Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | - | | Number of Logic Elements/Cells | 768 | | Total RAM Bits | - | | Number of I/O | 34 | | Number of Gates | 30000 | | Voltage - Supply | 1.14V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 48-VFQFN Exposed Pad | | Supplier Device Package | 48-QFN (6x6) | | Purchase URL | https://www.e-xfl.com/product-detail/microsemi/agln030v2-zqng48i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## Flash Advantages ### Low Power Flash-based IGLOO nano devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOO nano devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs. IGLOO nano devices also have low dynamic power consumption to further maximize power savings; power is reduced even further by the use of a 1.2 V core voltage. Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOO nano device the lowest total system power offered by any FPGA. ## Security Nonvolatile, flash-based IGLOO nano devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOO nano devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer. IGLOO nano devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of security in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in IGLOO nano devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO nano devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOO nano devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. Security, built into the FPGA fabric, is an inherent component of IGLOO nano devices. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. IGLOO nano devices, with FlashLock and AES security, are unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOO nano device provides the best available security for programmable logic designs. ### Single Chip Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based IGLOO nano FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability. #### Instant On Microsemi flash-based IGLOO nano devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOO nano devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOO nano device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOO nano devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time. IGLOO nano flash FPGAs enable the user to quickly enter and exit Flash*Freeze mode. This is done almost instantly (within 1 µs) and the device retains configuration and data in registers and RAM. Unlike SRAM-based FPGAs, the device does not need to reload configuration and design state from external memory components; instead it retains all necessary information to resume operation immediately. 1-2 Revision 19 ## Power per I/O Pin Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to IGLOO nano I/O Banks | | VCCI (V) | Dynamic Power
PAC9 (μW/MHz) ¹ | |--|----------|---| | Single-Ended | | • | | 3.3 V LVTTL / 3.3 V LVCMOS | 3.3 | 16.38 | | 3.3 V LVTTL / 3.3 V LVCMOS – Schmitt Trigger | 3.3 | 18.89 | | 3.3 V LVCMOS Wide Range ² | 3.3 | 16.38 | | 3.3 V LVCMOS Wide Range – Schmitt Trigger | 3.3 | 18.89 | | 2.5 V LVCMOS | 2.5 | 4.71 | | 2.5 V LVCMOS – Schmitt Trigger | 2.5 | 6.13 | | 1.8 V LVCMOS | 1.8 | 1.64 | | 1.8 V LVCMOS – Schmitt Trigger | 1.8 | 1.79 | | 1.5 V LVCMOS (JESD8-11) | 1.5 | 0.97 | | 1.5 V LVCMOS (JESD8-11) – Schmitt Trigger | 1.5 | 0.96 | | 1.2 V LVCMOS ³ | 1.2 | 0.57 | | 1.2 V LVCMOS – Schmitt Trigger ³ | 1.2 | 0.52 | | 1.2 V LVCMOS Wide Range ³ | 1.2 | 0.57 | | 1.2 V LVCMOS Wide Range – Schmitt Trigger ³ | 1.2 | 0.52 | ### Notes: - 1. PAC9 is the total dynamic power measured on V_{CCI}. - 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. - 3. Applicable to IGLOO nano V2 devices operating at VCCI ≥ VCC. Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to IGLOO nano I/O Banks | | C _{LOAD} (pF) | VCCI (V) | Dynamic Power
