

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	27
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFBGA, WLCSP
Supplier Device Package	36-WLCSP (2.37x2.46)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mkl26z128cal4r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

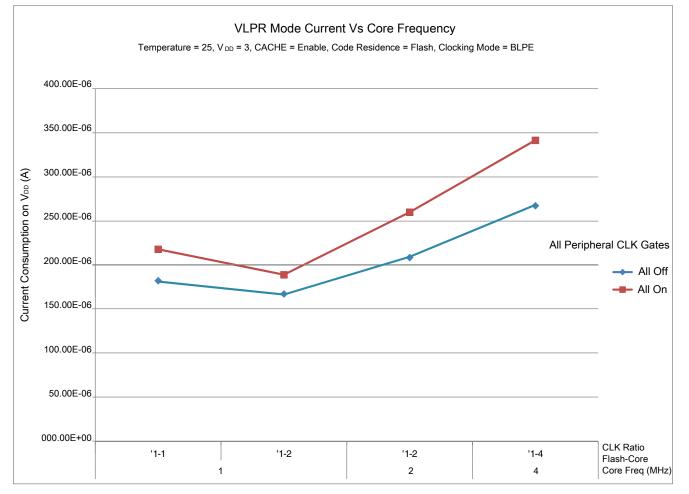


Figure 3. VLPR mode current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors Table 11. EMC radiated emissions operating behaviors

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	16	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	18	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	11	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	13	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	М	_	2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code.

Symbol	Description	Min.	Max.	Unit
f _{ERCLK}	External reference clock	—	16	MHz
f _{LPTMR_ERCLK}	LPTMR external reference clock	—	16	MHz
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	—	16	MHz
f _{TPM}	TPM asynchronous clock	—	8	MHz
f _{UART0}	UART0 asynchronous clock		8	MHz

Table 13. Device clock specifications (continued)

 The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.

2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

Table 14. General switching specifications

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100		ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	_	ns	2
Port rise and fall time	_	36	ns	3

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. 75 pF load

2.4 Thermal specifications

2.4.1 Thermal operating requirements

 Table 15.
 Thermal operating requirements

Γ	Symbol	Description	Min.	Max.	Unit
Γ	TJ	Die junction temperature	-40	95	°C
	T _A	Ambient temperature	-40	85	°C

Symbol	Description	Min.	Max.	Unit
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	—	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	—	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	—	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	—	ns

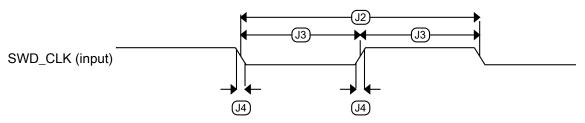
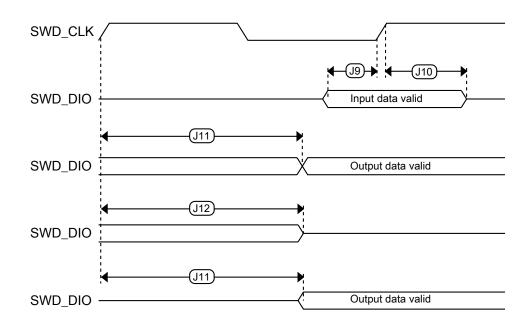



Figure 4. Serial wire clock input timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference factory trimmed a	_	32.768	—	kHz		
f _{ints_t}	Internal reference user trimmed	frequency (slow clock) —	31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$	Resolution of trim frequency at fixed using C3[SCTRIN	_	± 0.3	± 0.6	%f _{dco}	1	
Δf_{dco_t}	Total deviation of frequency over vo	_	+0.5/-0.7	± 3	%f _{dco}	1, 2	
Δf_{dco_t}	Total deviation of frequency over fix range of 0–70 °C	_	± 0.4	± 1.5	%f _{dco}	1, 2	
f _{intf_ft}	Internal reference factory trimmed at	_	4	—	MHz		
∆f _{intf_ft}	Frequency deviati (fast clock) over te factory trimmed a	_	+1/-2	± 3	%f _{intf_ft}	2	
f _{intf_t}	Internal reference user trimmed at n	3	_	5	MHz		
f _{loc_low}	Loss of external c RANGE = 00	lock minimum frequency —	(3/5) x f _{ints_t}	—	—	kHz	
f _{loc_high}	Loss of external c RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}	—	—	kHz	
		FL	L				
f _{fll_ref}	FLL reference free	quency range	31.25	_	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS = 00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS = 01) $1280 \times f_{fll_ref}$	40	41.94	48	MHz	
f _{dco_t_DMX3}	DCO output frequency	Low range (DRS = 00)	_	23.99	—	MHz	5, 6

