV

tCOUNTER
Timer clock period when internal
clock is selected

fCPU = 8 MHz
1 128 tCPU

0.125 16 µs

Symbol Parameter Conditions Min Typ Max Unit

tw(ICAP)in Input capture pulse time 1
tCPU

tres(PWM) PWM resolution time
2

fCPU = 8 MHz 250 ns

fPWM PWM repetition rate 0 fCPU/4 MHz

ResPWM PWM resolution 8 bit

tCOUNTER Timer clock period fCPU = 8 MHz
2 8000 tCPU

0.250 1000 µs

Symbol Parameter Conditions Min Typ Max Unit

tw(ICAP)in Input capture pulse time 1
tCPU

tres(PWM) PWM resolution time
2

fCPU = 8 MHz 250 ns

fEXT Timer external clock frequency
0 fCPU/4 MHz

fPWM PWM repetition rate

ResPWM PWM resolution 16 bit

tCOUNTER
Timer clock period when internal
clock is selected

fCPU = 8 MHz
2 8 tCPU

0.250 1 µs

bso
lete Product(

s)
- O

bso
lete Product(

s)
242/265

ST72561

 O
15 DEVELOPMENT TOOLS
Full details of tools available for the ST7 from third
party manufacturers can be obtained from the
STMicroelectronics Internet site:
➟ www.st.com/mcu

Tools from iSystem and Hitex include C compliers,
emulators and gang programmers.

Note: Before designing the board layout, it is rec-
ommended to check the overall dimensions of the
socket as they may be greater than the dimen-
sions of the device.

For footprint and other mechanical information
about these sockets and adapters, refer to the
manufacturer’s datasheet.

ST Programming Tools
■ ST7MDT25-EPB: For in-socket or ICC

programming
■ ST7-STICK: For ICC programming

bso
lete Product(

s)
- O

bso
lete Product(

s)
257/265