PAC10 (μW/MHz) ² | |--------------------------------------|------------------------|----------|--| | Single-Ended | | | | | 3.3 V LVTTL / 3.3 V LVCMOS | 5 | 3.3 | 107.98 | | 3.3 V LVCMOS Wide Range ³ | 5 | 3.3 | 107.98 | | 2.5 V LVCMOS | 5 | 2.5 | 61.24 | | 1.8 V LVCMOS | 5 | 1.8 | 31.28 | | 1.5 V LVCMOS (JESD8-11) | 5 | 1.5 | 21.50 | | 1.2 V LVCMOS ⁴ | 5 | 1.2 | 15.22 | ### Notes: - 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. - 2. PAC10 is the total dynamic power measured on VCCI. - 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. - 4. Applicable for IGLOO nano V2 devices operating at VCCI ≥ VCC. Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage | | | [| Device-Spe | cific Dyna | mic Power | r (µW/MHz) |) | | | | |-----------|--|---------------|------------|------------|-------------|------------|---------|--|--|--| | Parameter | Definition | AGLN250 | AGLN125 | AGLN060 | AGLN020 | AGLN015 | AGLN010 | | | | | PAC1 | Clock contribution of a Global Rib | 2.829 | 2.875 | 1.728 | 0 | 0 | 0 | | | | | PAC2 | Clock contribution of a Global Spine | 1.731 | 1.265 | 1.268 | 2.562 | 2.562 | 1.685 | | | | | PAC3 | Clock contribution of a VersaTile row | 0.957 | 0.963 | 0.967 | 0.862 | 0.862 | 0.858 | | | | | PAC4 | Clock contribution of a VersaTile used as a sequential module | 0.098 | 0.098 | 0.098 | 0.094 | 0.094 | 0.091 | | | | | PAC5 | First contribution of a VersaTile used as a sequential module | 0.045 | | | | | | | | | | PAC6 | Second contribution of a VersaTile 0.186 used as a sequential module | | | | | | | | | | | PAC7 | Contribution of a VersaTile used as a combinatorial module | | | 0.1 | 11 | | | | | | | PAC8 | Average contribution of a routing net | | | 0.4 | 1 5 | | | | | | | PAC9 | Contribution of an I/O input pin (standard-dependent) | | See | Table 2-10 | 3 on page 2 | 2-9 | | | | | | PAC10 | Contribution of an I/O output pin (standard-dependent) | | See | Table 2-14 | 4 on page 2 | 2-9 | | | | | | PAC11 | Average contribution of a RAM block during a read operation | k 25.00 N/A | | | | | | | | | | PAC12 | Average contribution of a RAM block during a write operation | ock 30.00 N/A | | | | | | | | | | PAC13 | Dynamic contribution for PLL | 2.10 N/A | | | | | | | | | Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO nano Devices For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage | | | | Device | -Specific S | tatic Powe | er (mW) | | | | | |-------------------|---|----------------------------|----------------------------|-------------|------------|---------|--|--|--|--| | Parameter | Definition | AGLN250 | AGLN125 | AGLN015 | AGLN010 | | | | | | | PDC1 | Array static power in Active mode | | See Table 2-12 on page 2-8 | | | | | | | | | PDC2 | Array static power in Static (Idle) mode | | See Table 2-12 on page 2-8 | | | | | | | | | PDC3 | Array static power in Flash*Freeze mode | See Table 2-9 on page 2-7 | | | | | | | | | | PDC4 ¹ | Static PLL contribution | 0.90 N/A | | | | | | | | | | PDC5 | Bank quiescent power
(VCCI-dependent) ² | See Table 2-12 on page 2-8 | | | | | | | | | #### Notes: - 1. Minimum contribution of the PLL when running at lowest frequency. - 2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or the SmartPower tool in Libero SoC. Figure 2-5 • Output Buffer Model and Delays (example) IGLOO nano DC and Switching Characteristics ### Applies to IGLOO nano at 1.2 V Core Operating Conditions Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings STD Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V | I/O Standard | Drive Strength (mA) | Equiv. Software Default
Drive Strength Option ¹ | Slew Rate | Capacitive Load (pF) | tвоит | t _{DP} | t _{DIN} | tpy) | t _{PYS} | ^t Eo∪T | tzı | tzн | t _{LZ} | thz | Units | |---|---------------------|---|-----------|----------------------|-------|-----------------|------------------|------|------------------|-------------------|------|------|-----------------|------|-------| | 3.3 V LVTTL /
