

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	33MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	WDT
Number of I/O	54
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	144-BGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91m42800a-33cj

Email: info@E-XFL.COM

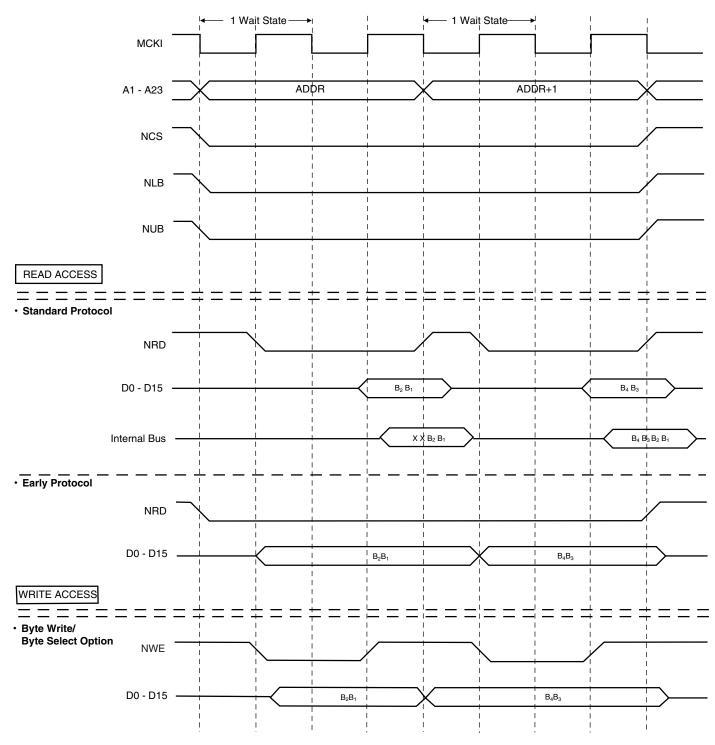
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

interrupt request to the ARM7TDMI. It integrates an 8-level priority controller, and, using the Auto-vectoring feature, reduces the interrupt latency time.

The Parallel Input/Output Controllers (PIOA, PIOB) controls up to 54 I/O lines. It enables the user to select specific pins for on-chip peripheral input/output functions, and general-purpose input/output signal pins. The PIO controllers can be programmed to detect an interrupt on a signal change from each line.

There are three embedded system timers. The Real-time Timer (RTT) counts elapsed seconds and can generate periodic or programmed interrupts. The Period Interval Timer (PIT) can be used as a user-programmable time-base, and can generate periodic ticks. The Watchdog (WD) can be used to prevent system lock-up if the software becomes trapped in a deadlock.

The Special Function (SF) module integrates the Chip ID and the Reset Status registers.


5.2.2 User Peripherals

Two USARTs, independently configurable, enable communication at a high baud rate in synchronous or asynchronous mode. The format includes start, stop and parity bits and up to 9 data bits. Each USART also features a Time-out and a Time-guard register, facilitating the use of the two dedicated Peripheral Data Controller (PDC) channels.

The two 3-channel, 16-bit Timer/Counters (TC) are highly-programmable and support capture or waveform modes. Each TC channel can be programmed to measure or generate different kinds of waves, and can detect and control two input/output signals. Each TC also has three external clock signals.

Two independently configurable SPIs provide communication with external devices in master or slave mode. Each has four external chip selects which can be connected to up to 15 devices. The data length is programmable, from 8- to 16-bit.

Figure 11-22. 1 Wait State, 16-bit Bus Width, Word Transfer

12.10 PMC Peripheral Clock Enable Register

Register Name: Access Type: Offset:	PMC_P0 Write-on 0x10						
31	30	29	28	27	26	25	24
-	-	-	-		-	_	-
23	22	21	20	19	18	17 _	16 -
15	14	13	12	11	10	9	8
-	PIOB	PIOA	-	TC5	TC4	TC3	TC2
7	6	5	4	3	2	1	0
TC1	TC0	SPIB	SPIA	US1	US0	-	-

• Peripheral Clock Enable

0 = No effect.

1 = Enables the peripheral clock.

12.11 PMC Peripheral Clock Disable Register

Register Name: Access Type: Offset:	PMC_P Write-or 0x14		-				
31	30	29	28	27	26	25	24
-	_	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	PIOB	PIOA	-	TC5	TC4	TC3	TC2
7	6	5	4	3	2	1	0
TC1	TC0	SPIB	SPIA	US1	US0	—	-

• Peripheral Clock Disable

0 = No effect.