Table 18. MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
		$732 \times f_{fll_ref}$					
		Mid range (DRS = 01)	—	47.97	—	MHz]
		$1464 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		_	180	—	ps	7
	• f _{VCO} = 48 M	1Hz					
t _{fll_acquire}	FLL target freque	ncy acquisition time	_	_	1	ms	8
		PL	L				1
f _{vco}	VCO operating fre	equency	48.0	_	100	MHz	
I _{pli}	PLL operating curves PLL at 96 N 2 MHz, VDI	_	1060	—	μΑ	9	
I _{pli}	PLL operating cur PLL at 48 N 2 MHz, VDI	_	600	_	μΑ	9	
f _{pll_ref}	PLL reference fre	quency range	2.0	_	4.0	MHz	
J _{cyc_pll}	PLL period jitter (RMS)					10
	• f _{vco} = 48 Mł	Hz	—	120	_	ps	
	• f _{vco} = 100 N	ЛНz	—	50	_	ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					10
	• f _{vco} = 48 MI	Hz	—	1350	_	ps	
	• f _{vco} = 100 M	ЛНz	—	600	_	ps	
D _{lock}	Lock entry freque	ncy tolerance	± 1.49		± 2.98	%	
D _{unl}	Lock exit frequen	cy tolerance	± 4.47		± 5.97	%	
t _{pll_lock}	Lock detector det	ection time	_	_	150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	11

Table 18. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. The deviation is relative to the factory trimmed frequency at nominal V_{DD} and 25 °C, $f_{ints_{ft}}$.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
- The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation
 (Δf_{dco t}) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71		3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz		1.2	_	mA	
	• 32 MHz		1.5	-	mA	
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance	_		—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—		—	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	_		-	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	-	MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	_	-	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	—	200	-	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	—	_	-	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					

7. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

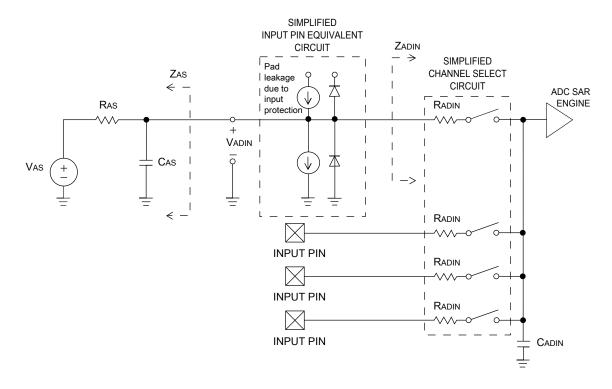


Figure 6. ADC input impedance equivalency diagram

3.6.1.2 16-bit ADC electrical characteristics

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes	
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3	
	ADC	• ADLPC = 1, ADHSC =	1.2	2.4	3.9	MHz	t _{ADACK} =	
	asynchronous clock source	0	2.4	4.0	6.1	MHz	1/f _{ADACK}	
		 ADLPC = 1, ADHSC = 1 	3.0	5.2	7.3	MHz		
f _{ADACK}		• ADLPC = 0, ADHSC = 0	4.4	6.2	9.5	MHz		
		 ADLPC = 0, ADHSC = 1 						
	Sample Time	See Reference Manual chapter for sample times						
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5	
	error	• <12-bit modes	_	±1.4	±2.1			

Table 26. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		12-bit modes	_	±0.2	-0.3 to 0.5		
INL	Integral non- linearity	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5
		 <12-bit modes 	_	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	—	-1.4	-1.8		V _{DDA} ⁵
EQ	Quantization	16-bit modes	_	-1 to 0	—	LSB ⁴	
	error	• ≤13-bit modes	_	—	±0.5		
ENOB	Effective number of bits	16-bit differential mode	12.8	14.5	_	bits	6
		• Avg = 32	11.9	13.8		bits	
		• Avg = 4					
		16-bit single-ended mode	12.2	13.9	-	bits	
		• Avg = 32	11.4	13.1	-	bits	
		• Avg = 4					
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic distortion	16-bit differential mode	_	-94	_	dB	7
		• Avg = 32	_	-85	_	dB	
		16-bit single-ended mode					
		• Avg = 32					
SFDR	Spurious free dynamic range	16-bit differential mode	82	95		dB	7
	aynamic range	• Avg = 32	78	90		dB	
		16-bit single-ended mode	10	30		чD	
		 Avg = 32 					
-		,					
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)