3.3 V LVCMOS | 8 mA | 8 mA | High | 5 pF | 1.55 | 2.31 | 0.26 | 0.97 | 1.36 | 1.10 | 2.34 | 1.90 | 2.43 | 3.14 | ns | | 3.3 V LVCMOS
Wide Range ² | 100 μΑ | 8 mA | High | 5 pF | 1.55 | 3.25 | 0.26 | 1.31 | 1.91 | 1.10 | 3.25 | 2.61 | 3.38 | 4.27 | ns | | 2.5 V LVCMOS | 8 mA | 8 mA | High | 5 pF | 1.55 | 2.30 | 0.26 | 1.21 | 1.39 | 1.10 | 2.33 | 2.04 | 2.41 | 2.99 | ns | | 1.8 V LVCMOS | 4 mA | 4 mA | High | 5 pF | 1.55 | 2.49 | 0.26 | 1.13 | 1.59 | 1.10 | 2.53 | 2.34 | 2.42 | 2.81 | ns | | 1.5 V LVCMOS | 2 mA | 2 mA | High | 5 pF | 1.55 | 2.78 | 0.26 | 1.27 | 1.77 | 1.10 | 2.82 | 2.62 | 2.44 | 2.74 | ns | | 1.2 V LVCMOS | 1 mA | 1 mA | High | 5 pF | 1.55 | 3.50 | 0.26 | 1.56 | 2.27 | 1.10 | 3.37 | 3.10 | 2.55 | 2.66 | ns | | 1.2 V LVCMOS
Wide Range ³ | 100 μΑ | 1 mA | High | 5 pF | 1.55 | 3.50 | 0.26 | 1.56 | 2.27 | 1.10 | 3.37 | 3.10 | 2.55 | 2.66 | ns | #### Notes: - The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. - 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification. - 3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V side range as specified in the JESD8-12 specification. - 4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-22 Revision 19 ## 1.2 V LVCMOS (JESD8-12A) Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer. Table 2-63 • Minimum and Maximum DC Input and Output Levels | 1.2 V
LVCMOS | | VIL | VIH | | VOL VOH I | | IOL IOH | | IOSL | IOSH | IIL ¹ | IIH ² | |-------------------|-----------|-------------|-------------|-----------|-------------|-------------|---------|----|-------------------------|-------------------------|-------------------------|-------------------------| | Drive
Strength | Min.
V | Max.
V | Min.
V | Max.
V | Max.
V | Min.
V | mA | mA | Max.
mA ³ | Max.
mA ³ | μ Α ⁴ | μ Α ⁴ | | 1 mA | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 3.6 | 0.25 * VCCI | 0.75 * VCCI | 1 | 1 | 10 | 13 | 10 | 10 | #### Notes: - 1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where –0.3 < VIN < VIL. - 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. - 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. - 4. Currents are measured at 85°C junction temperature. - 5. Software default selection highlighted in gray. Figure 2-11 • AC Loading Table 2-64 • 1.2 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads | Input LOW (V) | Input HIGH (V) | Measuring Point* (V) | C _{LOAD} (pF) | |---------------|----------------|----------------------|------------------------| | 0 | 1.2 | 0.6 | 5 | Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points. ### **Timing Characteristics** Applies to 1.2 V DC Core Voltage Table 2-65 • 1.2 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 1 mA | STD | 1.55 | 8.30 | 0.26 | 1.56 | 2.27 | 1.10 | 7.97 | 7.54 | 2.56 | 2.55 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-66 • 1.2 V LVCMOS High Slew Commercial-Case Conditions: $T_J = 70$ °C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 1 mA | STD | 1.55 | 3.50 | 0.26 | 1.56 | 2.27 | 1.10 | 3.37 | 3.10 | 2.55 | 2.66 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. IGLOO nano DC and Switching Characteristics ## 1.2 V LVCMOS Wide Range Table 2-67 • Minimum and Maximum DC Input and Output Levels | 1.2 V
LVCMOS
Wide
Range | | VIL | VIH | | VOL | VOH | IOL | ЮН | IOSL | юзн | IIL ¹ | IIH ² | |----------------------------------|-----------|------------|------------|-----------|-----------|------------|-----|-----|-------------------------|-------------------------|-------------------------|-------------------------| | Drive
Strength | Min.
V | Max.
V | Min.
V | Max.
V | Max.
V | Min.