1 = Disables the peripheral clock.

13.11 System Timer Interrupt Disable Register

Register Name: Access Type: Offset:	ST_IDR Write-only 0x18	у					
31	30	29	28	27	26	25	24
-	_	-	-	_	-	_	_
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	. 11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
_	_	_	_	ALMS	RTTINC	WDOVF	PITS

• PITS: Period Interval Timer Status Interrupt Disable

0 = No effect.

1 = Disables the Period Interval Timer Status Interrupt.

• WDOVF: Watchdog Overflow Interrupt Disable

- 0 = No effect.
- 1 = Disables the Watchdog Overflow Interrupt.

• RTTINC: Real-time Timer Increment Interrupt Disable

- 0 = No effect.
- 1 = Disables the Real-time Timer Increment Interrupt.

• ALMS: Alarm Status Interrupt Disable

0 = No effect.

1 = Disables the Alarm Status Interrupt.

14.11 AIC Source Mode Register

Register Name: Access Type: Reset Value:		AIC_SMR0AIC_SMR31 Read/Write 0							
31	30	29	28	27	26	25	24		
_	_	-	-	-	-	_	-		
23	22	21	20	19	18	17	16		
-	_	-	-	-	-	-	-		
15	14	13	12	11	10	9	8		
-	-	_	-	-	_	_	-		
7	6	5	4	3	2	1	0		
_	SRC	ГҮРЕ	_	_		PRIOR			

• PRIOR: Priority Level (Code Label AIC_PRIOR)

Program the priority level for all sources except source 0 (FIQ). The priority level can be between 0 (lowest) and 7 (highest). The priority level is not used for the FIQ, in the SMR0.

• SRCTYPE: Interrupt Source Type (Code Label AIC_SRCTYPE)

Program the input to be positive or negative edge-triggered or positive or negative level sensitive. The active level or edge is not programmable for the internal sources.

SRC	ТҮРЕ	External Sources	Code Label
0	0	Low-level Sensitive	AIC_SRCTYPE_EXT_LOW_LEVEL
0	1	Negative Edge triggered	AIC_SRCTYPE_EXT_NEGATIVE_EDGE
1	0	High-level Sensitive	AIC_SRCTYPE_EXT_HIGH_LEVEL
1	1	Positive Edge triggered	AIC_SRCTYPE_EXT_POSITIVE_EDGE

SRC	ТҮРЕ	Internal Sources	Code Label		
Х	0	Level Sensitive	AIC_SRCTYPE_INT_LEVEL_SENSITIVE		
Х	1	Edge triggered	AIC_SRCTYPE_INT_EDGE_TRIGGERED		

15.5 Interrupts

Each parallel I/O can be programmed to generate an interrupt when a level change occurs. This is controlled by the PIO_IER (Interrupt Enable) and PIO_IDR (Interrupt Disable) registers which enable/disable the I/O interrupt by setting/clearing the corresponding bit in the PIO_IMR. When a change in level occurs, the corresponding bit in the PIO_ISR (Interrupt Status) is set whether the pin is used as a PIO or a peripheral and whether it is defined as input or output. If the corresponding interrupt in PIO_IMR (Interrupt Mask) is enabled, the PIO interrupt is asserted.

When PIO_ISR is read, the register is automatically cleared.

15.6 User Interface

Each individual I/O is associated with a bit position in the Parallel I/O user interface registers. Each of these registers are 32 bits wide. If a parallel I/O line is not defined, writing to the corresponding bits has no effect. Undefined bits read zero.

15.7 Multi-driver (Open Drain)

Each I/O can be programmed for multi-driver option. This means that the I/O is configured as open drain (can only drive a low level) in order to support external drivers on the same pin. An external pull-up is necessary to guarantee a logic level of one when the pin is not being driven.

Registers PIO_MDER (Multi-Driver Enable) and PIO_MDDR (Multi-Driver Disable) control this option. Multi-driver can be selected whether the I/O pin is controlled by the PIO Controller or the peripheral. PIO_MDSR (Multi-Driver Status) indicates which pins are configured to support external drivers.

15.14 PIO Output Status Register

Register Name: Access Type: Offset: Reset Value:	PIO_OSR Read-only 0x18 0	-					
31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register shows the PIO pin control (output enable) status which is programmed in PIO_OER and PIO ODR. The defined value is effective only if the pin is controlled by the PIO. The register reads as follows:

0 = The corresponding PIO is input on this line.