Table 26.	16-bit ADC characteristics	$(V_{REFH} = V)$	V _{DDA} , V _{REFL} =	V _{SSA}) (continued)
-----------	----------------------------	------------------	--	--------------------------------

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 26. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$
- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{\text{REFH}} V_{\text{REFL}})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

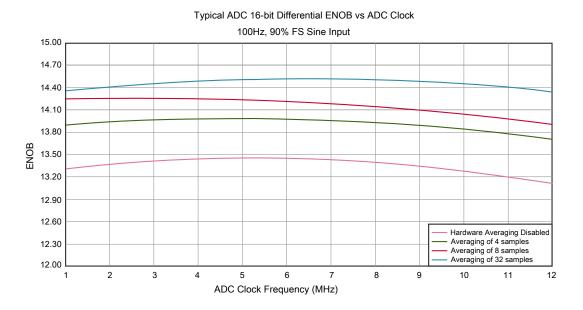


Figure 7. Typical ENOB vs. ADC_CLK for 16-bit differential mode

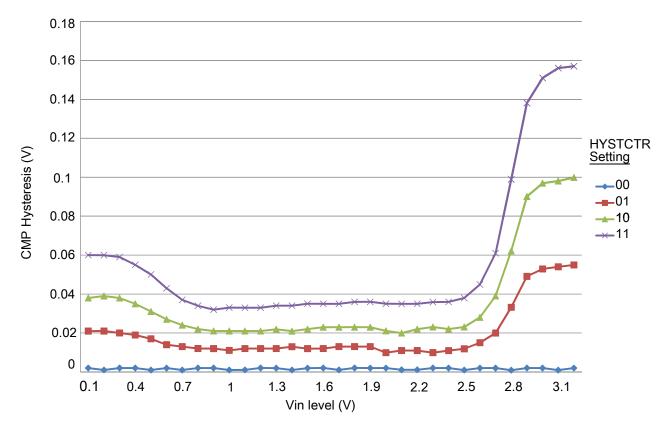


Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.3 12-bit DAC electrical characteristics

3.6.3.1 12-bit DAC operating requirements Table 28. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
CL	Output load capacitance	—	100	pF	2
١L	Output load current	—	1	mA	

1. The DAC reference can be selected to be V_{DDA} or $V_{\text{REFH}}.$

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

3.6.3.2 12-bit DAC operating behaviors Table 29. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL} P	Supply current — low-power mode		—	250	μΑ	
I _{DDA_DACH} P	Supply current — high-speed mode	_	—	900	μΑ	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	_	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000	_	—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	_	—	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	_	—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT		—	±1	LSB	4
VOFFSET	Offset error		±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 V$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	—	3.7	—	μV/C	6
T_{GE}	Temperature coefficient gain error	_	0.000421	—	%FSR/C	
Rop	Output resistance (load = $3 \text{ k}\Omega$)			250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	—		
	 Low power (SP_{LP}) 	0.05	0.12	—		
BW	3dB bandwidth				kHz	
	 High power (SP_{HP}) 	550	_	_		
	 Low power (SP_{LP}) 	40	_	_		