V | mA | mA | Max.
mA ³ | Max.
mA ³ | μ Α ⁴ | μ Α ⁴ | | 1 mA | -0.3 | 0.3 * VCCI | 0.7 * VCCI | 3.6 | 0.1 | VCCI - 0.1 | 100 | 100 | 10 | 13 | 10 | 10 | #### Notes: - 1. I_{II} is the input leakage current per I/O pin over recommended operating conditions where –0.3 < VIN < VIL. - 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. - 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. - 4. Currents are measured at 85°C junction temperature. - Applicable to IGLOO nano V2 devices operating at VCCI ≥ VCC. - 6. Software default selection highlighted in gray. ## Timing Characteristics Applies to 1.2 V DC Core Voltage Table 2-68 • 1.2 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V | Drive | Equivalent
Software
Default
Drive
Strength
Option ¹ | Speed
Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |--------|---|----------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 100 μΑ | 1 mA | STD | 1.55 | 8.30 | 0.26 | 1.56 | 2.27 | 1.10 | 7.97 | 7.54 | 2.56 | 2.55 | ns | ### Notes: - The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-69 • 1.2 V LVCMOS Wide Range HIgh Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V | Drive | Equivalent
Software
Default
Drive
Strength
Option ¹ | Speed
Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |--------|---|----------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 100 μΑ | 1 mA | STD | 1.55 | 3.50 | 0.26 | 1.56 | 2.27 | 1.10 | 3.37 | 3.10 | 2.55 | 2.66 | ns | #### Notes: - 1. The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. - 3. Software default selection highlighted in gray. 2-40 Revision 19 # I/O Register Specifications ## Fully Registered I/O Buffers with Asynchronous Preset Figure 2-12 • Timing Model of Registered I/O Buffers with Asynchronous Preset IGLOO nano Low Power Flash FPGAs ## Fully Registered I/O Buffers with Asynchronous Clear Figure 2-13 • Timing Model of the Registered I/O Buffers with Asynchronous Clear ## **Global Resource Characteristics** ## **AGLN125 Clock Tree Topology** Clock delays are device-specific. Figure 2-25 is an example of a global tree used for clock routing. The global tree presented in Figure 2-25 is driven by a CCC located on the west side of the AGLN125 device. It is used to drive all D-flip-flops in the device. Figure 2-25 • Example of Global Tree Use in an AGLN125 Device for Clock Routing IGLOO nano DC and Switching Characteristics Table 2-92 • AGLN125 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V | | Std. | | td. | | | |----------------------|---|--|-------------------|-------------------|-------| | Parameter | Description | | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | | 1.36 | 1.71 | ns | | t _{RCKH} | Input High Delay for Global Clock | | 1.39 | 1.82 | ns | | t _{RCKMPWH} | Minimum Pulse Width High for Global Clock | | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width Low for Global Clock | | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | | 0.43 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-93 • AGLN250 Global Resource Commercial-Case Conditions: T_{.I} = 70°C, VCC = 1.425 V | | | Std. | | | |----------------------|---|-------------------------------------|------|-------| | Parameter | Description | Min. ¹ Max. ² | | Units | | t _{RCKL} | Input Low Delay for Global Clock | 1.39 | 1.73 | ns | | t _{RCKH} | Input High Delay for