1 = The corresponding PIO is output on this line.

15.18 PIO Set Output Data Register

Register Name: Access Type: Offset:	PIO_SODR Write-only 0x30	5					
31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register is used to set PIO output data. It affects the pin only if the corresponding PIO output line is enabled and if the pin is controlled by the PIO. Otherwise, the information is stored.

0 = No effect.

1 = PIO output data on the corresponding pin is set.

Register Name Access Type: Offset:	: PIO_COI Write-onl 0x34						
31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

15.19 PIO Clear Output Data Register

This register is used to clear PIO output data. It affects the pin only if the corresponding PIO output line is enabled and if the pin is controlled by the PIO. Otherwise, the information is stored.

0 = No effect.

1 = PIO output data on the corresponding pin is cleared.

Calculation of time-out duration:

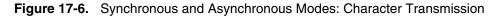
Duration = Value x 4 x Bit Period

17.4 Transmitter

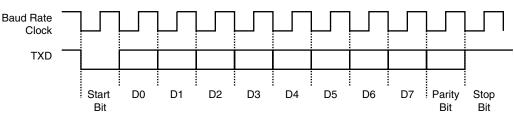
The transmitter has the same behavior in both synchronous and asynchronous operating modes. Start bit, data bits, parity bit and stop bits are serially shifted, lowest significant bit first, on the falling edge of the serial clock. See example in Figure 17-6.

The number of data bits is selected in the CHRL field in US_MR.

The parity bit is set according to the PAR field in US_MR.


The number of stop bits is selected in the NBSTOP field in US_MR.

When a character is written to US_THR (Transmit Holding), it is transferred to the Shift Register as soon as it is empty. When the transfer occurs, the TXRDY bit in US_CSR is set until a new character is written to US_THR. If Transmit Shift Register and US_THR are both empty, the TXEMPTY bit in US_CSR is set.


17.4.1 Time-guard

The Time-guard function allows the transmitter to insert an idle state on the TXD line between two characters. The duration of the idle state is programmed in US_TTGR (Transmitter Time-guard). When this register is set to zero, no time-guard is generated. Otherwise, the transmitter holds a high level on TXD after each transmitted byte during the number of bit periods programmed in US_TTGR.

Idle state duration between two characters = Time-guard X Bit Value Y Period

Example: 8-bit, parity enabled 1 stop

17.5 Multi-drop Mode

When the field PAR in US_MR equals 11X (binary value), the USART is configured to run in Multi-drop mode. In this case, the parity error bit PARE in US_CSR is set when data is detected with a parity bit set to identify an address byte. PARE is cleared with the Reset Status Bits Command (RSTSTA) in US_CR. If the parity bit is detected low, identifying a data byte, PARE is not set.

The transmitter sends an address byte (parity bit set) when a Send Address Command (SENDA) is written to US_CR. In this case, the next byte written to US_THR will be transmitted as an address. After this any byte transmitted will have the parity bit cleared.

17.12 USART Mode Register

Name: US_MR

132 AT91M42800A

1779D-ATARM-14-Apr-06

18.6 TC Block Control Register

Register Name: Access Type: Offset:	TC_BCF Write-on 0xC0						
31	30	29	28	27	26	25	24
-	-	-	-	-	_	_	-
23	22	21	20	19	18	17	16
_	-	-	-	-	_	_	-
15	14	13	12	. 11	10	9	8
_	-	-	-	-	_	_	-
7	6	5	4	3	2	1	0
-	_	_	-	-	_	_	SYNC

• SYNC: Synchro Command (Code Label TC_SYNC)

0 = No effect.

1 = Asserts the SYNC signal which generates a software trigger simultaneously for each of the channels.

18.7 TC Block Mode Register

Register Name:	TC_BMR
Access Type:	Read/Write
Offset:	0xC4
Reset Value:	0x0

31	30	29	28	27	26	25	24
-	-	-	—	_	_	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	TC2>	KC2S	TC1>	(C1S	TC0X	KC0S

• TC0XC0S: External Clock Signal 0 Selection

TC0XC0S		Signal Connected to XC0	Code Label: TC_TC0XC0S	
0	0	TCLK0	TC_TCLK0XC0	
0	1	None	TC_NONEXC0	
1	0	TIOA1	TC_TIOA1XC0	
1	1	TIOA2	TC_TIOA2XC0	