1. Settling within ± 1 LSB

2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV

3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV

4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} – 100 mV

6. V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

32

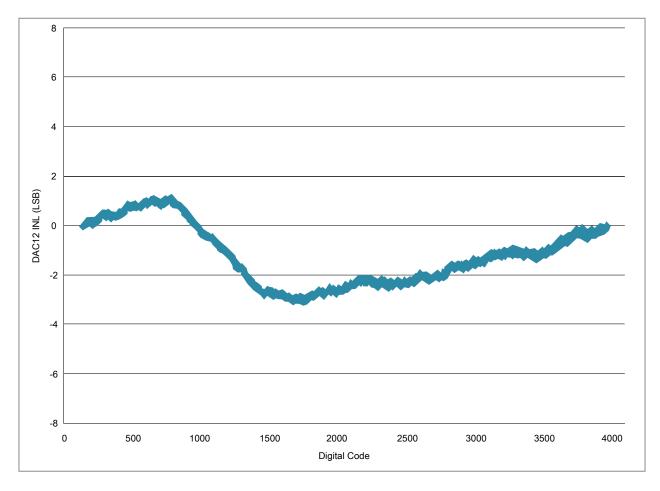


Figure 11. Typical INL error vs. digital code

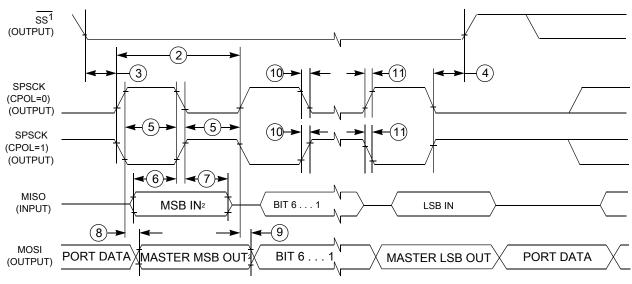
3.8.3 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x	ns	2
				t _{periph}		
3	t _{Lead}	Enable lead time	1/2		t _{SPSCK}	—
4	t _{Lag}	Enable lag time	1/2		t _{SPSCK}	
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x	ns	—
				t _{periph}		
6	t _{SU}	Data setup time (inputs)	18		ns	—
7	t _{HI}	Data hold time (inputs)	0	_	ns	—
8	t _v	Data valid (after SPSCK edge)	—	15	ns	—
9	t _{HO}	Data hold time (outputs)	0	_	ns	—
10	t _{RI}	Rise time input	_	t _{periph} - 25	ns	
	t _{FI}	Fall time input]			
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output]			

 Table 31. SPI master mode timing on slew rate disabled pads


1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$

 Table 32.
 SPI master mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	twspsck	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x t _{periph}	ns	
6	t _{SU}	Data setup time (inputs)	96	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	—

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

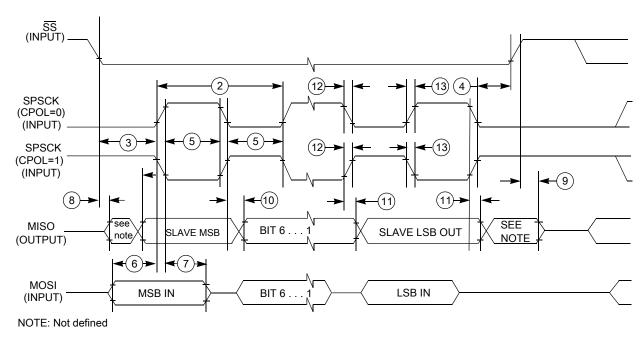
Figure 14. SPI master mode timing (CPHA = 1)

Table 33.	SPI slave mode timing on slew rate disabled pads
-----------	--

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	—	ns	2
3	t _{Lead}	Enable lead time	1		t _{periph}	—
4	t _{Lag}	Enable lag time	1	—	t _{periph}	
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	
6	t _{SU}	Data setup time (inputs)	2.5		ns	—
7	t _{HI}	Data hold time (inputs)	3.5	_	ns	
8	ta	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	31	ns	—
11	t _{HO}	Data hold time (outputs)	0	_	ns	—
12	t _{RI}	Rise time input	—	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	25	ns	_
	t _{FO}	Fall time output				

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

- 2. $t_{periph} = 1/f_{periph}$
- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state



Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}		ns	2
3	t _{Lead}	Enable lead time	1	—	t _{periph}	_
4	t _{Lag}	Enable lag time	1	—	t _{periph}	
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	—	ns	_
6	t _{SU}	Data setup time (inputs)	2	—	ns	_
7	t _{HI}	Data hold time (inputs)	7	_	ns	_
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	122	ns	
11	t _{HO}	Data hold time (outputs)	0		ns	_
12	t _{RI}	Rise time input	—	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	36	ns	_
	t _{FO}	Fall time output				

Table 34. SPI slave mode timing on slew rate enabled pads

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

- 2. $t_{periph} = 1/f_{periph}$
- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

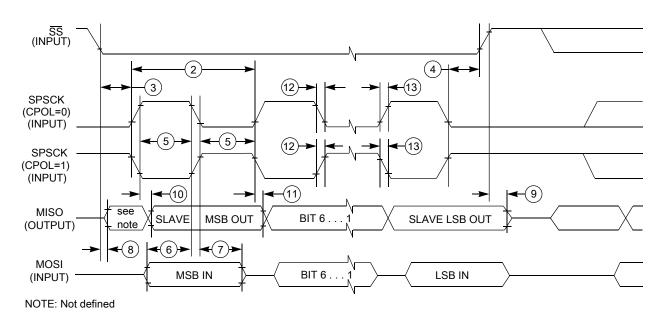


Figure 16. SPI slave mode timing (CPHA = 1)