Global Clock | 1.41 | 1.84 | ns | | t _{RCKMPWH} | Minimum Pulse Width High for Global Clock | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width Low for Global Clock | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | 0.43 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-66 Revision 19 IGLOO nano Low Power Flash FPGAs ## 1.2 V DC Core Voltage Table 2-104 • RAM4K9 Commercial-Case Conditions: $T_J = 70$ °C, Worst-Case VCC = 1.14 V | Parameter | Description | Std. | Units | |-----------------------|---|-------|-------| | t _{AS} | Address setup time | 1.28 | ns | | t _{AH} | Address hold time | 0.25 | ns | | t _{ENS} | REN, WEN setup time | 1.25 | ns | | t _{ENH} | REN, WEN hold time | 0.25 | ns | | t _{BKS} | BLK setup time | 2.54 | ns | | t _{BKH} | BLK hold time | 0.25 | ns | | t _{DS} | Input data (DIN) setup time | 1.10 | ns | | t _{DH} | Input data (DIN) hold time | 0.55 | ns | | t _{CKQ1} | Clock HIGH to new data valid on DOUT (output retained, WMODE = 0) | 5.51 | ns | | | Clock HIGH to new data valid on DOUT (flow-through, WMODE = 1) | 4.77 | ns | | t _{CKQ2} | Clock HIGH to new data valid on DOUT (pipelined) | 2.82 | ns | | t _{C2CWWL} 1 | Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge | 0.30 | ns | | t _{C2CRWH} 1 | Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge | 0.89 | ns | | t _{C2CWRH} 1 | Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge | 1.01 | ns | | t _{RSTBQ} | RESET LOW to data out LOW on DOUT (flow-through) | 3.21 | ns | | | RESET LOW to data out LOW on DO (pipelined) | 3.21 | ns | | t _{REMRSTB} | RESET removal | 0.93 | ns | | t _{RECRSTB} | RESET recovery | 4.94 | ns | | t _{MPWRSTB} | RESET minimum pulse width | 1.18 | ns | | t _{CYC} | Clock cycle time | 10.90 | ns | | F _{MAX} | Maximum frequency | 92 | MHz | ### Notes: ^{1.} For more information, refer to the application note AC374: Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based FPGAs and SoC FPGAs App Note. ^{2.} For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. IGLOO nano DC and Switching Characteristics ## 1.2 V DC Core Voltage Table 2-107 • FIFO Worst Commercial-Case Conditions: $T_J = 70$ °C, VCC = 1.14 V | Parameter | Description | Std. | Units | |----------------------|---|-------|-------| | t _{ENS} | REN, WEN Setup Time | 3.44 | ns | | t _{ENH} | REN, WEN Hold Time | 0.26 | ns | | t _{BKS} | BLK Setup Time | 0.30 | ns | | t _{BKH} | BLK Hold Time | 0.00 | ns | | t _{DS} | Input Data (DI) Setup Time | 1.30 | ns | | t _{DH} | Input Data (DI) Hold Time | 0.41 | ns | | t _{CKQ1} | Clock High to New Data Valid on RD (flow-through) | 5.67 | ns | | t _{CKQ2} | Clock High to New Data Valid on RD (pipelined) | 3.02 | ns | | t _{RCKEF} | RCLK High to Empty Flag Valid | 6.02 | ns | | t _{WCKFF} | WCLK High to Full Flag Valid | 5.71 | ns | | t _{CKAF} | Clock High to Almost Empty/Full Flag Valid | 22.17 | ns | | t _{RSTFG} | RESET LOW to Empty/Full Flag Valid | 5.93 | ns | | t _{RSTAF} | RESET LOW to Almost Empty/Full Flag Valid | 21.94 | ns | | t _{RSTBQ} | RESET LOW to Data Out Low on RD (flow-through) | 3.41 | ns | | | RESET LOW to Data Out Low on RD (pipelined) | 4.09 | 3.41 | | t _{REMRSTB} | RESET Removal | 1.02 | ns | | t _{RECRSTB} | RESET Recovery | 5.48 | ns | | t _{MPWRSTB} | RESET Minimum Pulse Width | 1.18 | ns | | t _{CYC} | Clock Cycle Time | 10.90 | ns | | F _{MAX} | Maximum Frequency for FIFO | 92 | MHz | Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. 2-86 Revision 19 ## **Embedded FlashROM Characteristics** Figure 2-41 • Timing Diagram ## **Timing Characteristics** 1.5 V DC Core Voltage Table 2-108 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.425 V | Parameter | Description | Std. | Units | |-------------------|-------------------------|-------|-------| | t _{su} | Address Setup Time | 0.57 | ns | | t _{HOLD} | Address Hold Time | 0.00 | ns | | t _{CK2Q} | Clock to Out | 20.90 | ns | | F _{MAX} | Maximum Clock Frequency | 15 | MHz | ## 1.2 V DC Core Voltage Table 2-109 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V | Parameter | Description | Std. | Units | |-------------------|-------------------------|-------|-------| | t _{SU} | Address Setup Time | 0.59 | ns | | t _{HOLD} | Address Hold Time | 0.00 | ns | | t _{CK2Q} | Clock to Out | 35.74 | ns | | F _{MAX} | Maximum Clock Frequency | 10 | MHz | should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered. Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required. Table 3-1 shows the Flash*Freeze pin location on the available packages for IGLOO nano devices. The Flash*Freeze pin location is independent of device (except for a PQ208 package), allowing migration to larger or smaller IGLOO nano devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the IGLOO nano FPGA Fabric User's Guide for more information on I/O states during Flash*Freeze mode. Table 3-1 • Flash*Freeze Pin Locations for IGLOO nano Devices | Package | Flash*Freeze Pin | |-----------|------------------| | CS81/UC81 | H2 | | QN48 | 14 | | QN68 | 18 | | VQ100 | 27 | | UC36 | E2 | ## **JTAG Pins** Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. ### TCK Test Clock Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state. Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 3-2 for more information. Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins | VJTAG | Tie-Off Resistance 1,2 | |----------------|------------------------------| | VJTAG at 3.3 V | 200 Ω to 1 kΩ | | VJTAG at 2.5 V | 200 Ω to 1 kΩ | | VJTAG at 1.8 V | 500 Ω to 1 kΩ | | VJTAG at 1.5 V | 500 Ω to 1 k Ω | ### Notes: - 1. The TCK pin can be pulled-up or pulled-down. - 2. The TRST pin is pulled-down. - 3. Equivalent parallel resistance if more than one device is on the JTAG chain ### Package Pin Assignments | | CS81 | |------------|-------------------| | Pin Number | AGLN060Z Function | | A1 | GAA0/IO02RSB0 | | A2 | GAA1/IO03RSB0 | | A3 | GAC0/IO06RSB0 | | A4 | IO09RSB0 | | A5 | IO13RSB0 | | A6 | IO18RSB0 | | A7 | GBB0/IO21RSB0 | | A8 | GBA1/IO24RSB0 | | A9 | GBA2/IO25RSB0 | | B1 | GAA2/IO95RSB1 | | B2 | GAB0/IO04RSB0 | | В3 | GAC1/IO07RSB0 | | B4 | IO08RSB0 | | B5 | IO15RSB0 | | В6 | GBC0/IO19RSB0 | | В7 | GBB1/IO22RSB0 | | В8 | IO26RSB0 | | В9 | GBB2/IO27RSB0 | | C1 | GAB2/IO93RSB1 | | C2 | IO94RSB1 | | C3 | GND | | C4 | IO10RSB0 | | C5 | IO17RSB0 | | C6 | GND | | C7 | GBA0/IO23RSB0 | | C8 | GBC2/IO29RSB0 | | C9 | IO31RSB0 | | D1 | GAC2/IO91RSB1 | | D2 | IO92RSB1 | | D3 | GFA2/IO80RSB1 | | D4 | VCC | | D5 | VCCIB0 | | D6 | GND | | D7 | GCC2/IO43RSB0 | | | CS81 | |-----------------|-------------------| | Pin Number | AGLN060Z Function | | D8 | GCC1/IO35RSB0 | | D9 | GCC0/IO36RSB0 | | E1 | GFB0/IO83RSB1 | | E2 | GFB1/IO84RSB1 | | E3 | GFA1/IO81RSB1 | | E4 | VCCIB1 | | E5 | VCC | | E6 | VCCIB0 | | E7 | GCA1/IO39RSB0 | | E8 | GCA0/IO40RSB0 | | E9 | GCB2/IO42RSB0 | | F1 ¹ | VCCPLF | | F2 ¹ | VCOMPLF | | F3 | GND | | F4 | GND | | F5 | VCCIB1 | | F6 | GND | | F7 | GDA1/IO49RSB0 | | F8 | GDC1/IO45RSB0 | | F9 | GDC0/IO46RSB0 | | G1 | GEA0/IO69RSB1 | | G2 | GEC1/IO74RSB1 | | G3 | GEB1/IO72RSB1 | | G4 | IO63RSB1 | | G5 | IO60RSB1 | | G6 | IO54RSB1 | | G7 | GDB2/IO52RSB1 | | G8 | VJTAG | | G9 | TRST | | H1 | GEA1/IO70RSB1 | | H2 | FF/GEB2/IO67RSB1 | | H3 | IO65RSB1 | | H4 | IO62RSB1 | | H5 | IO59RSB1 | | CS81 | | | | | |-----------------|-------------------|--|--|--| | Pin Number | AGLN060Z Function | | | | | H6 | IO56RSB1 | | | | | H7 ² | GDA2/IO51RSB1 | | | | | H8 | TDI | | | | | H9 | TDO | | | | | J1 | GEA2/IO68RSB1 | | | | | J2 | GEC2/IO66RSB1 | | | | | J3 | IO64RSB1 | | | | | J4 | IO61RSB1 | | | | | J5 | IO58RSB1 | | | | | J6 | IO55RSB1 | | | | | J7 | TCK | | | | | J8 | TMS | | | | | J9 | VPUMP | | | | ### Notes: - 1. Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN060Z-CS81. - 2. The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin H7 in AGLN060Z-CS81. 4-10 Revision 19 IGLOO nano Low Power Flash FPGAs | QN48 | | | | |------------|-------------------|--|--| | Pin Number | AGLN030Z Function | | | | 1 | IO82RSB1 | | | | 2 | GEC0/IO73RSB1 | | | | 3 | GEA0/IO72RSB1 | | | | 4 | GEB0/IO71RSB1 | | | | 5 | GND | | | | 6 | VCCIB1 | | | | 7 | IO68RSB1 | | | | 8 | IO67RSB1 | | | | 9 | IO66RSB1 | | | | 10 | IO65RSB1 | | | | 11 | IO64RSB1 | | | | 12 | IO62RSB1 | | | | 13 | IO61RSB1 | | | | 14 | FF/IO60RSB1 | | | | 15 | IO57RSB1 | | | | 16 | IO55RSB1 | | | | 17 | IO53RSB1 | | | | 18 | VCC | | | | 19 | VCCIB1 | | | | 20 | IO46RSB1 | | | | 21 | IO42RSB1 | | | | 22 | TCK | | | | 23 | TDI | | | | 24 | TMS | | | | 25 | VPUMP | | | | 26 | TDO | | | | 27 | TRST | | | | 28 | VJTAG | | | | 29 | IO38RSB0 | | | | 30 | GDB0/IO34RSB0 | | | | 31 | GDA0/IO33RSB0 | | | | 32 | GDC0/IO32RSB0 | | | | 33 | VCCIB0 | | | | 34 | GND | | | | 35 | VCC | | | | 36 | IO25RSB0 | | | | | | | | | QN48 | | | |------------|-------------------|--| | Pin Number | AGLN030Z Function | | | 37 | IO24RSB0 | | | 38 | IO22RSB0 | | | 39 | IO20RSB0 | | | 40 | IO18RSB0 | | | 41 | IO16RSB0 | | | 42 | IO14RSB0 | | | 43 | IO10RSB0 | | | 44 | IO08RSB0 | | | 45 | IO06RSB0 | | | 46 | IO04RSB0 | | | 47 | IO02RSB0 | | | 48 | IO00RSB0 | | IGLOO nano Low Power Flash FPGAs | | QN68 | |------------|---------------| | | AGLN015 | | Pin Number | Function | | 1 | IO60RSB2 | | 2 | IO54RSB2 | | 3 | IO52RSB2 | | 4 | IO50RSB2 | | 5 | IO49RSB2 | | 6 | GEC0/IO48RSB2 | | 7 | GEA0/IO47RSB2 | | 8 | VCC | | 9 | GND | | 10 | VCCIB2 | | 11 | IO46RSB2 | | 12 | IO45RSB2 | | 13 | IO44RSB2 | | 14 | IO43RSB2 | | 15 | IO42RSB2 | | 16 | IO41RSB2 | | 17 | IO40RSB2 | | 18 | FF/IO39RSB1 | | 19 | IO37RSB1 | | 20 | IO35RSB1 | | 21 | IO33RSB1 | | 22 | IO31RSB1 | | 23 | IO30RSB1 | | 24 | VCC | | 25 | GND | | 26 | VCCIB1 | | 27 | IO27RSB1 | | 28 | IO25RSB1 | | 29 | IO23RSB1 | | 30 | IO21RSB1 | | 31 | IO19RSB1 | | 32 | TCK | | 33 | TDI | | 34 | TMS | | 35 | VPUMP | | | QN68 | |------------|---------------------| | • | | | Pin Number | AGLN015
Function | | 36 | TDO | | 37 | TRST | | 38 | VJTAG | | 39 | IO17RSB0 | | 40 | IO16RSB0 | | 41 | GDA0/IO15RSB0 | | 42 | GDC0/IO14RSB0 | | 43 | IO13RSB0 | | 44 | VCCIB0 | | 45 | GND | | 46 | VCC | | 47 | IO12RSB0 | | 48 | IO11RSB0 | | 49 | IO09RSB0 | | 50 | IO05RSB0 | | 51 | IO00RSB0 | | 52 | IO07RSB0 | | 53 | IO03RSB0 | | 54 | IO18RSB1 | | 55 | IO20RSB1 | | 56 | IO22RSB1 | | 57 | IO24RSB1 | | 58 | IO28RSB1 | | 59 | NC | | 60 | GND | | 61 | NC | | 62 | IO32RSB1 | | 63 | IO34RSB1 | | 64 | IO36RSB1 | | 65 | IO61RSB2 | | 66 | IO58RSB2 | | 67 | IO56RSB2 | | 68 | IO63RSB2 | ## Datasheet Information | Revision / Version | Changes | Page | |--|--|------------| | Revision 2 (Dec 2008) Product Brief Advance v0.4 | The second table note in "IGLOO nano Devices" table was revised to state, "AGLN060, AGLN125, and AGLN250 in the CS81 package do not support PLLs. AGLN030 and smaller devices do not support this feature." | II | | | The I/Os per package for CS81 were revised to 60 for AGLN060, AGLN125, and AGLN250 in the "I/Os Per Package"table. | II | | Packaging Advance v0.3 | The "UC36" pin table is new. | 4-2 | | Revision 1 (Nov 2008) | The "Advanced I/Os" section was updated to include wide power supply voltage | I | | Product Brief Advance v0.3 | | | | | The AGLN030 device was added to product tables and replaces AGL030 entries that were formerly in the tables. | VI | | | The "I/Os Per Package"table was updated for the CS81 package to change the number of I/Os for AGLN060, AGLN125, and AGLN250 from 66 to 64. | II | | | The "Wide Range I/O Support" section is new. | 1-8 | | | The table notes and references were revised in Table 2-2 • Recommended Operating Conditions ¹ . VMV was included with VCCI and a table note was added stating, "VMV pins must be connected to the corresponding VCCI pins. See <i>Pin Descriptions</i> for further information." Please review carefully. | 2-2 | | | VJTAG was added to the list in the table note for Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Flash*Freeze Mode*. Values were added for AGLN010, AGLN015, and AGLN030 for 1.5 V. | 2-7 | | | VCCI was removed from the list in the table note for Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Sleep Mode*. | 2-8 | | | Values for I _{CCA} current were updated for AGLN010, AGLN015, and AGLN030 in Table 2-12 • Quiescent Supply Current (IDD), No IGLOO nano Flash*Freeze Mode ¹ . | 2-8 | | | Values for PAC1 and PAC2 were added to Table 2-15 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices and Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices. | 2-10, 2-11 | | | Table notes regarding wide range support were added to Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels. | 2-19 | | | 1.2 V LVCMOS wide range values were added to Table 2-22 • Summary of Maximum and Minimum DC Input Levels and Table 2-23 • Summary of AC Measuring Points. | 2-19, 2-20 | | | The following table note was added to Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings and Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings: "All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification." | 2-21 | | | 3.3 V LVCMOS Wide Range and 1.2 V Wide Range were added to Table 2-28 • I/O Output Buffer Maximum Resistances ¹ and Table 2-30 • I/O Short Currents IOSH/IOSL. | 2-23, 2-24 | 5-6 Revision 19 **Microsemi Corporate Headquarters** One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 ### E-mail: sales.support@microsemi.com © 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.