• TC1XC1S: External Clock Signal 1 Selection

TC1XC1S		Signal Connected to XC1	Code Label: TC_TC1XC1S
0	0	TCLK1	TC_TCLK1XC1
0	1	None	TC_NONEXC1
1	0	TIOA0	TC_TIOA0XC1
1	1	TIOA2	TC_TIOA2XC1

• TC2XC2S: External Clock Signal 2 Selection

TC2XC2S		Signal Connected to XC2	Code Label: TC_TC2XC2S
0	0	TCLK2	TC_TCLK2XC2
0	1	None	TC_NONEXC2
1	0	TIOA0	TC_TIOA0XC2
1	1	TIOA1	TC_TIOA1XC2

18.8 TC Channel Control Register

Register Name Access Type: Offset:	: TC_CCI Write-or 0x00						
31	30	29	28	27	26	25	24
-	_	-	-	-	_	-	-
23	22	21	20	19	18	. 17	16
_	_	-	-	-	_	-	-
15	14	13	12	. 11	10	9	8
_	_	-	-	-	_	-	-
7	6	5	4	3	2	. 1	0
_	_	_	_	_	SWTRG	CLKDIS	CLKEN

• CLKEN: Counter Clock Enable Command (Code Label TC_CLKEN)

0 = No effect.

1 = Enables the clock if CLKDIS is not 1.

• CLKDIS: Counter Clock Disable Command (Code Label TC_CLKDIS)

- 0 = No effect.
- 1 = Disables the clock.
- SWTRG: Software Trigger Command (Code Label TC_SWTRG)
- 0 = No effect.

1 = A software trigger is performed: the counter is reset and clock is started.

18.12 TC Register A

Register Name: Access Type: Offset:	TC_RA	nly if WAVE = 0	, Read/Write if V	WAVE = 1			
Reset Value:	0x0						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
			R	A			
7	6	5	4	3	2	1	0
			R	A			

• RA: Register A (Code Label TC_RA)

RA contains the Register A value in real time.

18.13 TC Register B

Register Name Access Type: Offset: Reset Value:		nly if WAVE = 0), Read/Write if ^v	WAVE = 1			
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
			H	В			
7	6	5	4	3	2	1	0
			R	В			

• RB: Register B (Code Label TC_RB)

RB contains the Register B value in real time.

19.16 SPI Receive Pointer Register

Name: Access Type: Offset: Reset Value:	SP_RPR Read/Write 0x20 0x0						
31	30	29	28	27	26	25	24
			RXI	PTR			
23	22	21	20	19	18	17	16
			RXI	PTR			
15	14	13	12	11	10	9	8
			RXI	PTR			
7	6	5	4	3	2	1	0
			RXI	PTR			

• RXPTR: Receive Pointer

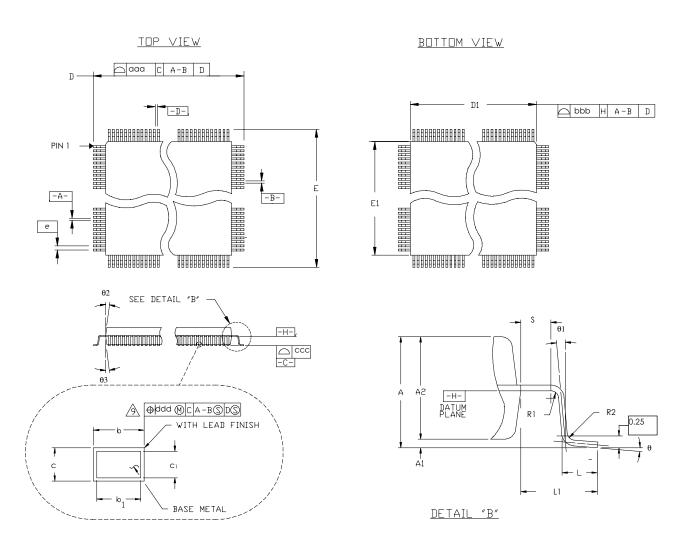
RXPTR must be loaded with the address of the receive buffer.

19.17 SPI Receive Counter Register

Name: Access Type: Offset: Reset Value:	SP_RCF Read/W 0x24 0x0						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	_	-	-	-	-	-
15	14	13	12	11	10	9	8
	RXCTR						
7	6	5	4 RX	3 CTR	2	1	0

• RXCTR: Receive Counter

RXCTR must be loaded with the size of the receive buffer.


0: Stop Peripheral Data Transfer dedicated to the receiver.

1-65535: Start Peripheral Data transfer if RDRF is active.

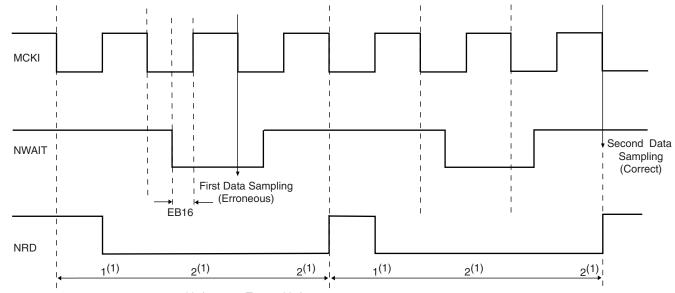
21. Packaging Information

Figure 21-1. 144-lead LQFP Package Drawing

AIMEL

23. Ordering Information

Table 23-1.Ordering Information


Ordering Code	Package	Package Type	Operating Temperature Range
AT91M42800A-33CJ	BGA 144	RoHS-compliant	Industrial
AT91M42800A-33AU	LQFP 144	Green	(-40° C to 85° C)

If the first two conditions are not met during a 32-bit read access, the first 16-bit data is read at the end of the standard 16-bit read access. In the following example, the number of standard waits is one. NWAIT assertions do affect both NRD pulse lengths, but first data sampling is not delayed. The second data sampling is correct.

Figure 24-3. Number of Standard Wait States is One

³²⁻bit Access = Two 16-bit Accesses Each Access Length = One Wait State + Assertion for One More Cycle

Note: 1. These numbers refer to the standard access cycles.

If the first two conditions are not met during write accesses, the NWE signal is not affected by the NWAIT assertion. The following example illustrates the number of standard wait states. NWAIT is not asserted during the first cycle, but is asserted at the second and last cycle of the standard access. The access is correctly delayed as the NCS line rises accordingly to the NWAIT assertion. However, the NWE signal waveform is unchanged, and rises too early.

Problem Fix/Workaround

The user must use the Time Guard programmed at the value 12.

24.6 SCK is Ignored at 32 kHz

If the origin of the Master Clock is the Slow Clock, the USART Channels cannot be synchronized with a clock that comes from the SCK pin.

Problem Fix/Workaround

No problem fix/workaround to propose.

24.7 SCK Maximum Frequency Relative to MCK in Synchronous Mode

In USART Synchronous Mode, the external clock frequency (SCK) must be at least 10 times lower than the Master Clock.

Problem Fix/Workaround

No problem fix/workaround to propose.

24.8 PIO Input Filters are not Bit-to-bit Selectable

The PIO input filters are enabled and disabled only for all of the PIO input pins and not individually. To activate them, the user must write 0x0001 in the PIO IFER and 0x0001 in the PIO IFDR to deactivate them.

Problem Fix/Workaround

No problem fix/workaround to propose.

24.9 PIO Multi-drive Capability not Usable

The PIO multi-drive capability does not work in PIO mode or in peripheral mode.

Problem Fix/Workaround

No practical workaround proposed.

	18.9 TC Channel Mode Register: Capture Mode164
	18.10 TC Channel Mode Register: Waveform Mode
	18.11 TC Counter Value Register170
	18.12 TC Register A171
	18.13 TC Register B171
	18.14 TC Register C 172
	18.15 TC Status Register173
	18.16 TC Interrupt Enable Register175
	18.17 TC Interrupt Disable Register177
	18.18 TC Interrupt Mask Register178
19	SPI: Serial Peripheral Interface179
	19.1 Pin Description179
	19.2 Master Mode
	19.3 Slave Mode
	19.4 Data Transfer
	19.5 Clock Generation
	19.6 Peripheral Data Controller186
	19.7 SPI Programmer's Model187
	19.8 SPI Control Register
	19.9 SPI Mode Register
	19.10 SPI Receive Data Register191
	19.11 SPI Transmit Data Register192
	19.12 SPI Status Register193
	19.13 SPI Interrupt Enable Register194
	19.14 SPI Interrupt Disable Register195
	19.15 SPI Interrupt Mask Register196
	19.16 SPI Receive Pointer Register197
	19.17 SPI Receive Counter Register197
	19.18 SPI Transmit Pointer Register198
	19.19 SPI Transmit Counter Register198
	19.20 SPI Chip Select Register
20	JTAG Boundary-scan Register201
21	Packaging Information205
22	Soldering Profile
	22.1 Green Soldering Profile

vi AT91M42800A