3.8.4 Inter-Integrated Circuit Interface (I2C) timing Table 35. I2C timing

Characteristic	Symbol	Standa	rd Mode	Fast	Mode	Unit
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	—	μs
LOW period of the SCL clock	t _{LOW}	4.7	—	1.3	—	μs
HIGH period of the SCL clock	t _{HIGH}	4	—	0.6	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	—	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵	—	100 ³ , ⁶	—	ns
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High drive pins (see Voltage and current operating behaviors) or when using the Normal drive pins and VDD ≥ 2.7 V

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	—	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	10	—	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	—	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	—	33	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	10	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	28	ns

Table 37. I2S/SAI slave mode timing

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

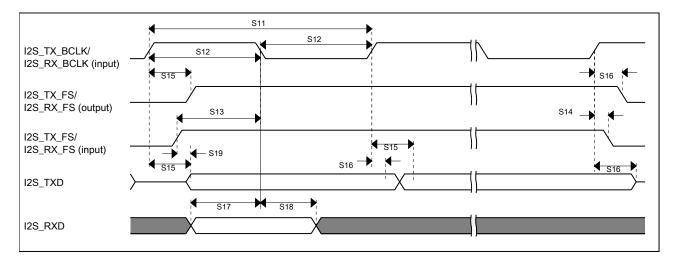


Figure 19. I2S/SAI timing — slave modes

3.8.6.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	-	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	—	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	—	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid		—	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid		—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK		—	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	—	ns

Table 38. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)

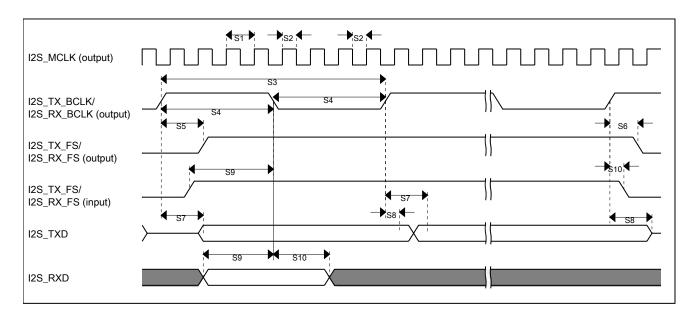


Figure 20. I2S/SAI timing — master modes

Table 39.I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full
voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	_	ns

Ordering parts

36 WLC SP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
A1	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	TPM0_CH3	I2S0_MCLK		
B4	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ALT2	I2S0_RXD0		CMP0_OUT	
A2	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_MOSI	EXTRG_IN	I2S0_RX_ BCLK	SPI0_MISO	I2S0_MCLK	
A3	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_MISO	audioUSB_ SOF_OUT	I2S0_RX_FS	SPI0_MOSI		
A4	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI1_PCS0	UART2_RX	TPM0_CH4			
A5	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI1_SCK	UART2_TX	TPM0_CH5			
B5	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI1_MOSI	UART0_RX		SPI1_MISO		
B6	PTD7	DISABLED		PTD7	SPI1_MISO	UART0_TX		SPI1_MOSI		

5.2 KL26 pinouts

The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see KL26 Signal Multiplexing and Pin Assignments.

	1	2	3	4	5	6	
A	PTC4/ LLWU_P8	PTC6/ LLWU_P10	PTC7	PTD4/ LLWU_P14	PTD5	PTE0	A
в	PTC1/ LLWU_P6/ RTC_CLKIN	PTC2	PTC3/ LLWU_P7	PTC5/ LLWU_P9	PTD6/ LLWU_P15	PTD7	В
С	PTB1	PTB0/ LLWU_P5	VSS	USB0_DP	USB0_DM	VOUT33	С
D	PTA20	PTE19	PTE18	VREGIN	PTE16	PTE17	D
E	PTA19	VSS	PTA3	PTA1	PTE30	VDDA/ VREFH	E
F	PTA18 VDD		PTA4	PTA2	PTA0	VSSA/ VREFL	F
	1	2	3	4	5	6	

Figure 22. KL26 36-pin WLCSP pinout diagram

6 Ordering parts

8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

8.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

8.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions: